
R265: Advanced Topics in Computer Architecture

Seminar 2: State-of-the-art Processor Design

Robert Mullins

This lecture

• Examine design of modern microprocessors

• Superscalar and multicore techniques

• SoC design

Superpipelined and superscalar processors

Superscalar execution

Superpipelined execution

Pipelined execution

Execute

Time in “base” clock cycles

Instruction-level parallelism (ILP)

We could simply fetch two instructions per clock cycle and, if they are
independent, issue them together to different functional units.

What extra hardware will this processor require?

• extra logic in decode stage to decode two instructions and check for
dependencies

• register file ports? (extra read and write ports)

• functional units?

• additional data forwarding paths?

Simple in-order superscalar processors

• We can create a simple (2-way) superscalar processor with a few changes
to our scalar pipeline

• We will fetch and decode multiple instructions per cycle

• Instructions are sent to functional units in program order (in-order issue)

• We will issue and execute instructions in parallel if we can

• If we can’t issue two instructions together, we simply issue one and then
try to issue the waiting instruction on the next cycle

Simple in-order superscalar processor

Fetch

Decode

(read
from
RF)

ALU1 Mem
WB

(write
to RF)

ALU2
Fetch 2
instructions
per cycle

2

4 Register
File (RF)

read ports Additional data forwarding paths are
also required (not shown here),
from and to both ALUs.

2 register
file write

ports
Execute

Arm Cortex-A55

2-wide instruction fetch, in-order “dual” instruction issue, 8-stage integer pipeline
(Armv8.2-A architecture)

1 2 3 4 5 6 7 8

9

10

Issue slots

A dual-issue, in-order pipeline
Here issue “slot-0” and “slot-1” operate
as a sliding window or shift register
In general, we can’t dual-issue if:
• There is a data dependence between

the two instructions
• There is a structural dependence (i.e.

they both need the same FU resource
that has not been duplicated)

• The FU resource required by one of
the instructions is busy

SLOT-0 MOVW

SLOT-1 SUB

ADD

LDR

CMP

ADD

Instructions are issued to
functional units in program

order and in pairs if possible

Exposing and exploiting more ILP

To expose more ILP we need to consider:

• Branch prediction and speculative execution

• Removing name (or false) data dependencies

• Dynamic instruction scheduling

A generic superscalar processor

Fetch
n

Decode Rename
n n

Issue Read
Registers

FUs +

LS unit

Reg Write

Commit

i D
F
N

Data
Cache

Instruction
Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Write Back)

A generic superscalar processor

Fetch
n

Decode Rename
n n

Issue Read
Registers

FUs +

LS unit
Reg Write

i D
F
N

Data
Cache

Instruction
Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Write Back)

Superscalar processors: instruction fetch

Our superscalar pipeline cannot process instructions faster than they are
supplied, so maintaining a good instruction fetch rate is very important.

Potential limitations:

• Branch prediction accuracy

• Instruction cache performance

• Instruction fetch and alignment issues

Superscalar processors: instruction fetch

Our instruction fetch (front-end) can be decoupled from the part of the
processor that actually executes instructions. The aim here is to run ahead,
fill the instruction buffer and help keep our execution units fed.

In-order “Front-end”
In-order

In-order

commit
Out-of-order
execute core

Note: each block may represent multiple pipeline stages

Superscalar processors: register renaming

• High-performance superscalar
processors are able to maintain a
window into the dynamic
instruction stream

• They are able to issue instructions
from anywhere in this window
when their operands are ready

LDR X5, [X2, X4]
LDR X6, [X3, X4]
ADD X5, X5,X6
MUL X7, X5, #37
STR X7, [X2, X4]
ADD X4, X4, #4
LDR X5, [X2,X4]
MUL X8, X5, #5

time

Superscalar processors: register renaming

• In practice, name (or false)
dependencies may limit our ability to
perform this out-of-order instruction
issue

• These are present as the compiler
must reuse a limited number
architectural (or logical) register
names

• The arrows highlight the false
dependencies present in this code
snippet

LDR X5, [X2, X4]
LDR X6, [X3, X4]
ADD X5, X5,X6
MUL X7, X5, #37
STR X7, [X2, X4]
ADD X4, X4, #4
LDR X5, [X2,X4]
MUL X8, X5, #5

time

Superscalar processors: register renaming

• Register renaming may be performed in hardware at run-time

• It provides each instruction with a unique physical destination register

• It removes all name dependencies

• The processor has many more physical registers than architectural ones, e.g.:
• The A64 ISA provides 31 (64-bit) general-purpose registers that the compiler may use

• A high-performance superscalar Arm processor may provide 128 or more physical
registers

• The architectural register names are “renamed” to physical ones early in the
pipeline

A generic superscalar processor

Fetch
n

Decode Rename
n n

Issue Read
Registers

FUs +

LS unit

Reg Write

Commit

i D
F
N

Data
Cache

Instruction
Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Write Back)

Superscalar processors: register renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P__, P34, P__

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P34

P9

P7

P5 P17

P22

P2

P9

New Free

Physical Registers

Superscalar processors: register renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P__, P34, P23

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P34

P9

P7

P5 P17

P22

P2

P9

New Free

Physical Registers

Superscalar processors: register renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P17, P34, P23

ADD P__, P__, P__

MUL P__, P__, P__

X1

X5

X4

X3

X2

.

.

.

P23

P17

P9

P7

P5 P17

P22

P2

P9

New Free

Physical Registers

Superscalar processors: register renaming

Before register
renaming

After register
renaming

Register Map Table

Free Register List

AND X2, X2, X1

ADD X3, X2, X5

MUL X2, X4, X1

AND P17, P34, P23

ADD P22, P17, P5

MUL P2, P7, P23

X1

X5

X4

X3

X2

.

.

.

P23

P2

P22

P7

P5 P9

New Free

Physical Registers

Superscalar processors: register renaming

• Each instruction now has a unique
physical destination register

• All name dependencies have been
removed

• The processor is now free to issue
an instruction as soon as its
operands are ready and an
appropriate FU is free

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

A generic superscalar processor

Fetch
n

Decode Rename
n n

Issue Read
Registers

FUs +

LS unit

Reg Write

Commit

i D
F
N

Data
Cache

Instruction
Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Write Back)

Superscalar processors: register data flow

• The status of each instruction’s
operands are read and updated
when they enter our issue
window

• We can see that the first two
loads are ready to issue and the
second ADD

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time
Operands are ready if shown in
green and are not available if

shown in red, destination
registers are shown in black

Superscalar processors: register data flow

• The first load instruction (“LDR
P23…”) is issued together with a
more recent ADD instruction LDR P23, [P16, P1]

LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• After the ADD instruction is issued
we update the status of register P3
in any waiting instruction

• We will also broadcast the register
identifier P23 in a similar way

• As the load’s latency will be greater
than a single cycle, we delay this
operation for a few clock cycles

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• The second load is now issued

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• And now the third load
instruction is issued

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• We now expect the result of the
first load soon so we update
those instructions waiting for
result P23

• Then on the next clock cycle, P70

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• The first ADD instruction can
now be issued

• We continue in this way until all
the instructions are executed

LDR P23, [P16, P1]
LDR P70, [P17, P1]
ADD P33, P23, P70
MUL P2, P33, #37
STR P2, [P2, P1]
ADD P3, P1, #4
LDR P10, [P16, P3]
MUL P6, P10, #5

time

Superscalar processors: register data flow

• The issue window is implemented as a large memory-like structure

• When an instruction is issued, its destination register is broadcast to all
waiting instructions (perhaps after a short delay for longer latency
operations)

• Wakeup phase: the waiting instructions compare the broadcast destination
registers with their own operands. When the register identifiers match, the
operand is marked as ready

• Selection and issue phase: select as many ready instructions as possible
and issue them to waiting FUs.

Superscalar processors: instruction issue

Design choices:

• Centralised or distributed instruction window

• Compacted or non-compacted

• Position of register file? Before or after instruction window

Example: A distributed instruction window

Instruction fetch can provide at most 4 instructions per cycle,
3-way superscalar, 11-13 stage integer pipeline

64KB Instruction cache, 7 independent issue queues.
(Armv8.2-A architecture)

FP/ASIMD (F0)

FP/ASIMD (F1)

FP/ASIMD data

A generic superscalar processor

Fetch
n

Decode Rename
n n

Issue Read
Registers

FUs +

LS unit

Reg Write

Commit

i D
F
N

Data
Cache

Instruction
Cache

(Execute)

LS unit = Load/Store unit

DFN = Data Forwarding Network

(Write Back)

Superscalar processors: data forwarding (bypass)
network

Data forwarding in a scalar pipeline is
relatively simple, consisting of a few
extra buses and multiplexers

In a superscalar processor we have
many parallel functional units and
may need to forward any recently
generated results to the input of any
functional unit.

Superscalar processors: loads and stores

Memory-carried data dependencies

• Scheduling loads and stores is complicated by the fact that a load and
store may access the same memory location

• If we blindly execute these instructions out-of-order we may violate
memory-carried data dependencies.

Superscalar processors: loads and stores

Stores and speculative execution

• Store operations cannot be undone. The implication of this is that:
• To provide precise exceptions we must ensure stores are not performed until we

know that no earlier instruction will raise an exception

• We should not execute stores that are “speculative”, i.e. an earlier branch has
been predicted but we are yet to confirm if the prediction was correct

Superscalar processors: loads and stores

We will only permit stores to execute in program order

They will wait in the “store queue” until they are the oldest unexecuted
instruction

So we have:

1. Issue load/stores out-of-order to Address Generation Unit (AGU)

2. Buffer stores and only execute them in program order

3. For loads, check all addresses of older stores. If any match or addresses
are unknown, stall load, otherwise it may access the data cache (load-
bypassing)

Superscalar processors: loads and stores

(AGU – Address Generation Unit)

Superscalar processors: loads and stores

High-performance superscalar processors go further than this:

• Store-to-load forwarding
• Allows data to be forwarded directly from a pending store to a load instruction

• Speculative loads
• Allow loads to access the data cache speculatively even when there are older

stores that have not calculated their addresses

Superscalar processors: exceptions and
speculation

• Mispredicted branches and exceptions force us to roll back state

• To support precise exceptions we also need to track the architectural
state of the processor
• i.e. the state corresponding to the in-order execution of instructions

Superscalar processors: exceptions and
speculation

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

V, U, T, S, R, Q, P, O, N, M, L, K, J, I, ….

Unpipelined

Out-of-order

The instruction
generating an

exception

Instructions may execute
early out-of-order
(green – executed,

red – yet to execute)

All executed Not executed

Superscalar processors: the reorder buffer

Architectural
Register

File

Reorder Buffer

OPQRST
X5=?X5=4X9=?X3=?X5=3X1=?

*Exception?

Instructions
from

“front-end”

(in-order)

Instruction T executes and writes its
result to its entry in the reorder buffer

Superscalar processors: the reorder buffer

Committing instructions

When an instruction reaches the end of the reorder buffer, we know all
earlier instructions have completed. At this point we can:

• Update our (architectural) register file

• Check if branches have been mispredicted
• If so, flush the reorder buffer and re-execute the branch

• Check if the instruction needs to raise an exception
• If it does, flush the reorder buffer and raise the exception

• Signal that store operations can write to the data cache

Superscalar processors: the reorder buffer

We now have two potential sources when trying to obtain the latest value of a
register: the reorder buffer and our architectural register file

To ensure instructions receive the correct data we rename registers to reorder
buffer entries (or entries in the register file).

This is done at the rename stage either by:

(1) maintaining an explicit mapping table determining the latest source of a
particular logical register

(2) By searching the reorder buffer for the latest version of a logical register

Each instruction’s destination register is renamed to the assigned reorder buffer
slot

Superscalar processors: unified register file
approach

The reorder buffer complicates our design by introducing a new source of
operands.

An alternative approach is to maintain a large physical register file that
holds all results

Here we rename registers, as described earlier, and maintain a register
mapping table (that holds the mapping of architectural register names to
physical ones)

Superscalar processors: unified register file
approach

Large Unified Physical
Register File

Register
Rename

Stage

Front-end
register map

table

Architectural
register map

table

Commit
Stage

In-order queue
(simplified reorder buffer)

Copy architectural register map to
front-end map on an exception

Superscalar processors: handling mispredicted
branches

• Some processors attempt to handle mispredicted branches before they
commit

• This can be achieved by saving the register map table each time we
encounter a branch

• As soon as we detect a mispredicted branch we can quickly restore the
mapping that existed before the branch was predicted

• This restoration of state is itself speculative, an older branch or exception
may cause us to roll back execution again

Example: Putting it all together (Cortex-A77, 2019)

• The Cortex-A77 can fetch and decode 4 instructions/cycle

• It can issue (dispatch) up to 10 uops/cycle to the integer, FP and
load/store units.

• The branch mispredict penalty is 10 cycles in the best case

• The out-of-order windows size and reorder buffer hold 160 instructions

• The load/store queue holds 32-40 entries

• The target clock frequency is between 2.6 and 3GHz

Limits to superscalar processors

Ultimately the performance of a superscalar processor is limited by:

• Increasing hardware cost of extracting more instruction-level parallelism

• Memory bandwidth

• Limits to branch prediction and caches

• Interconnect scaling

• Power consumption

Why create a custom System-on-Chip (SoC)?

• Reduced cost

• Reduced PCB area and volume

• Increased performance and reduced power consumption

• Product differentiation

SoCs integrate a range of IP types: processors, custom processors,
accelerators, on-chip memories, peripherals and interfaces, etc.

System-on-chip (SoC) design

High-level design goals and constraints for a mobile SoC:

• Target market: client device (e.g. mobile phone, tablet etc.)

• Cost per chip: ~$20-$25, Area = ~70-80mm^2 in 7nm fabrication technology

• Transistor budget: ~7-8 billion transistors

• Performance: Excellent general-purpose performance over a wide range of
workloads, e.g.: image processing, 2D/3D graphics, machine learning
applications. Some requirements for real-time processing.

• Off-chip memory bandwidth: 32 GiB/s

• Power: 2-3W peak (only in short bursts on smartphones)

High-level view of our example System-on-Chip

General-Purpose
Processors x 8

4 big: e.g. A76, 2.6Ghz
4 little: e.g. A55, 1.8Ghz

Cache Coherent Interconnect

L2 Private Caches

4MB Shared L3 Cache

GPU
(750Mhz)

Machine
Learning

Accelerator

Display
Processor

Video
Processor

Interconnect

System
Control

Processor
(SCP)

Dedicated
Sensor

Processor

Memory
Controller

DDR PHY
Off-chip

interface PHYs

Peripheral IP Memory System

32GiB/s (LPDDR4X-4266, 4 x 16-bit channels)

Cellular
Radio

Processor
(real-time)

CPU Private L1 Caches:
L1 I$/D$ 64KB each for large cores
L1 I$/D$ 32KB each for small cores
CPU Private L2 Caches:
512KB each for large cores
128KB each for small cores

DynamIQ Shared Unit

Memory System Integrated TrustZone

Cortex-A76

Mali-G76

CoreLink CCI-550

CoreLink GIC-600

I/O Coherent
Masters

NIC-450

NIC-450

MMU-600

Mali-D71

C
o

re
Si

gh
t

So
C

-6
0

0

LPDDR4x

EL
A

-5
0

0

Cortex-A55

DMC-500

SCP
Cortex-M3

CoreLink NIC-450

Peripherals

EL
A

-5
0

0

DMC-500

CryptoCell-
712

Sensor
Fusion

Cortex-Mx

Cellular
Radio

Cortex-R8

A
D

5

LPDDR4x

MMU-600

Mali-
V76

Machine
Learning

processor

Arm NN
Compute Libraries / CMSIS-

NN
Arm Trusted Firmware

u-boot / UEFI
DS-5 Streamline

A modern Arm System-on-Chip (SoC)

Heterogeneity

There are different levels of heterogeneity within the SoC

• Cores running the same ISA but with different microarchitectures (DynamIQ)
• Allows general-purpose tasks to migrate to save power or increase performance

• Cores extracting different types of parallelism (Cortex-A cores vs Mali GPU)
• E.g. the GPU is specialised to efficiently exploit data-parallel parallelism

• Cores specialised to specific tasks (machine-learning processor)
• These are highly specialised hardware accelerators designed for a narrow range of

workloads

The key aim for all of this is to reduce power consumption but increase
performance

Heterogeneity in microarchitectures

Cortex A76

4-way superscalar, out-of-order
processor

• 8-wide issue

13-stage pipeline

Multilevel branch-target cache
• Branch unit has 2x fetch-unit bandwidth

128-entry instruction window

Two load/store pipelines access 64KiB
L1D

• Optimised for memory-level parallelism

Cortex A55

2-wide in-order superscalar

8-stage pipeline
• Sweet spot between power/area and

frequency

Neural-network-based branch predictor
• 256-entry BTAC (branch target address

cache)

Configurable L1D cache size
• Fully exclusive of L2

Independent load & store AGUs
• Address generation units

Intel Skylake i7-6700K (Q3, 2015)

Intel Xeon scalable mesh architecture

Arm Neoverse design (64-128 cores)

Intel Lakefield (Smartphones and laptops)

• Q4 2019

• 5W/7W configurations

• Graphics

• Heterogeneous cores (Intel Big-
Bigger similar to Arm’s
big.LITTLE)

3D die stacking (Intel “Foveros”)

P1274 = 10nm process, P1222 is 22nm FinFET low power (low leakage current)
“Foveros” is the 3D face-to-face chip stacking technology, microbumps + Through Silicon Vias (TSVs)
POP = standard stacked Package-on-Package memory

