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Aims of C++
To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

▶ is a better C

▶ supports data abstraction

▶ supports object-oriented programming

▶ supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
call-by-reference, operator overloading, exceptions and templates
(a richer form of generics)”.

Much is familiar from Java, but with many subtle differences.
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What we’ll cover

▶ Differences between C and C++

▶ References versus pointers

▶ Overloaded functions and operators

▶ Objects in C++; Classes and structs; Destructors; Virtual functions

▶ Multiple inheritance; Virtual base classes; Casts

▶ Exceptions

▶ Templates and metaprogramming

▶ For exam purposes, focus on ‘big-picture’ novelties and differences
between features of C++ and those in C and Java.

▶ For coding, sorry but compilers insist you get it exactly right.
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Reference sources

C++ is a big language with many subtleties. The current draft C++20
standard is 1841 pages (457 for the C++ language and 1152 for the C++
Standard Library; the grammar alone is 21 pages)!

https://isocpp.org/ The ISO standard. Published standards cost money
but draft standards are free online, e.g. draft C++20 on
https://isocpp.org/files/papers/N4860.pdf

https://cppreference.com Wiki-book attempt to track standard.

https://learncpp.com More-chatty tutorial-style articles.

https://www.stroustrup.com Entertaining and educational articles by the
creator of C++.

These are useful when wanting to know more about exactly how things
(e.g. lambdas, overloading resolution) work, they are not necessary for
exam purposes!
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How to follow these three lectures

▶ These slides try capture the core features of C++, so that afterwards
you will be able to read C++ code, and tentatively modify it.
The Main ISO C++ versions are: C++98, C++11, C++20; we’ll
focus on core features—those in C++98.

▶ But C++ is a very complex language, so these slides are incomplete,
even if they uncomfortably large.

▶ For exam purposes the fine details don’t matter, it’s more important
to get the big picture, which I’ll try to emphasise in lectures.
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Should I program my application in C or C++?
Or both or neither?

▶ One aim of these lectures is to help you decide.
▶ C and C++ both have very good run-time performance
▶ C++ has more facilities, but note Bjarne Stroustrup’s quote:

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do it blows your whole leg off.”

▶ Even if C++ is a superset of C then mixing code is risky, e.g.
▶ you don’t want two conflicting IO libraries being active,
▶ you often program using different metaphors in C and C++
▶ C functions may not expect an exception to bypass their tidy-up code
▶ Using C-coded stand-alone libraries in C++ is fine.

▶ C++ vs. Java? Speed vs. safety? More vs. fewer features? Java is
trying to follow C++ (and C#) by having value types
(objects/structs as values not just references).

Decide C or C++ at the start of a project.
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C++ Types [big picture]

C++ types are like C types, but additionally:

▶ character literals (e.g. ’a’) are type char (but int in C)

▶ new type bool (values true and false)

▶ reference types: new type constructor &, so can have
int x, *y, &z;

▶ enum types are distinct (not just synonyms for integers)

▶ new type constructor class (generalising struct in C)

▶ names for enum, class, struct and union can be used directly as
types (C needs an additional typedef)

▶ member functions (methods) can specify this to be const.

Many of the above changes are ‘just what you expect from programming
in Java’.
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C++ auto and thread local

C’s storage classes are auto, extern, static, register. In C++:

▶ auto is reused in initialised definitions to mean ‘the type of the
initialising expression’, e.g. auto x = foo(3);

▶ thread_local is an additional storage class, e.g.
static int x = 4; thread_local int y = 5;

▶ register is removed since C++17.
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C++ booleans

▶ type bool has two values: true and false

▶ When cast to an integer, true→1 and false→0

▶ When casting from an integer, non-zero values become true and zero
becomes false (NB: differs from enum, see next slide).
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C++ enumeration

▶ Unlike C, C++ enumerations define a new type; for example

enum flag {is_keyword=1, is_static=2, is_extern=4, ... }

▶ When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword;

▶ Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right(!!)

▶ Subtlety: Why is 5 ‘right’ (but 8 would be wrong)? Answer: C++
rules to ensure ‘bitmaps’ work:
▶ The maximum valid value of an enumeration is the enumeration’s

largest value rounded up to the nearest larger binary power minus one
▶ The minimum valid value of an enumeration with no negative values is

zero
▶ The minimum valid value of an enumeration with negative values is the

nearest least negative binary power
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References

C++ references provide an alternative name (alias) for a variable

▶ Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

▶ A reference is declared with the & operator; compare:
int i[] = {1,3}; int &refi = i[0]; int *ptri = &i[0];

▶ A reference must be initialised when it is declared

▶ The connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; // increments value referenced to 2

ptri++; // increments the pointer to &i[1]

Think of reference types as pointer types with implicit * at every use.
Subtlety (non-examinable): C++11 added ‘rvalue references’, e.g.
int &&lvr, useful in copy constructors (see later).
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References in function arguments
▶ When used as a function parameter, a referenced value is not copied;

for example:
void inc(int& i) { i++;}

▶ Declare a reference as const when no modification takes place

▶ It can be noticeably more efficient to pass a large struct by reference

▶ Implicit type conversion into a temporary takes place for a const

reference but results in an error otherwise; for example:

1 float fun1(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

5 fun1(v); // Wrong

6 fun2(v); // OK, but beware the temporary’s lifetime

7 fun1((float)v); // OK, but beware the temporary’s lifetime

8 }

▶ Cf. Fortran call-by-reference
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Overloaded functions

▶ Just like Java we can define two functions with the same name, but
varying in argument types (for good style functions doing different
things should have different names).

▶ Type conversion is used to find the “best” match

▶ A best match may not always be possible:

1 void f(double);

2 void f(long);

3 void test() {

4 f(1L); // f(long)

5 f(1.0); // f(double)

6 f(1); // Wrong: f(long(1)) or f(double(1)) ?

▶ Can also overload built-in operators, such as assignment and equality.

Applies both to top-level functions and member functions (methods).
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Scoping and overloading

▶ Overloading does not apply to functions declared in different scopes;
for example:

1 void f(int);

2

3 void example() {

4 void f(double);

5 f(1); //calls f(double);

6 }
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Default function arguments

▶ A function can have default arguments; for example:
double log(double v, double base=10.0);

▶ A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

▶ A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

▶ Be careful of the lexical interaction between * and =; for example:
void f(char*=0); // Wrong: ’*=’ is assignment
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Namespaces

Related data can be grouped together in a namespace. Can use :: and
using to access components. Think Java packages.

namespace Stack { //header file

void push(char);

char pop();

}

void f() { //usage

...

Stack::push(’c’);

...

}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c) { ... }

char pop() { ... }

}
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Example
1 namespace Module1 {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return i*i;}

5 inline int halve(const int& i) {return i/2;}

6 }

7

8 using namespace Module1; //"import" everything

9

10 int main() {

11 using Module2::halve; //"import" the halve function

12 x = halve(x);

13 sqr(x); //Wrong

14 }

(Non-examinable: C++20 adds module constructs giving more control
over name visibility. Think Java 9 ‘modules’, while namespaces are more
like Java ‘packages’.)
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Using namespaces

▶ A namespace is a scope and expresses logical program structure

▶ It provides a way of collecting together related pieces of code

▶ A namespace without a name limits the scope of variables, functions
and classes within it to the local execution unit

▶ The same namespace can be declared in several source files
▶ A namespace can be defined more than once

▶ Allows, for example, internal and external library definitions

▶ The use of a variable or function name from a different namespace
must be qualified with the appropriate namespace(s)
▶ The keyword using allows this qualification to be stated once, thereby

shortening names
▶ Can also be used to generate a hybrid namespace
▶ typedef can be used: typedef Some::Thing thing;

▶ The global function main() cannot be inside a namespace
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Linking C and C++ code
▶ The directive extern "C" specifies that the following declaration or

definition should be linked as C, not C++, code:
extern "C" int f();

▶ Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

2 int globalvar; //definition

3 int f();

4 void g(int);

5 }

Why do we need this?

▶ ‘Name mangling’ for overloaded functions. A C compiler typically
generates linker symbol ‘_f’ for f above, but (in the absence of
extern "C") a C++ compiler typically generates ‘__Z1fv’.

▶ Function calling sequences may also differ (e.g. for exceptions).
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Linking C and C++ code

▶ What if I want to write a library in C, and specify it via mylib.h

which is importable into both C and C++?

▶ Use conditional compilation (#ifdef) in mylib.h, e.g.

1 #ifdef __cplusplus

2 extern "C" void myfn(int, bool);

3 #else

4 # include <stdbool.h> // Ensure type bool defined in C

5 extern void myfn(int, bool);

6 #endif
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Linking C and C++ code

▶ Care must be taken with pointers to functions and linkage:

1 extern "C" void qsort(void* p, \

2 size_t nmemb, size_t size, \

3 int (*compar)(const void*, const void*));

4

5 int compare(const void*,const void*);

6

7 char s[] = "some chars";

8 qsort(s,9,1,compare); //Wrong
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Big Picture

So far we’ve only done minor things.

▶ We’ve seen C++ extensions to C. But, apart from reference types,
nothing really new has appeared that’s beyond Java concepts.

▶ Now for classes and objects, which look the same, but aren’t . . .
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Classes and objects in C++
C++ classes are somewhat like Java:

▶ Classes contain both data members and member functions (methods)
which act on the data; they can extend (syntax ‘:’) other classes.

▶ Members can be static (i.e. per-class)

▶ Members have access control: private, protected and public

▶ Classes are created with class or struct keywords
▶ struct members default to public access; class to private

▶ A member function with the same name as a class is called a
constructor

▶ Can use overloading on constructors and member functions.

But also:

▶ A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor
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Classes and objects: big differences from Java

▶ Values of class types are not references to objects, but the objects
themselves. So we access members with C-style ‘.’ (but using ‘->’ is
more convenient when we have pointers to objects).

▶ We can create an object of class C, either by:
▶ on the stack (or globally) by declaring a variable: C x;
▶ on the heap: new C() (returns a pointer to C)

▶ Member functions (methods) by default are statically resolved. For
Java-like code declare them virtual

▶ Member functions can be declared inside a class but defined outside it
using ‘::’ (the scope-resolution operator)

▶ C++ uses new to allocate and delete to de-allocate. There is no
garbage collector—users must de-allocate heap objects themselves.
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Example (emphasising differences from Java)
1 class Complex {

2 double re, im; // private by default

3 public:

4 Complex(double r=0.0, double i=0.0);

5 };

6

7 Complex::Complex(double r,double i) : re(r), im(i) {

8 // preferred form, necessary for const fields

9 }

10

11 Complex::Complex(double r,double i) {

12 re=r, im=i; // deprecated initialisation-by-assignment

13 }

14

15 int main() {

16 Complex c(2.0), d(), e(1,5.0);

17 return 0;

18 } // local objects c,d,e are deallocated on scope exit
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New behaviours w.r.t. Java

In Java constructors are only used to initialise heap storage, and the only
way we can update a field of an object is by x.f = e;.

In C++ having object values as first-class citizens gives more behaviours.
Consider the following, given class C

C x; // how is x initialised? (default constructor)

C y = x; // how is y initialised? (copy constructor)

x = y; // what does the assignment do? (assignment operator)

// what happens to x,y on scope exit? (destructor)

For C structs, these either perform bit copies or leave x uninitialised.

C++ class definitions may need to control the above behaviours to
preserve class invariants and object encapsulation.
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Constructors and destructors
▶ A default constructor is a function with no arguments (or only default

arguments)

▶ The programmer can specify one or more constructors, but as in Java,
only one is called when an object is created.

▶ If no constructors are specified, the compiler generates a default
constructor (which does does as little initialisation as possible).

▶ To forbid users of a class from using a default constructor then define
it explicitly and declare it private.

▶ There can only be one destructor
▶ This is called when a stack-allocated object goes out of scope

(including when an exception causes this to happen—see later) or
when a heap-allocated object is deallocated with delete;

▶ Stack-allocated objects with destructors are a useful way to release
resources on scope exit (similar effect as Java try-finally) – “RAII:
Resource Acquisition is Initialisation”.

▶ Make destructors virtual if class has subtypes or supertypes.
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Copy constructor

▶ A new class instance can defined by initialisation; for example:

1 Complex c(1,2); // note this C++ initialiser syntax;

2 // it calls the two-argument constructor

3 Complex d = c; // copy constructor called

▶ In the second case, by default object d is initialised with copies of all
of the non-static member variables of c; no constructor is called

▶ If this behaviour is undesirable (e.g. consider a class with a pointer as
a member variable) define your own copy constructor:
▶ Complex::Complex(const Complex&) { ... }

▶ To forbid users of a class from copying objects, make the copy
constructor a private member function, or in C++11 use delete.

▶ Note that assignment, e.g. d = c; differs differs from initialisation
and does not use the copy constructor—see next slide.
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Assignment operator

▶ By default a class is copied on assignment by over-writing all
non-static member variables; for example:

1 Complex c(), d(1.0,2.3);

2 c = d; //assignment

▶ This behaviour may also not be desirable (e.g. you might want to tidy
up the object being over-written).

▶ The assignment operator (operator=) can be defined explicitly:

1 Complex& Complex::operator=(const Complex& c) {

2 ...

3 }

▶ Note the result type of assignment, and the reference-type parameter
(passing the argument by value would cause a copy constructor to be
used before doing the assignment, and also be slower).
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Constant member functions

▶ Member functions can be declared const

▶ Prevents object members being modified by the function:

1 double Complex::real() const {

2 // forbidden to modify ’re’ or ‘this->re’ here

3 return re;

4 }

▶ The syntax might appear odd at first, but note that const above
merely qualifies the (implicit/hidden) parameter ‘this’. So here this

is effectively declared as const Complex *this instead of the usual
Complex *this.

▶ Helpful to both programmer (maintenance) and compiler (efficiency).
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Arrays and heap allocation
▶ An array of class objects can be defined if a class has a default

constructor

▶ C++ has a new operator to place items on the heap:
Complex* c = new Complex(3.4);

▶ Items on the heap exist until they are explicitly deleted:
delete c;

▶ Since C++ (like C) doesn’t distinguish between a pointer to a single
object and a pointer to an the first element of an array of objects,
array deletion needs different syntax:

1 Complex* c = new Complex[5];

2 ...

3 delete[] c; //Using "delete" is wrong here

▶ When an object is deleted, the object destructor is invoked

▶ When an array is deleted, the object destructor is invoked on each
element
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Exercises
1. Write an implementation of a class LinkList which stores zero or

more positive integers internally as a linked list on the heap. The
class should provide appropriate constructors and destructors and a
method pop() to remove items from the head of the list. The method
pop() should return -1 if there are no remaining items. Your
implementation should override the copy constructor and assignment
operator to copy the linked-list structure between class instances. You
might like to test your implementation with the following:

1 int main() {

2 int test[] = {1,2,3,4,5};

3 LinkList l1(test+1,4), l2(test,5);

4 LinkList l3=l2, l4;

5 l4=l1;

6 printf("%d %d %d\n",l1.pop(),l3.pop(),l4.pop());

7 return 0;

8 }

Hint: heap allocation & deallocation should occur exactly once!
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Operators
▶ C++ allows the programmer to overload the built-in operators

▶ For example, a new test for equality:

1 bool operator==(Complex a, Complex b) {

2 return a.real()==b.real() && a.imag()==b.imag();

3 // presume real() is an accessor for field ’re’, etc.

4 }

▶ An operator can be defined or declared within the body of a class,
and in this case one fewer argument is required; for example:

1 bool Complex::operator==(Complex b) {

2 return re==b.real() && im==b.imag();

3 }

▶ Almost all operators can be overloaded, including address-taking,
assignment, array indexing and function application.
It’s probably bad practice to define ++x and x+=1 to have different
meanings!

33 / 75

Streams
▶ Overloaded operators also work with built-in types
▶ Overloading is used to define << (C++’s “printf”); for example:

1 #include <iostream>

2

3 int main() {

4 const char* s = "char array";

5

6 std::cout << s << std::endl;

7

8 //Unexpected output; prints &s[0]

9 std::cout.operator<<(s).operator<<(std::endl);

10

11 //Expected output; prints s

12 std::operator<<(std::cout,s);

13 std::cout.operator<<(std::endl);

14 return 0;

15 }

▶ Note std::cin, std::cout, std::cerr
34 / 75

The ‘this’ pointer

▶ If an operator is defined in the body of a class, it may need to return
a reference to the current object
▶ The keyword this can be used

▶ For example:

1 Complex& Complex::operator+=(Complex b) {

2 re += b.real();

3 this->im += b.imag();

4 return *this;

5 }

▶ In C (or assembler) terms this is an implicit argument to a method
when seen as a function.
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Class instances as member variables

▶ A class can have an instance of another class as a member variable

▶ How can we pass arguments to the class constructor?

▶ New C++ syntax for constructors:

1 class Z {

2 Complex c;

3 Complex d;

4 Z(double x, double y): c(x,y), d(y) {

5 ...

6 }

7 };

▶ This notation must be used to initialise const and reference members

▶ It can also be more efficient
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Temporary objects
▶ Temporary objects are often created during execution
▶ A temporary which is not bound to a reference or named object exists

only during evaluation of a full expression (BUGS BUGS BUGS!)
▶ Example: the C++ string class has a function c_str() which

returns a pointer to a C representation of a string:

1 string a("A "), b("string");

2 const char *s1 = a.c_str(); //OK

3 const char *s2 = (a+b).c_str(); //Wrong

4 ...

5 //s2 still in scope here, but the temporary holding

6 //"a+b" has been deallocated

7 ...

8 string tmp = a+b;

9 const char *s3 = tmp.c_str(); //OK

[Non-examinable:] C++11 added rvalue references ‘&&’ to help address
this issue.
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Friends

▶ If, within a class C, the declaration friend class D; appears, then D

is allowed to access the private and protected members of C.

▶ A (non-member) function can be declared friend to allow it to access
the private and protected members of the enclosing class, e.g.

1 class Matrix {

2 ...

3 friend Vector operator*(const Matrix&, const Vector&);

4 ...

5 };

6 }

This code allows operator* to access the private fields of Matrix,
even though it is defined elsewhere. Mental model: granting your
lawyer rights to access your private papers.

▶ Note that friendship isn’t symmetric.
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Inheritance

▶ C++ allows a class to inherit features of another:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 };

6

7 class bicycle : public vehicle {

8 bool panniers;

9 public:

10 bicycle(bool p):vehicle(2),panniers(p) {}

11 };

12

13 int main() {

14 bicycle(false);

15 }
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Derived member function call
I.e. when we call a function overridden in a subclass.

▶ Default derived member function call semantics differ from Java:

1 // example13.hh

2

3 class vehicle {

4 int wheels;

5 public:

6 vehicle(int w=4):wheels(w) {}

7 int maxSpeed() {return 60;}

8 };

9

10 class bicycle : public vehicle {

11 bool panniers;

12 public:

13 bicycle(bool p=true):vehicle(2),panniers(p) {}

14 int maxSpeed() {return panniers ? 12 : 15;}

15 };
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Example

1 #include <iostream>

2 #include "example13.hh"

3

4 void print_speed(vehicle &v, bicycle &b) {

5 std::cout << v.maxSpeed() << " ";

6 std::cout << b.maxSpeed() << std::endl;

7 }

8

9 int main() {

10 bicycle b = bicycle(true);

11 print_speed(b,b); //prints "60 12"

12 }
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Virtual functions

▶ Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

▶ Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

▶ To get polymorphic behaviour, declare the function virtual in the
superclass:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 virtual int maxSpeed() {return 60;}

6 };
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Virtual functions

▶ In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

1 bicycle b(true);

2 vehicle v;

3 vehicle* pv;

4

5 user_input() ? pv = &b : pv = &v;

6

7 std::cout << pv->maxSpeed() << std::endl;

8 }
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Enabling virtual functions

▶ To enable virtual functions, the compiler generates a virtual function
table or vtable

▶ A vtable contains a pointer to the correct function for each object
instance

▶ Indirect (virtual) function calls are slower than direct function calls.

▶ Question: virtual function calls are compulsory in Java; is C++’s
additional choice of virtual/non-virtual calls good for efficiency or bad
for being an additional source of bugs?

▶ C++ vtables also contain an encoding of the class type: ‘run-time
type information’ (RTTI). Syntax typeid(e) gives the type of e
encoded as an object of type_info which is defined in standard
header <typeinfo>.
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Abstract classes

▶ Just like Java except for syntax.

▶ Sometimes a base class is an un-implementable concept

▶ In this case we can create an abstract class:

1 class shape {

2 public:

3 virtual void draw() = 0;

4 }

▶ It is forbidden to instantiate an abstract class:
shape s; //Wrong

▶ A derived class can provide an implementation for some (or all) the
abstract functions

▶ A derived class with no abstract functions can be instantiated

▶ C++ has no equivalent to Java ‘implements interface’.
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Example

1 class shape {

2 public:

3 virtual void draw() = 0;

4 };

5

6 class circle : public shape {

7 public:

8 //...

9 void draw() { /* impl */ }

10 };

46 / 75

Multiple inheritance

▶ It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {

2 ...

3 }

▶ Members from both base classes exist in the derived class

▶ If there is a name clash, explicit naming is required

▶ This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle::maxSpeed();
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Multiple instances of a base class

▶ With multiple inheritance, we can build:

1 class A { int var; };

2 class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

▶ This means we have two instances of A even though we only have a
single instance of D

▶ This is legal C++, but means all accesses to members of A within a D

must be stated explicitly:

1 D d;

2 d.B::var=3;

3 d.C::var=4;
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Virtual base classes

▶ Alternatively, we can have a single instance of the base class

▶ Such a “virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

2 class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

▶ Multiple inheritance is often regarded as problematic, and one of the
reasons for Java creating interface.
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Casts in C++
▶ In C, casts play multiple roles, e.g. given double *p

1 int i = (int)*p; // well-defined, safe

2 int j = *(int *)p; // undefined behaviour

▶ In C++ the role of constructors and casts overlap. Given double x

consider (slide 25 defines Complex):

1 Complex c1(x,0); // C++ initialisation syntax

2 Complex c2 = Complex(x); // beware (two constructors?)

3 Complex c3 = x; // OK, but ’explicit’ would forbid

4 int i0 = (int)x; // classic C syntax

5 int i1(x); // C++ initialisation syntax

6 int i2 = int(x); // C++ constructor syntax for cast

7 int i3 = x; // implicit cast

▶ c3 is OK—the Complex constructor can take one argument. Declare
the constructor explicit if you want to disallow c3 (but not c2).
Compare i3, some languages might forbid this.
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Casts from a class type

What if I want to write either of the following:

1 Complex c;

2 double d1 = (double)c; // explicit cast

3 double d2 = c; // implicit cast

These are faulted by the type checker.

Answer: overload operator double() for class Complex:

1 Class Complex {

2 ...

3 operator double() const { return re; }

4 }

Adding qualifier explicit requires casts to be explicit, allowing d1 but
forbidding d2.
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Casts in C++ (new forms)

Downsides of C-style casts:

▶ hard to find (and classify) using a text editor in C or Java.

▶ they do no checking (cf. Java downcasts)

C++ encourages the more-descriptive forms:

▶ dynamic_cast<T>(e): like Java reference casts: run-time checks when
casting pointers within an inheritance hierarchy. This uses RTTI.

▶ static_cast<T>(e): nearest to C—best efforts at compile time, e.g.
static_cast<int>(3.14).

▶ reinterpret_cast<T>(e): to explicitly flag re-use of bit patterns.

▶ const_cast<T>(e): remove const (or volatile) from a type, to
modify something the type says you can’t!
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Pointer casts and multiple inheritance

C-style casts (C1 *)p (and indeed static_cast<C1 *>(p)) are risky in an
inheritance hierarchy when multiple inheritance or virtual bases are used;
the compiler must be able to see the inheritance tree otherwise it might
not compile the right operation (casting to a superclass might require an
addition or indirection).

Java single inheritance means that storage for a base class is always at
offset zero in any subclass, making casting between references a no-op
(albeit with a run-time check for a downcast).
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Exercises

1. If a function f has a static instance of a class as a local variable,
when might the class constructor be called?

2. Write a class Matrix which allows a programmer to define 2× 2
matrices. Overload the common operators (e.g. +, -, *, and /)

3. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
inter-operate correctly (e.g. v2 = m*v1 should work as expected)

4. Why should destructors in an abstract class almost always be declared
virtual?
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Exceptions

Just like Java, but you normally throw an object value rather than an
object reference:

▶ Some code (e.g. a library module) may detect an error but not know
what to do about it; other code (e.g. a user module) may know how
to handle it

▶ C++ provides exceptions to allow an error to be communicated

▶ In C++ terminology, one portion of code throws an exception;
another portion catches it.

▶ If an exception is thrown, the call stack is unwound until a function is
found which catches the exception

▶ If an exception is not caught, the program terminates

C++ has no try-finally (use local variables having destructors – RAII).
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Throwing exceptions

▶ Exceptions in C++ are just normal values, matched by type

▶ A class is often used to define a particular error type:
class MyError {};

▶ An instance of this can then be thrown, caught and possibly
re-thrown:

1 void f() { ... throw MyError(); ... }

2 ...

3 try {

4 f();

5 }

6 catch (MyError) {

7 //handle error

8 throw; //re-throw error

9 }
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Conveying information

▶ The “thrown” type can carry information:

1 struct MyError {

2 int errorcode;

3 MyError(i):errorcode(i) {}

4 };

5

6 void f() { ... throw MyError(5); ... }

7

8 try {

9 f();

10 }

11 catch (MyError x) {

12 //handle error (x.errorcode has the value 5)

13 ...

14 }
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Handling multiple errors

▶ Multiple catch blocks can be used to catch different errors:

1 try {

2 ...

3 }

4 catch (MyError x) {

5 //handle MyError

6 }

7 catch (YourError x) {

8 //handle YourError

9 }

▶ The wildcard syntax catch(...) catches all exceptions but
discouraged in practice (what have you caught?)

▶ Class hierarchies can be used to express exceptions. BUT, they need
RTTI for the following code to work (the virtual function in
SomeError causes it to have a vtable—and hence RTTI):
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1 #include <iostream>

2

3 struct SomeError {virtual void print() = 0;};

4 struct ThisError : public SomeError {

5 virtual void print() {

6 std::cout << "This Error" << std::endl;

7 }

8 };

9 struct ThatError : public SomeError {

10 virtual void print() {

11 std::cout << "That Error" << std::endl;

12 }

13 };

14 int main() {

15 try { throw ThisError(); }

16 catch (SomeError& e) { //reference, not value

17 e.print();

18 }

19 return 0;

20 }
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Exceptions and local variables [important]

▶ When an exception is thrown, the stack is unwound

▶ The destructors of any local variables are called as this process
continues

▶ Therefore it is good C++ design practice to wrap any locks, open file
handles, heap memory etc., inside stack-allocated object(s), with
constructors doing allocation and destructors doing deallocation. This
design pattern is analogous to Java’s try-finally, and is often referred
to as “RAII: Resource Acquisition is Initialisation”.
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Templates

▶ Templates support metaprogramming, where code can be evaluated
at compile time rather than run time

▶ Templates support generic programming by allowing types to be
parameters in a program

▶ Generic programming means we can write one set of algorithms and
one set of data structures to work with objects of any type

▶ We can achieve some of this flexibility in C, by casting everything to
void * (e.g. sort routine presented earlier), but at the cost of losing
static checking.

▶ The C++ Standard Library makes extensive use of templates

▶ C++ templates are similar to, but richer than, Java generics.
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Templates – big-picture view (TL;DR)

▶ Templates are like Java generics, but can have both type and value
parameters:
template <typename T, int max>class Buffer { T[max] v; int n;};

▶ You can also specify ‘template specialisations’, special cases for
certain types (think compile-time pattern matching).

▶ This gives lots of power (Turing-powerful) at compile time:
‘metaprogramming’.

▶ Top-level functions can also be templated, with ML-style inference
allowing template parameters to be omitted, given

1 template<typename T> void sort(T a[], const unsigned& len);

2 int a[] = {2,1,3};

then sort(a,3) ≡ sort<int>(a,3)

▶ The rest of the slides explore the details.
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An example: a generic stack [revision]

▶ The stack data structure is a useful data abstraction concept for
objects of many different types

▶ In one program, we might like to store a stack of ints

▶ In another, a stack of NetworkHeader objects

▶ Templates allow us to write a single generic stack implementation for
an unspecified type T

▶ What functionality would we like a stack to have?
▶ bool isEmpty();
▶ void push(T item);
▶ T pop();
▶ . . .

▶ Many of these operations depend on the type T

[Just like Java so far.]
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Template for Stack

▶ A class template is defined in the following manner:

template<typename T> class Stack { ... }

or equivalently (using historical pre-ISO syntax)

template<class T> class Stack { ... }

▶ Instantiating such a Stack is syntactically like Java, so (e.g.) we can
declare a variable by Stack<int> intstack;.

▶ Note that template parameter T can in principle be instantiated to
any C++ type (here int). Java programmers: note Java forbids
List<int> (generics cannot use primitive types); this is a good reason
to prefer syntax template <typename T> over template <class T>.

▶ We can then use the object as normal: intstack.push(3);
▶ So, how do we implement Stack?

▶ Write T whenever you would normally use a concrete type
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1 // example16.hh

2

3 template<typename T> class Stack {

4

5 struct Item { //class with all public members

6 T val;

7 Item* next;

8 Item(T v) : val(v), next(0) {}

9 };

10 Item* head;

11 // forbid users being able to copy stacks:

12 Stack(const Stack& s) {} //private

13 Stack& operator=(const Stack& s) {} //private

14 public:

15 Stack() : head(0) {}

16 ~Stack(); // should generally be virtual

17 T pop();

18 void push(T val);

19 void append(T val);

20 };
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1 // sample implementation and use of template Stack:

2

3 #include "example16.hh"

4

5 template<typename T> void Stack<T>::append(T val) {

6 Item **pp = &head;

7 while(*pp) {pp = &((*pp)->next);}

8 *pp = new Item(val);

9 }

10

11 //Complete these as an exercise

12 template<typename T> void Stack<T>::push(T) {/* ... */}

13 template<typename T> T Stack<T>::pop() {/* ... */}

14 template<typename T> Stack<T>::~Stack() {/* ... */}

15

16 int main() {

17 Stack<char> s;

18 s.push(’a’), s.append(’b’), s.pop();

19 }
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Template richer details

▶ A template parameter can take an integer value instead of a type:
template<int i> class Buf { int b[i]; ... };

▶ A template can take several parameters:
template<typename T,int i> class Buf { T b[i]; ... };

▶ A template parameter can be used to declare a subsequent parameter:
template<typename T, T val> class A { ... };

▶ Template parameters may be given default values

1 template <typename T,int i=128> struct Buffer{

2 T buf[i];

3 };

4

5 int main() {

6 Buffer<int> B; //i=128

7 Buffer<int,256> C;

8 }
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Templates behave like macros

▶ A templated class is not type checked until the template is
instantiated:
template<typename T> class B {const static T a=3;};
▶ B<int> b; is fine, but what about B<B<int> > bi;?

Historically, template expansion behaved like macro expansion and
could give rise to mysterious diagnostics for small errors; C++20 adds
syntax for concept to help address this.

▶ Template definitions often need to go in a header file, since the
compiler needs the source to instantiate an object

Java programmers: in Java generics are implemented by “type erasure”.
Every generic type parameter is replaced by Object so a generic class
compiles to a single class definition. Each call to a generic method has
casts to/from Object inserted—these can never fail at run-time.
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Template specialisation
▶ The typename T template parameter will accept any type T

▶ We can define a specialisation for a particular type as well (effectively
type comparison by pattern-matching at compile time)

1 #include <iostream>

2 class A {};

3

4 template<typename T> struct B {

5 void print() { std::cout << "General" << std::endl;}

6 };

7 template<> struct B<A> {

8 void print() { std::cout << "Special" << std::endl;}

9 };

10 int main() {

11 B<A> b1;

12 B<int> b2;

13 b1.print(); //Special

14 b2.print(); //General

15 }
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Templated functions

▶ A top-level function definition can also be specified as a template; for
example (think ML):

1 template<typename T> void sort(T a[],

2 const unsigned int& len);

▶ The type of the template is inferred from the argument types:
int a[] = {2,1,3}; sort(a,3); =⇒ T is an int

▶ The type can also be expressed explicitly:
sort<int>(a,3)

▶ There is no such type inference for templated classes
▶ Using templates in this way enables:

▶ better type checking than using void *
▶ potentially faster code (no function pointers in vtables)
▶ larger binaries if sort() is used with data of many different types
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1 #include <iostream>

2

3 template<typename T> void sort(T a[], const unsigned int& len) {

4 T tmp;

5 for(unsigned int i=0;i<len-1;i++)

6 for(unsigned int j=0;j<len-1-i;j++)

7 if (a[j] > a[j+1]) //type T must support "operator>"

8 tmp = a[j], a[j] = a[j+1], a[j+1] = tmp;

9 }

10

11 int main() {

12 const unsigned int len = 5;

13 int a[len] = {1,4,3,2,5};

14 float f[len] = {3.14,2.72,2.54,1.62,1.41};

15

16 sort(a,len), sort(f,len);

17 for(unsigned int i=0; i<len; i++)

18 std::cout << a[i] << "\t" << f[i] << std::endl;

19 }
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Overloading templated functions

▶ Templated functions can be overloaded with templated and
non-templated functions

▶ Resolving an overloaded function call uses the “most specialised”
function call

▶ If this is ambiguous, then an error is given, and the programmer must
fix by:
▶ being explicit with template parameters (e.g. sort<int>(...))
▶ re-writing definitions of overloaded functions
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Template specialisation enables metaprogramming
Template metaprogramming means separating compile-time and run-time
evaluation (we use enum to ensure compile-time evaluation of fact<7>).

1 #include <iostream>

2

3 template<unsigned int n> struct fact {

4 enum { value = n * fact<n-1>::value };

5 };

6

7 template <> struct fact<0> {

8 enum { value = 1 };

9 };

10

11 int main() {

12 std::cout << "fact<7>::value = "

13 << (unsigned int)fact<7>::value << std::endl;

14 }

Templates are a Turing-complete compile-time programming language!
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Exercises

1. Provide an implementation for:
template<typename T> T Stack<T>::pop(); and
template<typename T> Stack<T>::~Stack();

2. Provide an implementation for:
Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using metaprogramming, write a templated class prime, which
evaluates whether a literal integer constant (e.g. 7) is prime or not at
compile time.

4. How can you be sure that your implementation of class prime has
been evaluated at compile time?
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Miscellaneous things [non-examinable]

▶ C++ annotations [[thing]] – like Java @thing

▶ C++ lambdas: like Java, but lambda is spelt ‘[]’. E.g.

1 auto addone = [](int x){ return x+1; }

2 std::cout << addone(5);

Lambdas have class type (like Java), and the combination of auto
and overloading the ‘operator()’ makes everything just work.
Placing variables between the ‘[]’ enables access to free variables:
default by rvalue, prefix with ‘&’ for lvalue, e.g. ‘[i,&j]’

▶ C++20 lets programmers define operator ‘<=>’ (3-way compare) on a
class, and get 6 binary comparisons (‘==, ‘<‘, ‘<=‘ etc.) for free.

▶ use keyword constexpr to require an expression to be compile-time
evaluable—helps with template metaprogramming.

▶ use nullptr for new C++ code—instead of NULL or 0, which still
largely work.
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