
Computer Science & Technology

Advanced Topics in
Computer Architecture

Secure Processors I: CHERI

Prof. Simon W. Moore

Copyright © Simon W. Moore, 2022

2

Background

§CHERI: secure processor design by Cambridge + SRI International
§ Timely:

§ Big UK funding push to commercialise the technology:
Industry Strategy Challenge Fund: Digital Security by Design
§ £70m UK government funding + £116m from industry

§ Started 26th September 2019
§ ARM making the Morello test chip and board platform to be shipped to

partners Q1 2022

§ Based on substantial research
§ 120+ engineer/research years of effort
§ >$24m of DARPA funding

Motivation – Memory Safety

§Matt Miller (MS Response Center) @ BlueHat 2019:
§ From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.
§ First place: spatial safety

§ Addressed directly by CHERI

§ Second place: use after free
§ Temporal memory safety is made efficient by exploiting CHERI capability validity tags to

quickly and precisely find pointers during revocation

Motivation – Chromium Browser Safety

“70% of our serious security bugs are memory safety problems”
www.chromium.org/Home/chromium-security/memory-safety

4

Motivation – The Eternal War in Memory*

§Many security vulnerabilities exploit memory safety violations

5

* Title based on Oakland 2013 paper: SoK: Eternal War in Memory, László Szekeres, Mathias Payer, Tao Wei, Dawn Song

6

source: http://xkcd.com
/1354/

7

source: http://xkcd.com
/1354/

8

source: http://xkcd.com
/1354/

Went wrong? How do we do better?

§Classical answer:
§ The programmer forgot to check the bounds of the data structure being read
§ Fix the vulnerability in hindsight – one line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

§Our answer:
§ Preserve bounds information during compilation
§ Use hardware (CHERI processor) to dynamically check bounds with little

overhead and guarantee pointer integrity & provenance

9

CHERI Approach to Memory Safety

§ The principle of intentional use
§ Ensure that software runs the way the programmer intended, not the way the

attacker tricked it
§ Approach:

§ Guaranteed pointer integrity & provenance; efficient dynamic bounds checking
§ Instructions always accept capability operands, and never look them up automatically (unlike

an MMU)

§ The principle of least privilege
§ Reduce the attack surface using software compartmentalization

§ This mitigates known and unknown exploits
§ Approach: highly scalable and efficient compartmentalization

§ Robust deterministic protection, not probabilistic debugging
measures

Preserve RISC philosophy

§ “No” to:
§ Microcode
§ New table lookups
§ Exotic external memory
§ Extended pipeline
§ Reduction in clock frequency
§ Reduced addressing modes
§ Crypto (not needed here)

§ “Yes” to:
§ Low-level hardware functionality

on which many software
structures can be built

§ Compiler friendly
§ Get the compiler, linker and run-

time system to do much of the
work, not the ISA+decoder

§ Keep it as simple as possible!

CHERI HARDWARE ARCHITECTURE

12

A new type – the Capability

§CHERI Capability = bounds checked pointer with integrity
§Held in memory and in (new or extended) registers

13

address

permissions compressed bounds (top, bottom) s

64-bits

v

hidden validity/integrity tag

128-bits

A new type – the Capability

14

address

permissions compressed bounds (top, bottom) sv

virtual memory

critical property for security

monotonic decrease in rights guaranteed
by formally verified hardware

New Instructions

15

§Memory access
§ Loads and stores via a bounds checked capability
§ Exception if address is out of range

§Guarded manipulation of capabilities
§ Decrease bounds
§ Decrease permissions
§ Adjust the address
§ Extract/test fields

Sealed Capabilities for Compartmentalization

§ Sealed capabilities are none dereferencable capabilities
§Have to be unsealed (e.g. inside a compartment) before use

16

address

permissions compressed bounds s

64-bits

v

object type (24-
bits)

128-bits

object type

more compressed bounds
sealed:
S=1

Calling a Compartment

17

executable
object-type

sealed capability

non-executable
object-type

sealed capability

address

perms bounds 0

address

perms bounds 0

Sealed code capability

Sealed data capability

PC capability

Default data capability=

CInvoke

Computer Science & Technology

CHERI Software Models

18

Background to CHERI Software Models

§Machine-level capabilities and instructions provide the building blocks
on which new abstract capability software models can be built

§Analogy:
§ Machine-level translation lookaside buffer (TLB) and page table walker

enables the OS to represent virtual memory
§ Virtual memory can then be used in different ways to impose new security

features, e.g. guard pages

Low-level CHERI software models

§Our CHERI Clang/LLVM compiler generates code
for all three models

20

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are capabilities

Legacy code can still be run
but gets no security benefit

Recompile code to get
many security benefits

Hybrid mode only used to interoperate
between legacy code and pure-capability code

Pure Capability Code ® Needs CheriABI

§ Received best paper award at ASPLOS, April 2019
§ Complete pure-capability UNIX OS userspace with spatial memory safety

§ Usable for daily development tasks
§ Almost vast majority of FreeBSD tests pass
§ Management interfaces (e.g. ioctl), debugging, etc., work
§ Large, real-world applications have been ported: PostgreSQL and WebKit

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C

Run-time Environment

Brooks Davis∗
brooks.davis@sri.com

Robert N. M. Watson†
robert.watson@cl.cam.ac.uk

Alexander Richardson†
alexander.richardson@cl.cam.ac.uk

Peter G. Neumann∗
peter.neumann@sri.com

Simon W. Moore†
simon.moore@cl.cam.ac.uk

John Baldwin‡
john@araratriver.co

David Chisnall§
David.Chisnall@microso�.com

Jessica Clarke†
jessica.clarke@cl.cam.ac.uk

Nathaniel Wesley Filardo†
nwf20@cam.ac.uk

Khilan Gudka†
khilan.gudka@cl.cam.ac.uk

Alexandre Joannou†
alexandre.joannou@cl.cam.ac.uk

Ben Laurie�
benl@google.com

A. Theodore Markettos†
theo.marke�os@cl.cam.ac.uk

J. Edward Maste†
emaste@freebsd.org

Alfredo Mazzinghi†
am2419@cam.ac.uk

Edward Tomasz Napierala†
trasz@freebsd.org

Robert M. Norton†
robert.norton@cl.cam.ac.uk

Michael Roe†
michael.roe@cl.cam.ac.uk

Peter Sewell†
peter.sewell@cl.cam.ac.uk

Stacey Son†
sson@me.com

Jonathan Woodru�†
jonwoodru�@gmail.com

∗SRI International, Menlo Park, CA, United States †University of Cambridge, Cambridge, UK
‡Ararat River Consulting, Walnut Creek, CA, United States §Microsoft Research, Cambridge, UK

�Google Inc., London, UK

Abstract
The CHERI architecture allows pointers to be implemented
as capabilities (rather than integer virtual addresses) in a
manner that is compatible with, and strengthens, the seman-
tics of the C language. In addition to the spatial protections
o�ered by conventional fat pointers, CHERI capabilities o�er
strong integrity, enforced provenance validity, and access
monotonicity. The stronger guarantees of these architec-
tural capabilities must be reconciled with the real-world

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN ISBN 978-1-4503-6240-5/19/04. . . $15.00
h�ps://doi.org/10.1145/3297858.3304042

behavior of operating systems, run-time environments, and
applications. When the process model, user-kernel interac-
tions, dynamic linking, and memory management are all
considered, we observe that simple derivation of architec-
tural capabilities is insu�cient to describe appropriate access
to memory. We bridge this conceptual gap with a notional
abstract capability that describes the accesses that should be
allowed at a given point in execution, whether in the kernel
or userspace. To investigate this notion at scale, we describe
the �rst adaptation of a full C-language operating system
(FreeBSD) with an enterprise database (PostgreSQL) for com-
plete spatial and referential memory safety. We show that
awareness of abstract capabilities, coupled with CHERI archi-
tectural capabilities, can provide more complete protection,
strong compatibility, and acceptable performance overhead
compared with the pre-CHERI baseline and software-only
approaches. Our observations also have potentially signi�-
cant implications for other mitigation techniques.

Red Team Evaluation by MIT Lincoln Labs

CHERI mitigates
Heartbleed

exploit!

Capabilities for Control-Flow Robustness

§Capabilities used for return addresses and
other code pointers

§ Integrity bit mitigates code reuse attacks:
§ ROP – Return Oriented Programming
§ JOP – Jump Oriented Programming

§Much better than current probabilistic
technique ASLR (Address Space Layout
Randomisation)

String
buffer

Malicious
data

$pc

$ra

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

Example of CHERI-based compartmentalization

§ Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

24

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

Temporal Memory Safety

§ E.g. use-after-free vulnerabilities are common
§CHERI hardware directly implements strong spatial safety and

enables efficient temporal safety:
§ Tags and object bounds held by capabilities makes software-based temporal

safety efficient via revocation
§ Hardware optimisations makes software scanning for tags (i.e. scanning for

object references) efficient

Papers on CHERI Revocation

CHERIvoke: Characterising Pointer
Revocation using CHERI Capabilities for
Temporal Memory Safety

MICRO’52, 2019
Cornucopia: Temporal Safety for
CHERI Heaps

IEEE Security and Privacy (Oakland), 2020

Cornucopia: State-of-the-Art Runtime Overheads

§ CHERI-compatible SPEC CPU2006 benchmarks
§ Without second thread, geomean is 5.8% (worst 26.2%)
§ With second thread and core, geomean 1.9% (worst 8.9%)
§ When offloading, pause times 10-20% of single-thread sweep typical

§ Applications unmodified beyond existing small patches for CheriABI compatibility

1.0

1.2

1.4

1.6

1.8

2.0

astar bzip2 gobmk hmmer libquantum omnetpp sjeng xalancbmk geomeanN
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e Us, inline Us, offload Oscar

4.6 4.1
pSweeper-1s DangSan

7.5
CRCount BOGO

12.9

Research is ongoing to
further optimize
temporal safety!

Summary of Capability Protections

28

§ Low-level capability hardware is a foundation for software
models
§ Guarantee a valid userspace pointer set with pointer privilege reduction
§ Highly efficient compartmentalization
§ Efficient, deterministic temporal safety

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance Bounds

Computer Science & Technology

Building CHERI-RISC-V

29

First we made an FPGA-based hardware tablet

Several Processors Implemented

§ Early CHERI-MIPS:
https://github.com/CTSRD-CHERI/cheri-cpu

§Current CHERI-RISC-V cores:
§ Piccolo 32b microcontroller:

https://github.com/CTSRD-CHERI/Piccolo
§ Flute 64b/32b scalar core:

https://github.com/CTSRD-CHERI/Flute
§ Toooba 64b out-of-order core based on MIT Riscy-OOO core

https://github.com/CTSRD-CHERI/Toooba

https://github.com/CTSRD-CHERI/cheri-cpu
https://github.com/CTSRD-CHERI/Piccolo
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Toooba

Specification and Test

§ SAIL-based executable formal model of RISC-V
https://github.com/riscv/sail-riscv
§ Originally work from Cambridge but now the official RISC-V formal

specification

§ SAIL-based CHERI-RISC-V spec:
https://github.com/CTSRD-CHERI/sail-cheri-riscv

§ TestRIG for directed-random testing with test case shrinkage
https://github.com/CTSRD-CHERI/TestRIG

https://github.com/riscv/sail-riscv
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/TestRIG

Toolchain and OS support

§C compiler (Clang/LLVM) supporting capabilities
§Full OS (FreeBSD, FreeRTOS) that use capabilities for all explicit

or implied userspace pointers

§Observations:

§Little or no software modification (BSD base system +
utilities)

§ Small changes to source files for 34 of 824 programs, 28 of 130
libraries

§Overall: modified ~200 of ~20,000 user-space C files/header
§Mainly localized to low-level run-time support

User space and demo applications

§ Complete memory- and pointer-safe FreeBSD C/C++ userspace
§ System libraries: crt/csu, libc, zlib, libxml, libssl, …
§ System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …
§ Applications: PostgreSQL, nginx,

WebKit (C++)
§ GUI: X11 client libraries, Qt…

35

Current Research Directions
§Compartmentalisation

§ Demonstrably much more efficient than process-based compartmentalisation
§ But need new software models
§ Need to ensure that CHERI compartments are robust even against transient

executions attacks (see next lecture)
§ Temporal memory safety

§ Microarchitectural and run-time optimisations

§CHERI for the whole SoC
§ CHERI for accelerators

§ Toward exascale: CHERI for partitioned global address spaces
§CHERI everywhere: CHERI for x86
§ Refining CHERI and the Morello architecture to bring it into the main

stream Arm v9 ISA

Conclusions

§CHERI Provides the hardware with more semantic knowledge of
what the programmer intended
§ Toward the principle of intentionality

§ Efficient pointer integrity and bounds checking
§ Eliminates buffer overflow/over-read attacks (finally!)

§ Provide scalable, efficient compartmentalisation
§ Allows the principle of least privilege to be exploited to

mitigate known and unknown attacks
§ Large performance improvement over process-based compartmentalisation

§Working with industry to bring the technology to market
§ Thanks to sponsors: DARPA, ARM, Google, EPSRC, HEIF, Isaac Newton Trust, Thales

E-Security, HP Labs, Huawei
36

Simon.Moore@cl.cam.ac.uk
Computer Science & Technology

https://www.cl.cam.ac.uk/
research/security/ctsrd/

37

Further reading
§ Background: An Introduction to CHERI, Technical Report UCAM-CL-TR-941, Computer

Laboratory, September 2019.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

§ Efficient Tagged Memory, ICCD 2017
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf

§ CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, SSP
2015
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-ssp2015-cheri-compartment.pdf

§ CHERIvoke: Characterising Pointer Revocation using CHERI Capabilities for Temporal Memory Safety,
MICRO 2019
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf

§ Further optional reading:
§ Cornucopia: Temporal Safety for CHERI Heaps, IEEE Symposium on Security and Privacy, 2020

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
§ CHERI Concentrate: Practical Compressed Capabilities, IEEE Transactions on Computers 2019

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
§ Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8),

Technical Report UCAM-CL-TR-951
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

§ CHERI publications list:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-ssp2015-cheri-compartment.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201910micro-cheri-temporal-safety.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-publications.html

