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Why we care now

• Microprocessors are increasingly used in situations where we want to 
be sure of their correctness
• Self-driving cars, nuclear power stations, medical devices, etc

• Many industrial sectors mandate the use of error-detection strategies
• For example, ASIL standards in automotive

• With increased susceptibility to faults, even non-safety-critical 
computing starts to require fault tolerance
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/

https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/


Hard errors

• Permanent errors that affect operation

• Caused by device wearout in-the-field

• Also can occur from manufacturing variabilities



Soft errors

• Transient errors that can affect operation
• They are transient because their effects don’t last
• They are not repeatable

• Caused by
• Alpha particle strikes
• Cosmic rays!



Error manifestation
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Identifying vulnerabilities

• We can perform an analysis of processor structures to identify 
vulnerable state
• We identify the bits that are required for architecturally correct 

execution (ACE)
• These bits could result in incorrect output if they were flipped
• The architectural vulnerability factor (AVF) is a useful metric
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Identifying vulnerabilities

• Bits can be ACE in some cycles, not ACE in others
• Registers, for example
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Metrics

• Two related metrics are often used to define reliability
• The FIT rate (failures in time)
• Defined as the total number of errors per billion device hours

• MTTF (mean time to failure)
• Represents the time between two errors
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Dual-core lockstep

• In a system with dual-core lockstep, a program is run twice on 
different cores
• Results compared at each cycle
• Introduces temporal and spatial redundancy into the system
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Redundant multithreading

• Run two versions of code and compare results
• Can be a software scheme, perhaps with some hardware support
• Or a purely hardware approach

• Can run on different cores with one passing the other data
• Or the same core, within a different SMT context



Taking advantage of faulty hardware

є

(a) Disabling cache hints (b) Disabling branch prediction hints

Figure 7: Two high-level examples of cache and branch prediction hint disablingmechanisms. Here, values on the X-axes of the plots
correspond to eight entries of the cache disabling table.

ted load/store, whenever the LSBs of the address match the rank
order of that entry. Therefore, the cache disabling table maintains a
high-level distribution of addresses that are accessed during the last
interval. At the end of each interval, the table contents will be sent
over the queue to the animator core and entries will be cleared for
the next interval. Given a similar cache access distribution at the
animator core’s side, for evaluating similarity between two distri-
butions, (V1, V2, ..., V16) for the undead core and (S1, S2, ..., S16)
for the animator core, we calculateK =

P

16

i=1
|Si − Vi|. Then, if

K (140 in our example) is less than a pre-specified threshold, a sig-
nal will be sent to the undead core to stop gathering that particular
hint for the back-off period.
Disabling branch prediction hints can solely be done by the ani-

mator core. Apart from prioritizing the original BP of the animator
core for a subset of PCs, the NM BP can be also employed for
global disabling of the branch prediction hints. For this purpose,
we continuously monitor the performance of the NM BP and if
this performance – compared to the original BP – is worse than a
pre-specified threshold for the last disabling time interval, we dis-
able branch prediction hints. As Figure 7(b) depicts, for branch
prediction hint disabling, we use a score-based scheme with a sin-
gle counter. For every branch that the original and NM BPs either
both correctly predict or both mispredict no action should be taken.
Nonetheless, for the branches that the NM BP correctly predicts
and the original BP does not, the score counter is incremented by
one. Similarly, for the ones that NMBP mispredicts but the original
BP correctly predicts, the score counter is decremented. Finally, at
the end of each disabling time interval, if the score counter (2 in
our example) is less than a certain threshold, the branch prediction
hints will be disabled for the back-off period. For performing in-
frequent disabling-related computations, we add a 4-bit ALU to the
hint disabling unit.

4.5 Resynchronization
Since the undead core might get off the correct execution path, a

mechanism is required to take it back to a valid architectural state.
In order to do so, we use resynchronization between the two cores
during which the animator core’s PC and architectural register val-
ues get copied to the undead core. According to [27], for a modern
processor, the process of copying PC and register values between
cores takes on the order of 100 cycles. Moreover, all instructions in
the undead core’s pipelines are squashed, the rename table is reset,
and the D-cache content is also invalidated for “resynchronizing”
the memory state.

Resynchronization should happen when the undead core gets off
the correct execution path and it can no longer provide useful hints
for the animator core. The simplest policy is to resynchronize every
N committed instructions whereN is a constant number like 100K.
However, as we will show in Section 5.2, a more dynamic resyn-
chronization policy can achieve a higher overall speed-up for the
NM system. We take advantage of the hint disabling information
to identify when resynchronization should happen. An aggressive
policy is to resynchronize every time a hint gets disabled. However,
such a policy results in too many resynchronizations in a short time
which clearly reduces the efficiency of our scheme. Another poten-
tial policy is to resynchronize only if at some point in time all or
at least two of the hints get disabled. Later in Section 5.2, we will
compare some of these potential resynchronization policies.

4.6 NM Design for CMP Systems
So far, we described the NM heterogeneous coupled core exe-

cution approach and its architectural details. Here, NM for CMP
systems will be discussed. Figure 8 illustrates the NM design for
a 16-core CMP system with 4 clusters modeled after the Sun Rock
processor. Each cluster contains 4 cores which share a single an-
imator core, shown in the call-out. In order to maintain scalabil-
ity of the NM design, we employ the aforementioned 4-core clus-
ter design as the building block. Although a single animator core
might be shared among more cores, it introduces long interconnec-
tion wires that should travel from one corner of the die to another.

Figure 8: The high-level NM design for a large CMP system
with 16 cores, modeled after the Sun Rock processor, which
has 4 cores per cluster. The details of NM core coupling can be
found in Figure 4.

• Some systems use the faulty 
core to provide hints to others

• For example, Necromancer: 
Enhancing System Throughput 
by Animating Dead Cores
Ansari, Feng, Gupta and Mahlke
ISCA 2010



Approximate computing

• In certain situations we can embrace errors



Summary

• Reliability is a problem that has come back to haunt us

• Required for safety-critical systems
• Increasing needed / desired in others too

• A variety of techniques developed to
• Identify which parts of the core are vulnerable
• Reduce vulnerability to errors by re-executing parts of the code
• Embrace the unreliability for performance



This week’s papers

• BlackJack: Hard Error Detection with Redundant Threads on SMT
• Schuchman and Vijaykumar, DSN 2007

• Utilizing Dynamically Coupled Cores to Form a Resilient Chip 
Multiprocessor
• LaFrieda, İpek, Martínez and Manohar, DSN 2007 

• StageWeb: Interweaving Pipeline Stages into a Wearout and Variation 
Tolerant CMP Fabric
• Gupta, Ansari, Feng and Mahlke, DSN 2010 


