Advanced Topics in
Computer Architecture

Secure Processors |: CHERI

Prof. Simon W. Moore

2 UNIVERSITY OF

¥ CAMBRIDGE

Computer Science & Technology

Copyright © Simon W. Moore, 2022

Background

= CHERI: secure processor design by Cambridge + SRI International

= Timely:
= Big UK funding push to commercialise the technology:
Industry Strategy Challenge Fund: Digital Security by Design

= £70m UK government funding + £1 |6m from industry

= Started 26 September 2019
= ARM making the Morello test chip and board platform to be shipped to

partners Q1 2022
= Based on substantial research

= |20+ engineer/research years of effort
= >$24m of DARPA funding

Motivation — Memory Safety

= Matt Miller (MS Response Center) @ BlueHat 2019:
" From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.
= First place: spatial safety
* Addressed directly by CHERI
= Second place: use after free

= Temporal memory safety is made efficient by exploiting CHERI capability validity tags to
quickly and precisely find pointers during revocation

Motivation — Chromium Browser Safety

’

“70% of our serious security bugs are memory safety problems’

www.chromium.org/Home/chromium-security/memory-safety

High+, impacting stable

Security-related assert
7.1%

Use-after-free

36.1%

Other

23.9%

Other memory unsafety

32.9%

Motivation — The Eternal War in Memory*

= Many security vulnerabilities exploit memory safety violations

* Title based on Oakland 2013 paper: SoK: Eternal War in Memory, Laszl6 Szekeres, Mathias Payer, Tao Wei, Dawn Song

5

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "POTRTO" (6 LETTERS).

)

ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

I .OOI

(0)

0

(o]
.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "BIRD" (4 LETTERS). o 16 Sro. 6l
) these 4 letters: BIRD.

/S € | /WO PpIX//:d1lY :924N0S

HMM...

SERVER, ARE YOU STILL. THERE?
IF S0, REPLY "HAT™ (500 LETTERS),

/

35038534
malmmcno&toolon; Uéierxaxm
wents to change account password to

Iaabel wants pags

Meg wants these 500 letters: HAT.

JHSE | /oD padx//:d1ay :924nos

Meg wants the

HAT. Lucas requests the "missed conne
ctions” page&e(admxustratm)m
ts to set server’s master key to "148
350385347, Isabel wants pages about '
snakes but not too long". User Karen

mntsw.chanqcmmtpamrdto'

Went wrong! How do we do better?

= Classical answer:
* The programmer forgot to check the bounds of the data structure being read
* Fix the vulnerability in hindsight — one line fix:
if (1+2+payload+16 > s->s3->rrec.length) return O;
= Our answer:
" Preserve bounds information during compilation

= Use hardware (CHERI processor) to dynamically check bounds with little
overhead and guarantee pointer integrity & provenance

CHERI Approach to Memory Safety

* The principle of intentional use

= Ensure that software runs the way the programmer intended, not the way the
attacker tricked it

= Approach:
= Guaranteed pointer integrity & provenance; efficient dynamic bounds checking

* Instructions always accept capability operands, and never look them up automatically (unlike
an MMU)

" The principle of least privilege
= Reduce the attack surface using software compartmentalization
= This mitigates known and unknown exploits
= Approach: highly scalable and efficient compartmentalization

= Robust deterministic protection, not probabilistic debugging
measures

Preserve RISC philosophy

" “No” to: " “Yes” to:
= Microcode * Low-level hardware functionality
= New table lookups on which many software

structures can be built

= Exotic external memory a ler friend|
= Compiler friendly

= Extended pipeline
= Get the compiler, linker and run-
time system to do much of the

work, not the ISA+decoder
= Keep it as simple as possible!

= Reduction in clock frequency
" Reduced addressing modes
= Crypto (not needed here)

CHERI HARDWARE ARCHITECTURE

A new type — the Capability

= CHERI Capability = bounds checked pointer with integrity
* Held in memory and in (new or extended) registers

hidden validity/integrity tag

permissions compressed bounds (top, bottom)

— 128-bits

address

A new type — the Capability

virtual memory

permissions compressed bounds (top, bottom)

address

New Instructions

* Memory access
* Loads and stores via a bounds checked capability
= Exception if address is out of range

* Guarded manipulation of capabilities

* Decrease bounds . L
monotonic decrease in rights guaranteed

B - :
e by formally verified hardware

= Adjust the address
= Extract/test fields

critical property for security

Sealed Capabilities for Compartmentalization

= Sealed capabilities are none dereferencable capabilities
* Have to be unsealed (e.g. inside a compartment) before use

object type (24-

more compressed bounds
bits

permissions object type compressed bounds

— 128-bits

address

Calling a Compartment

—

Sealed code capability

executable

object-type
sealed capability

Sealed data capability
non-executable

object-type

sealed capability

Clnvoke

PC capability
perms bounds

address

Default data capability

perms bounds

address

0

0

CHERI Software Models

2.8 UNIVERSITY OF

¥ CAMBRIDGE

\?—g Bt

Computer Science & Technologys

Background to CHERI Software Models

= Machine-level capabilities and instructions provide the building blocks
on which new abstract capability software models can be built

= Analogy:

= Machine-level translation lookaside buffer (TLB) and page table walker
enables the OS to represent virtual memory

= Virtual memory can then be used in different ways to impose new security
features, e.g. guard pages

Low-level CHERI software models

More compatible Safer
Unmodified Hybrid Pure-capability
All pointers are Annotated and automatically All pointers are capabilities

. selected pointers are capabilities
integers P P

Legacy code can still be run Hybrid mode only used to interoperate Recompile code to get
but gets no security benefit between legacy code and pure-capability code many security benefits

* Our CHERI Clang/LLVM compiler generates code
for all three models

20

Pure Capability Code — Needs CheriABI

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C
Run-time Environment

Brooks Davis* Robert N. M. Watson T Alexander Richardson
brooks.davis@sri.com robert.watson@cl.cam.ac.uk alexander.richardson@cl.cam.ac.uk
Peter G. Neumann® Simon W. Moore John Baldwin¥

peter.neumann@sri.com simon.moore@cl.cam.ac.uk john@araratriver.co
David Chisnall$ Jeseica M larke N~ hani®” Vesle %ilo 1ot
5 ayr .

= Received best paper award at ASPLOS, April 2019
= Complete pure-capability UNIX OS userspace with spatial memory safety
= Usable for daily development tasks
= Almost vast majority of FreeBSD tests pass
= Management interfaces (e.g. ioctl), debugging, etc., work
= Large, real-world applications have been ported: PostgreSQL and WebKit

Red Team Evaluation by MIT Lincoln Labs

CHERI mitigates
Heartbleed
exploit!

Capabilities for Control-Flow Robustness

Program
counter

= Capabilities used for return addresses and
other code pointers

Return
Address

" Integrity bit mitigates code reuse attacks:
= ROP — Return Oriented Programming

Malicious
data

" JOP — Jump Oriented Programming

* Much better than current probabilistic
technique ASLR (Address Space Layout
Randomisation)

Virtual
Register file memory

Example of CHERI-based compartmentalization

Protection
domain
A

Protection
domain
B

Shared virtual address space
Domain-specific Domain-specific Domain-specific Heap .
captables + PLTs stacks globals allocations PrOteCtlon
EEEEN domain A
. “----o in A
Register L e h p.
file .- - -'EL - 8, .
- — E:===: :::: e . .
— e —— T —_ @ mplie”
~~~~~ \ ' oint .
= ~. N : \J;:L\ _— * Flexible set of
\\\ ' 1
* ( S %, Shared | heap shared resources
CI’O " ‘~\\ \ code 'l
domain 4 ~~~~~ <Y © & Explict
resou”e;[ ay [y v* pointer
. - 4
————— .i.!llhlll
.............. 2L
-~ ST Domain B
heap
Protection

K 2gister
b

-
- -
————

(S
For e
P~
L~

Domain B

" [solated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

24



Temporal Memory Safety

" E.g. use-after-free vulnerabilities are common

= CHERI hardware directly implements strong spatial safety and
enables efficient temporal safety:

= Tags and object bounds held by capabilities makes software-based temporal
safety efficient via revocation

* Hardware optimisations makes software scanning for tags (i.e. scanning for
object references) efficient



Papers on CHERI Revocation

CHERIvoke: Characterising Pointer
Revocation using CHERI Capabilities for
Temporal Memory Safety

MICRO’52, 2019

Cornucopia: Temporal Safety for
CHERI Heaps

|IEEE Security and Privacy (Oakland), 2020




Cornucopia: State-of-the-Art Runtime Overheads

Normalized Execution Time |

Us, inline 1A Us, offload mm Oscar @ pSweeper-1s B DangSan & CRCount = BOGO mu
2.0 4.67.512.9 4.1
astar bzip2 gobmk hmmer libquantum omnetpp sjeng xalancbmk geomean
= CHERI-compatible SPEC CPU2006 benchmarks ReSfea;f‘h is °:,g°,ing to
. . urther optimize
= Without second thread, geomean is 5.8% (worst 26.2%) tempora|Psafety!

= With second thread and core, geomean 1.9% (worst 8.9%)
" When offloading, pause times 10-20% of single-thread sweep typical

= Applications unmodified beyond existing small patches for CheriABI compatibility



Summary of Capability Protections

Code

Control flow /

Integrity and
provenance

Permissions

Monotonicity

" Low-level capability hardware is a foundation for software
models

= Guarantee a valid userspace pointer set with pointer privilege reduction
= Highly efficient compartmentalization
= Efficient, deterministic temporal safety

28



Building CHERI-RISC-V

2.8 UNIVERSITY OF

¥ CAMBRIDGE

\?—g Bt

Computer Science & Technology,s



First we made an FPGA-based hardware tablet

@ 18476K
@ 18476K 8K RUN
1K sele

4
2588K w:
B 18476K 1928K ttyin




Several Processors Implemented

= Early CHERI-MIPS:
https://github.com/CTSRD-CHERI/cheri-cpu

= Current CHERI-RISC-V cores:

= Piccolo 32b microcontroller:
https://github.com/CTSRD-CHERI/Piccolo

= Flute 64b/32b scalar core:
https://github.com/CTSRD-CHERI/Flute

* Toooba 64b out-of-order core based on MIT Riscy-OOO core
https://github.com/CTSRD-CHERI/Toooba



https://github.com/CTSRD-CHERI/cheri-cpu
https://github.com/CTSRD-CHERI/Piccolo
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Toooba

Specification and Test

= SAIL-based executable formal model of RISC-V
https://github.com/riscv/sail-riscv
= Originally work from Cambridge but now the official RISC-V formal
specification

= SAlL-based CHERI-RISC-V spec:
https://github.com/CTSRD-CHERI/sail-cheri-riscv

* TestRIG for directed-random testing with test case shrinkage
https://github.com/CTSRD-CHERI/TestRIG



https://github.com/riscv/sail-riscv
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/TestRIG

Toolchain and OS support

= C compiler (Clang/LLVM) supporting capabilities

" Full OS (FreeBSD, FreeRTOS) that use capabilities for all explicit
or implied userspace pointers

= Observations:

* Little or no software modification (BSD base system +
utilities)

= Small changes to source files for 34 of 824 programs, 28 of 130
libraries

* Overall: modified ~200 of ~20,000 user-space C files/header

* Mainly localized to low-level run-time support



User space and demo applications

= Complete memory- and pointer-safe FreeBSD C/C++ userspace
= System libraries: crt/csu, libc, zlib, libxml, libssl, ...
= System tools and daemons: echo, sh, Is, openssl, ssh, sshd, ...

= Applications: PostgreSQL, nginx,
WebKit (C++)

= GUI: X1 | client libraries, Qt...

SCORE

456789

8 Backspace Clear Clear All

{1
|y

r MC 7 8 ] + Sqrt

LINES REMOVED




Current Research Directions

= Compartmentalisation

= Demonstrably much more efficient than process-based compartmentalisation
= But need new software models

" Need to ensure that CHERI compartments are robust even against transient
executions attacks (see next lecture)

* Temporal memory safety
= Microarchitectural and run-time optimisations

= CHERI for the whole SoC

= CHERI for accelerators
= Toward exascale: CHERI for partitioned global address spaces
= CHERI everywhere: CHERI for x86

= Refining CHERI and the Morello architecture to bring it into the main
stream Arm v9 ISA



Conclusions

= CHERI Provides the hardware with more semantic knowledge of
what the programmer intended
= Toward the principle of intentionality E E
* Provide scalable, efficient compartmentalisation E:i:i
= Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks https://www.cl.cam.ac.uk/

research/security/ctsrd/

"= Large performance improvement over process-based compartmentalisation

= Efficient pointer integrity and bounds checking
= Eliminates buffer overflow/over-read attacks (finally!)

* Working with industry to bring the technology to market

* Thanks to sponsors: DARPA,ARM, Google, EPSRC, HEIF, Isaac Newton Trust, Thales
E-Security, HP Labs, Huawei

Simon.Moore@cl.cam.ac.uk
Computer Science & Technology



Further reading

* Background: An Introduction to CHERI, Technical Report UCAM-CL-TR-941, Computer
Laboratory, September 2019.
https://www.cl.cam.ac.uk/techreports/lUCAM-CL-TR-941.pdf

= Efficient Tagged Memory, ICCD 2017
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20171 | -iccd20 | 7-efficient-tags.pdf

. gOHIESRI:A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, SSP
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-ssp20 | 5-cheri-compartment.pdf
= CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety,

MICRO 2019
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20 19 | Omicro-cheri-temporal-safety.pdf

* Further optional reading:

* Cornucopia: Temporal Safety for CHERI Heaps, IEEE ngfosium on Security and Privacy, 2020
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20200akland-cornucopia.pdf

* CHERI Concentrate: Practical Compressed Capabilities, IEEE Transactions on ComPuters 2019
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20 | 9tc-cheri-concentrate.pd

= Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8),
Technical Report UCAM-CL-TR-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-95 I .pdf

= CHERI publications list:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

37


https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-ssp2015-cheri-compartment.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

