
Reflections on Trusting Trust 
Ken Thompson

Communications of the ACM v 27 no 8 (1984) pp 761–763.

Not a sample R209 presentation.



Probably the shortest paper we will read this year.

Article version of Ken Thompson’s acceptance speech of the 1984 Turing Award 
for the UNIX operating system, on behalf of himself Dennis Ritchie.

The Turing Award is something like a Nobel Prize for computer science.

Short intro with shout outs and thanks, followed by a thought-provoking technical 
contribution.

Now seen as a seminal piece of work in computer security.

Not an academic, peer-reviewed paper – but published in highly respected 
Communications of the ACM (CACM).



The UNIX Time-Sharing System (Ritchie and Thompson)

Paper:

● Based on research at Bell Labs - describes the UNIX 
operating system.

● File system, process model, shell, traps, and statistics.
● Influences including Multics.

But more importantly:

● Incredibly influential design and implementation: UNIX 
itself, BSD, Linux, macOS/iOS, …

● Literally billions of systems implementing UNIX design 
principles around the world today

The author, Thompson, was also a coauthor of the C 
programming language, an has since been a lead author of the 
Go language.



Reflections on Trusting Trust
To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it is 
more important to trust the people who wrote the software.

Stage 1: The program that prints itself (good undergraduate programming 
exercise).

Stage 2: A nifty and instructive observation about the source code of a compiler 
and the compiler binary: Ideas about program execution may exist only in the 
compiler binary and other generated binaries, not in the source code at all.

Stage 3: Uses this technique to inject two “bugs” into the compiler: one that 
perpetuates the compiler changes, and the second that trojans the login program.

The result: A source-code invisible, self-perpetuating trojan of the full operating 
system. There is the suggestion of generality to linkers, microcode, etc.



Acknowledgement

I first read of the possibility of such a Trojan horse in an Air Force critique [4] of the 
security of an early implementation of Multics. I cannot find a more specific 
reference to this document. I would appreciate it if anyone who can supply this 
reference would let me know.

…

4. Unknown Air Force Document.



Paul Karger and Roger Schell. Multics Security Evaluation, Volume II: Vulnerability Analysis. Technical 
Report ESD-TR-74-193, v II, Electronic Systems Division, Air Force Systems Command, Hanscom Field, 
Bedford, MA 01731 (June 1974)

This US air force report is one of the earliest and most important pieces of work on adversarial reasoning. We 
haven’t assigned it this year, but there’s also a retrospective paper worth reading and thinking about.



Discussion topics

What was the contribution being recognised by this Turing award?

What standards of evidence, acknowledgement, and so on, do we hold an invited talk to 
– vs an academic paper?

The attack as described: What current systems could this idea apply to? How practical is 
it?

What are the values of source-code vs. binary analysis to find trojans?

It it turtles all the way down?

What are the broader implications?

What about the original Air Force work? How do we feel about the sort-of citation?


