Reflections on Trusting Trust

Ken Thompson
Communications of the ACM v 27 no 8 (1984) pp 761-763.

Not a sample R209 presentation.

Probably the shortest paper we will read this year.

Article version of Ken Thompson’s acceptance speech of the 1984 Turing Award
for the UNIX operating system, on behalf of himself Dennis Ritchie.

The Turing Award is something like a Nobel Prize for computer science.

Short intro with shout outs and thanks, followed by a thought-provoking technical
contribution.

Now seen as a seminal piece of work in computer security.

Not an academic, peer-reviewed paper — but published in highly respected
Communications of the ACM (CACM).

The UNIX Time-Sharing System (Ritchie and Thompson)

The UNIX Time-
Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

"UNIX is a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corpora-
tion PDP-11/40 and 11/45 computers. It offers a number
of features seldom found even in larger operating sys-
tems, including: (1) a hierarchical file system incorpo-
rating volumes; (2) i devi
and inter-process 1/0; (3) the ability to initiate asynchro-
nous processes; (4) system command language select-
able on a per-user basis; and (5) over 100 subsystems
including a dozen languages. This paper discusses the
nature and implementation of the file system and of the
user command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, PDP-11

CR Categories: 430,4.32

Copyright © 1974, Association for Computing Machinery,
Inc. General permission to republish, but not for profit, all or part
of this material s granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

‘This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights. New York, Octo-
ber 15-17, 1973. Authors’ address: Bell Laboratories, Murray
Hill, NI 07974,

‘The electronic version was recreated by Eric A. Brewer, Uni-
versity of California at Berkeley, brewer@cs berkeley.edu. Please
notify me of any deviations from the original; I have left errors in
the original unchanged.

1. Introduction

There have been three versions of UNIX. The carliest
version (circa 1969-70) ran on the Digital Equipment Cor-
poration PDP-7 and -9 computers. The second version ran
on the unprotected PDP-11/20 computer. This paper
describes only the PDP-11/40 and /45 [1] system since it is
more modern and many of the differences between it and
older UNIX systems result from redesign of features found
to be deficient or lacking.

Since PDP-11 UNIX became operational in February
1971, about 40 installations have been put into service; they
are generally smaller than the system described here. Most
of them are engaged in applications such as the preparation
and formatting of patent applications and other textual
‘material, the collection and processing of trouble data from
various switching machines within the Bell System, and
recording and checking telephone service orders. Our own
installation is used mainly for research in operating sys-
tems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to
demonstrate that a powerful operating system for interac-
five use need not be expensive either in equipment or in
human effort: UNIX can run on hardware costing as little as
$40,000, and less than two man years were spent on the
‘main system software. Yet UNIX contains a number of fea-
tures seldom offered even in much larger systems. It is
hoped, however, the users of UNIX will find that the most
important characteristics of the system are its simplicity,
elegance, and ease of use.

Besides the system proper, the major programs avail-
able under UNIX are: assembler, text editor based on QED
2], linking loader, symbolic debugger, compiler for a lan-
guage resembling BCPL [3] with types and structures (C),
interpreter for a dialect of BASIC, text formatting program,
Fortran compiler, Snobol interpreter, top-down compiler-
compiler (TMG) [4], bottom-up compiler-compiler (YACC),
form letter generator, macro processor (M6) [51, and per-
muted index program.

‘There is also a host of maintenance, utility, recreation,
and novelty programs. Al of these programs were written
locally. It is worth noting that the system is totally self-sup-
porting. All UNIX software is maintained under UNIX; like-
wise, UNTX documents are generated and formatted by the
UNIX editor and text formatting program.

2. Hardware and Software Environment

‘The PDP-11/45 on which our UNTX installation is imple-
mented is a 16-bit word (8-bit byte) computer with 144K
bytes of core memory; UNIX occupies 42K bytes. This sys-
tem, however, includes a very large number of device driv-
ers and enjoys a generous allotment of space for V0 buffers
and system tables; a minimal system capable of running the

365 by Eric A. Brewer
University of California at Berkeley

a July 1974
of Volume 17
the ACM Number 7

Paper:

e Based on research at Bell Labs - describes the UNIX
operating system.

e File system, process model, shell, traps, and statistics.
Influences including Multics.

But more importantly:

e Incredibly influential design and implementation: UNIX
itself, BSD, Linux, macOS/iOS, ...

e Literally billions of systems implementing UNIX design
principles around the world today

The author, Thompson, was also a coauthor of the C
programming language, an has since been a lead author of the
Go language.

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is
more important to trust the people who wrote the software.

Stage 1: The program that prints itself (good undergraduate programming
exercise).

Stage 2: A nifty and instructive observation about the source code of a compiler
and the compiler binary: ldeas about program execution may exist only in the
compiler binary and other generated binaries, not in the source code at all.

Stage 3: Uses this technique to inject two “bugs” into the compiler: one that
perpetuates the compiler changes, and the second that trojans the login program.

The result: A source-code invisible, self-perpetuating trojan of the full operating
system. There is the suggestion of generality to linkers, microcode, etc.

Acknowledgement

| first read of the possibility of such a Trojan horse in an Air Force critique [4] of the
security of an early implementation of Multics. | cannot find a more specific

reference to this document. | would appreciate it if anyone who can supply this
reference would let me know.

4. Unknown Air Force Document.

Paul Karger and Roger Schell. Multics Security Evaluation, Volume Il: Vulnerability Analysis. Technical
Report ESD-TR-74-193, v Il, Electronic Systems Division, Air Force Systems Command, Hanscom Field,
Bedford, MA 01731 (June 1974)

It was noted above that while object code
trap doors are invisible, they are vulnerable to
recompi lations. The compiler (or assembler) trap door is
inserted to permit object code trap doors to survive even
a complete recompilation of the entire system. In
Multics, most of the ring 0 supervisor is written in PL/!.
A penetrator could insert a trap door in the PL/Il compiler
to note when it is compiling a ring 0 module. Then the
compiler would insert an object code trap door in the ring
0 module without listing the code in the listing. Since
the PL/1 compiler is itself written in PL/I, the trap door
can maintain itself, even when the compiler is recompiled.
(38) Compiler trap doors are significantly more complex
than the other trap doors described here, because they
require a detailed knowledge of the compiler design.
However, they are quite prdctical to implement at a cost
of perhaps five times the level shown in Section 3.5. It
should be noted that even costs several hundred times
larger than those shown here would be considered nominal
to a foreign agent.

This US air force report is one of the earliest and most important pieces of work on adversarial reasoning. We
haven’t assigned it this year, but there’s also a retrospective paper worth reading and thinking about.

Discussion topics

What was the contribution being recognised by this Turing award?

What standards of evidence, acknowledgement, and so on, do we hold an invited talk to
— Vs an academic paper?

The attack as described: What current systems could this idea apply to? How practical is
it?

What are the values of source-code vs. binary analysis to find trojans?
It it turtles all the way down?

What are the broader implications?

What about the original Air Force work? How do we feel about the sort-of citation?

