
Programming in C and C++
Lectures 10–12: C++ for Java and C programmers

Alan Mycroft1

Computer Laboratory, University of Cambridge

Michaelmas Term 2022/23

1Notes based, with thanks, on slides due to Alastair Beresford and Andrew Moore
1 / 75

Aims of C++
To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

▶ is a better C

▶ supports data abstraction

▶ supports object-oriented programming

▶ supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
call-by-reference, operator overloading, exceptions and templates
(a richer form of generics)”.

Much is familiar from Java, but with many subtle differences.

2 / 75

What we’ll cover

▶ Differences between C and C++

▶ References versus pointers

▶ Overloaded functions and operators

▶ Objects in C++; Classes and structs; Destructors; Virtual functions

▶ Multiple inheritance; Virtual base classes; Casts

▶ Exceptions

▶ Templates and metaprogramming

▶ For exam purposes, focus on ‘big-picture’ novelties and differences
between features of C++ and those in C and Java.

▶ For coding, sorry but compilers insist you get it exactly right.

3 / 75

Reference sources

C++ is a big language with many subtleties. The current draft C++20
standard is 1841 pages (457 for the C++ language and 1152 for the C++
Standard Library; the grammar alone is 21 pages)!

https://isocpp.org/ The ISO standard. Published standards cost money
but draft standards are free online, e.g. draft C++20 on
https://isocpp.org/files/papers/N4860.pdf

https://cppreference.com Wiki-book attempt to track standard.

https://learncpp.com More-chatty tutorial-style articles.

https://www.stroustrup.com Entertaining and educational articles by the
creator of C++.

These are useful when wanting to know more about exactly how things
(e.g. lambdas, overloading resolution) work, they are not necessary for
exam purposes!

4 / 75

How to follow these three lectures

▶ These slides try capture the core features of C++, so that afterwards
you will be able to read C++ code, and tentatively modify it.
The Main ISO C++ versions are: C++98, C++11, C++20; we’ll
focus on core features—those in C++98.

▶ But C++ is a very complex language, so these slides are incomplete,
even if they uncomfortably large.

▶ For exam purposes the fine details don’t matter, it’s more important
to get the big picture, which I’ll try to emphasise in lectures.

5 / 75

Should I program my application in C or C++?
Or both or neither?

▶ One aim of these lectures is to help you decide.
▶ C and C++ both have very good run-time performance
▶ C++ has more facilities, but note Bjarne Stroustrup’s quote:

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do it blows your whole leg off.”

▶ Even if C++ is a superset of C then mixing code is risky, e.g.
▶ you don’t want two conflicting IO libraries being active,
▶ you often program using different metaphors in C and C++
▶ C functions may not expect an exception to bypass their tidy-up code
▶ Using C-coded stand-alone libraries in C++ is fine.

▶ C++ vs. Java? Speed vs. safety? More vs. fewer features? Java is
trying to follow C++ (and C#) by having value types
(objects/structs as values not just references).

Decide C or C++ at the start of a project.
6 / 75

C++ Types [big picture]

C++ types are like C types, but additionally:

▶ character literals (e.g. ’a’) are type char (but int in C)

▶ new type bool (values true and false)

▶ reference types: new type constructor &, so can have
int x, *y, &z;

▶ enum types are distinct (not just synonyms for integers)

▶ new type constructor class (generalising struct in C)

▶ names for enum, class, struct and union can be used directly as
types (C needs an additional typedef)

▶ member functions (methods) can specify this to be const.

Many of the above changes are ‘just what you expect from programming
in Java’.

7 / 75

C++ auto and thread local

C’s storage classes are auto, extern, static, register. In C++:

▶ auto is reused in initialised definitions to mean ‘the type of the
initialising expression’, e.g. auto x = foo(3);

▶ thread_local is an additional storage class, e.g.
static int x = 4; thread_local int y = 5;

▶ register is removed since C++17.

8 / 75

C++ booleans

▶ type bool has two values: true and false

▶ When cast to an integer, true→1 and false→0

▶ When casting from an integer, non-zero values become true and zero
becomes false (NB: differs from enum, see next slide).

9 / 75

C++ enumeration

▶ Unlike C, C++ enumerations define a new type; for example

enum flag {is_keyword=1, is_static=2, is_extern=4, ... }

▶ When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword;

▶ Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right(!!)

▶ Subtlety: Why is 5 ‘right’ (but 8 would be wrong)? Answer: C++
rules to ensure ‘bitmaps’ work:
▶ The maximum valid value of an enumeration is the enumeration’s

largest value rounded up to the nearest larger binary power minus one
▶ The minimum valid value of an enumeration with no negative values is

zero
▶ The minimum valid value of an enumeration with negative values is the

nearest least negative binary power

10 / 75

References

C++ references provide an alternative name (alias) for a variable

▶ Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

▶ A reference is declared with the & operator; compare:
int i[] = {1,3}; int &refi = i[0]; int *ptri = &i[0];

▶ A reference must be initialised when it is declared

▶ The connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; // increments value referenced to 2

ptri++; // increments the pointer to &i[1]

Think of reference types as pointer types with implicit * at every use.
Subtlety (non-examinable): C++11 added ‘rvalue references’, e.g.
int &&lvr, useful in copy constructors (see later).

11 / 75

References in function arguments
▶ When used as a function parameter, a referenced value is not copied;

for example:
void inc(int& i) { i++;}

▶ Declare a reference as const when no modification takes place

▶ It can be noticeably more efficient to pass a large struct by reference

▶ Implicit type conversion into a temporary takes place for a const

reference but results in an error otherwise; for example:

1 float fun1(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

5 fun1(v); // Wrong

6 fun2(v); // OK, but beware the temporary’s lifetime

7 fun1((float)v); // OK, but beware the temporary’s lifetime

8 }

▶ Cf. Fortran call-by-reference
12 / 75

Overloaded functions

▶ Just like Java we can define two functions with the same name, but
varying in argument types (for good style functions doing different
things should have different names).

▶ Type conversion is used to find the “best” match

▶ A best match may not always be possible:

1 void f(double);

2 void f(long);

3 void test() {

4 f(1L); // f(long)

5 f(1.0); // f(double)

6 f(1); // Wrong: f(long(1)) or f(double(1)) ?

▶ Can also overload built-in operators, such as assignment and equality.

Applies both to top-level functions and member functions (methods).

13 / 75

Scoping and overloading

▶ Overloading does not apply to functions declared in different scopes;
for example:

1 void f(int);

2

3 void example() {

4 void f(double);

5 f(1); //calls f(double);

6 }

14 / 75

Default function arguments

▶ A function can have default arguments; for example:
double log(double v, double base=10.0);

▶ A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

▶ A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

▶ Be careful of the lexical interaction between * and =; for example:
void f(char*=0); // Wrong: ’*=’ is assignment

15 / 75

Namespaces

Related data can be grouped together in a namespace. Can use :: and
using to access components. Think Java packages.

namespace Stack { //header file

void push(char);

char pop();

}

void f() { //usage

...

Stack::push(’c’);

...

}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c) { ... }

char pop() { ... }

}

16 / 75

Example
1 namespace Module1 {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return i*i;}

5 inline int halve(const int& i) {return i/2;}

6 }

7

8 using namespace Module1; //"import" everything

9

10 int main() {

11 using Module2::halve; //"import" the halve function

12 x = halve(x);

13 sqr(x); //Wrong

14 }

(Non-examinable: C++20 adds module constructs giving more control
over name visibility. Think Java 9 ‘modules’, while namespaces are more
like Java ‘packages’.)

17 / 75

Using namespaces

▶ A namespace is a scope and expresses logical program structure

▶ It provides a way of collecting together related pieces of code

▶ A namespace without a name limits the scope of variables, functions
and classes within it to the local execution unit

▶ The same namespace can be declared in several source files
▶ A namespace can be defined more than once

▶ Allows, for example, internal and external library definitions

▶ The use of a variable or function name from a different namespace
must be qualified with the appropriate namespace(s)
▶ The keyword using allows this qualification to be stated once, thereby

shortening names
▶ Can also be used to generate a hybrid namespace
▶ typedef can be used: typedef Some::Thing thing;

▶ The global function main() cannot be inside a namespace

18 / 75

Linking C and C++ code
▶ The directive extern "C" specifies that the following declaration or

definition should be linked as C, not C++, code:
extern "C" int f();

▶ Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

2 int globalvar; //definition

3 int f();

4 void g(int);

5 }

Why do we need this?

▶ ‘Name mangling’ for overloaded functions. A C compiler typically
generates linker symbol ‘_f’ for f above, but (in the absence of
extern "C") a C++ compiler typically generates ‘__Z1fv’.

▶ Function calling sequences may also differ (e.g. for exceptions).

19 / 75

Linking C and C++ code

▶ What if I want to write a library in C, and specify it via mylib.h

which is importable into both C and C++?

▶ Use conditional compilation (#ifdef) in mylib.h, e.g.

1 #ifdef __cplusplus

2 extern "C" void myfn(int, bool);

3 #else

4 # include <stdbool.h> // Ensure type bool defined in C

5 extern void myfn(int, bool);

6 #endif

20 / 75

Linking C and C++ code

▶ Care must be taken with pointers to functions and linkage:

1 extern "C" void qsort(void* p, \

2 size_t nmemb, size_t size, \

3 int (*compar)(const void*, const void*));

4

5 int compare(const void*,const void*);

6

7 char s[] = "some chars";

8 qsort(s,9,1,compare); //Wrong

21 / 75

Big Picture

So far we’ve only done minor things.

▶ We’ve seen C++ extensions to C. But, apart from reference types,
nothing really new has appeared that’s beyond Java concepts.

▶ Now for classes and objects, which look the same, but aren’t . . .

22 / 75

Classes and objects in C++
C++ classes are somewhat like Java:

▶ Classes contain both data members and member functions (methods)
which act on the data; they can extend (syntax ‘:’) other classes.

▶ Members can be static (i.e. per-class)

▶ Members have access control: private, protected and public

▶ Classes are created with class or struct keywords
▶ struct members default to public access; class to private

▶ A member function with the same name as a class is called a
constructor

▶ Can use overloading on constructors and member functions.

But also:

▶ A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor

23 / 75

Classes and objects: big differences from Java

▶ Values of class types are not references to objects, but the objects
themselves. So we access members with C-style ‘.’ (but using ‘->’ is
more convenient when we have pointers to objects).

▶ We can create an object of class C, either by:
▶ on the stack (or globally) by declaring a variable: C x;
▶ on the heap: new C() (returns a pointer to C)

▶ Member functions (methods) by default are statically resolved. For
Java-like code declare them virtual

▶ Member functions can be declared inside a class but defined outside it
using ‘::’ (the scope-resolution operator)

▶ C++ uses new to allocate and delete to de-allocate. There is no
garbage collector—users must de-allocate heap objects themselves.

24 / 75

Example (emphasising differences from Java)
1 class Complex {

2 double re, im; // private by default

3 public:

4 Complex(double r=0.0, double i=0.0);

5 };

6

7 Complex::Complex(double r,double i) : re(r), im(i) {

8 // preferred form, necessary for const fields

9 }

10

11 Complex::Complex(double r,double i) {

12 re=r, im=i; // deprecated initialisation-by-assignment

13 }

14

15 int main() {

16 Complex c(2.0), d(), e(1,5.0);

17 return 0;

18 } // local objects c,d,e are deallocated on scope exit

25 / 75

New behaviours w.r.t. Java

In Java constructors are only used to initialise heap storage, and the only
way we can update a field of an object is by x.f = e;.

In C++ having object values as first-class citizens gives more behaviours.
Consider the following, given class C

C x; // how is x initialised? (default constructor)

C y = x; // how is y initialised? (copy constructor)

x = y; // what does the assignment do? (assignment operator)

// what happens to x,y on scope exit? (destructor)

For C structs, these either perform bit copies or leave x uninitialised.

C++ class definitions may need to control the above behaviours to
preserve class invariants and object encapsulation.

26 / 75

Constructors and destructors
▶ A default constructor is a function with no arguments (or only default

arguments)

▶ The programmer can specify one or more constructors, but as in Java,
only one is called when an object is created.

▶ If no constructors are specified, the compiler generates a default
constructor (which does does as little initialisation as possible).

▶ To forbid users of a class from using a default constructor then define
it explicitly and declare it private.

▶ There can only be one destructor
▶ This is called when a stack-allocated object goes out of scope

(including when an exception causes this to happen—see later) or
when a heap-allocated object is deallocated with delete;

▶ Stack-allocated objects with destructors are a useful way to release
resources on scope exit (similar effect as Java try-finally) – “RAII:
Resource Acquisition is Initialisation”.

▶ Make destructors virtual if class has subtypes or supertypes.

27 / 75

Copy constructor

▶ A new class instance can defined by initialisation; for example:

1 Complex c(1,2); // note this C++ initialiser syntax;

2 // it calls the two-argument constructor

3 Complex d = c; // copy constructor called

▶ In the second case, by default object d is initialised with copies of all
of the non-static member variables of c; no constructor is called

▶ If this behaviour is undesirable (e.g. consider a class with a pointer as
a member variable) define your own copy constructor:
▶ Complex::Complex(const Complex&) { ... }

▶ To forbid users of a class from copying objects, make the copy
constructor a private member function, or in C++11 use delete.

▶ Note that assignment, e.g. d = c; differs differs from initialisation
and does not use the copy constructor—see next slide.

28 / 75

Assignment operator

▶ By default a class is copied on assignment by over-writing all
non-static member variables; for example:

1 Complex c(), d(1.0,2.3);

2 c = d; //assignment

▶ This behaviour may also not be desirable (e.g. you might want to tidy
up the object being over-written).

▶ The assignment operator (operator=) can be defined explicitly:

1 Complex& Complex::operator=(const Complex& c) {

2 ...

3 }

▶ Note the result type of assignment, and the reference-type parameter
(passing the argument by value would cause a copy constructor to be
used before doing the assignment, and also be slower).

29 / 75

Constant member functions

▶ Member functions can be declared const

▶ Prevents object members being modified by the function:

1 double Complex::real() const {

2 // forbidden to modify ’re’ or ‘this->re’ here

3 return re;

4 }

▶ The syntax might appear odd at first, but note that const above
merely qualifies the (implicit/hidden) parameter ‘this’. So here this

is effectively declared as const Complex *this instead of the usual
Complex *this.

▶ Helpful to both programmer (maintenance) and compiler (efficiency).

30 / 75

Arrays and heap allocation
▶ An array of class objects can be defined if a class has a default

constructor

▶ C++ has a new operator to place items on the heap:
Complex* c = new Complex(3.4);

▶ Items on the heap exist until they are explicitly deleted:
delete c;

▶ Since C++ (like C) doesn’t distinguish between a pointer to a single
object and a pointer to an the first element of an array of objects,
array deletion needs different syntax:

1 Complex* c = new Complex[5];

2 ...

3 delete[] c; //Using "delete" is wrong here

▶ When an object is deleted, the object destructor is invoked

▶ When an array is deleted, the object destructor is invoked on each
element

31 / 75

Exercises
1. Write an implementation of a class LinkList which stores zero or

more positive integers internally as a linked list on the heap. The
class should provide appropriate constructors and destructors and a
method pop() to remove items from the head of the list. The method
pop() should return -1 if there are no remaining items. Your
implementation should override the copy constructor and assignment
operator to copy the linked-list structure between class instances. You
might like to test your implementation with the following:

1 int main() {

2 int test[] = {1,2,3,4,5};

3 LinkList l1(test+1,4), l2(test,5);

4 LinkList l3=l2, l4;

5 l4=l1;

6 printf("%d %d %d\n",l1.pop(),l3.pop(),l4.pop());

7 return 0;

8 }

Hint: heap allocation & deallocation should occur exactly once!
32 / 75

Operators
▶ C++ allows the programmer to overload the built-in operators

▶ For example, a new test for equality:

1 bool operator==(Complex a, Complex b) {

2 return a.real()==b.real() && a.imag()==b.imag();

3 // presume real() is an accessor for field ’re’, etc.

4 }

▶ An operator can be defined or declared within the body of a class,
and in this case one fewer argument is required; for example:

1 bool Complex::operator==(Complex b) {

2 return re==b.real() && im==b.imag();

3 }

▶ Almost all operators can be overloaded, including address-taking,
assignment, array indexing and function application.
It’s probably bad practice to define ++x and x+=1 to have different
meanings!

33 / 75

Streams
▶ Overloaded operators also work with built-in types
▶ Overloading is used to define << (C++’s “printf”); for example:

1 #include <iostream>

2

3 int main() {

4 const char* s = "char array";

5

6 std::cout << s << std::endl;

7

8 //Unexpected output; prints &s[0]

9 std::cout.operator<<(s).operator<<(std::endl);

10

11 //Expected output; prints s

12 std::operator<<(std::cout,s);

13 std::cout.operator<<(std::endl);

14 return 0;

15 }

▶ Note std::cin, std::cout, std::cerr
34 / 75

The ‘this’ pointer

▶ If an operator is defined in the body of a class, it may need to return
a reference to the current object
▶ The keyword this can be used

▶ For example:

1 Complex& Complex::operator+=(Complex b) {

2 re += b.real();

3 this->im += b.imag();

4 return *this;

5 }

▶ In C (or assembler) terms this is an implicit argument to a method
when seen as a function.

35 / 75

Class instances as member variables

▶ A class can have an instance of another class as a member variable

▶ How can we pass arguments to the class constructor?

▶ New C++ syntax for constructors:

1 class Z {

2 Complex c;

3 Complex d;

4 Z(double x, double y): c(x,y), d(y) {

5 ...

6 }

7 };

▶ This notation must be used to initialise const and reference members

▶ It can also be more efficient

36 / 75

Temporary objects
▶ Temporary objects are often created during execution
▶ A temporary which is not bound to a reference or named object exists

only during evaluation of a full expression (BUGS BUGS BUGS!)
▶ Example: the C++ string class has a function c_str() which

returns a pointer to a C representation of a string:

1 string a("A "), b("string");

2 const char *s1 = a.c_str(); //OK

3 const char *s2 = (a+b).c_str(); //Wrong

4 ...

5 //s2 still in scope here, but the temporary holding

6 //"a+b" has been deallocated

7 ...

8 string tmp = a+b;

9 const char *s3 = tmp.c_str(); //OK

[Non-examinable:] C++11 added rvalue references ‘&&’ to help address
this issue.

37 / 75

Friends

▶ If, within a class C, the declaration friend class D; appears, then D

is allowed to access the private and protected members of C.

▶ A (non-member) function can be declared friend to allow it to access
the private and protected members of the enclosing class, e.g.

1 class Matrix {

2 ...

3 friend Vector operator*(const Matrix&, const Vector&);

4 ...

5 };

6 }

This code allows operator* to access the private fields of Matrix,
even though it is defined elsewhere. Mental model: granting your
lawyer rights to access your private papers.

▶ Note that friendship isn’t symmetric.

38 / 75

Inheritance

▶ C++ allows a class to inherit features of another:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 };

6

7 class bicycle : public vehicle {

8 bool panniers;

9 public:

10 bicycle(bool p):vehicle(2),panniers(p) {}

11 };

12

13 int main() {

14 bicycle(false);

15 }

39 / 75

Derived member function call
I.e. when we call a function overridden in a subclass.

▶ Default derived member function call semantics differ from Java:

1 // example13.hh

2

3 class vehicle {

4 int wheels;

5 public:

6 vehicle(int w=4):wheels(w) {}

7 int maxSpeed() {return 60;}

8 };

9

10 class bicycle : public vehicle {

11 bool panniers;

12 public:

13 bicycle(bool p=true):vehicle(2),panniers(p) {}

14 int maxSpeed() {return panniers ? 12 : 15;}

15 };

40 / 75

Example

1 #include <iostream>

2 #include "example13.hh"

3

4 void print_speed(vehicle &v, bicycle &b) {

5 std::cout << v.maxSpeed() << " ";

6 std::cout << b.maxSpeed() << std::endl;

7 }

8

9 int main() {

10 bicycle b = bicycle(true);

11 print_speed(b,b); //prints "60 12"

12 }

41 / 75

Virtual functions

▶ Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

▶ Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

▶ To get polymorphic behaviour, declare the function virtual in the
superclass:

1 class vehicle {

2 int wheels;

3 public:

4 vehicle(int w=4):wheels(w) {}

5 virtual int maxSpeed() {return 60;}

6 };

42 / 75

Virtual functions

▶ In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

1 bicycle b(true);

2 vehicle v;

3 vehicle* pv;

4

5 user_input() ? pv = &b : pv = &v;

6

7 std::cout << pv->maxSpeed() << std::endl;

8 }

43 / 75

Enabling virtual functions

▶ To enable virtual functions, the compiler generates a virtual function
table or vtable

▶ A vtable contains a pointer to the correct function for each object
instance

▶ Indirect (virtual) function calls are slower than direct function calls.

▶ Question: virtual function calls are compulsory in Java; is C++’s
additional choice of virtual/non-virtual calls good for efficiency or bad
for being an additional source of bugs?

▶ C++ vtables also contain an encoding of the class type: ‘run-time
type information’ (RTTI). Syntax typeid(e) gives the type of e
encoded as an object of type_info which is defined in standard
header <typeinfo>.

44 / 75

Abstract classes

▶ Just like Java except for syntax.

▶ Sometimes a base class is an un-implementable concept

▶ In this case we can create an abstract class:

1 class shape {

2 public:

3 virtual void draw() = 0;

4 }

▶ It is forbidden to instantiate an abstract class:
shape s; //Wrong

▶ A derived class can provide an implementation for some (or all) the
abstract functions

▶ A derived class with no abstract functions can be instantiated

▶ C++ has no equivalent to Java ‘implements interface’.

45 / 75

Example

1 class shape {

2 public:

3 virtual void draw() = 0;

4 };

5

6 class circle : public shape {

7 public:

8 //...

9 void draw() { /* impl */ }

10 };

46 / 75

Multiple inheritance

▶ It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {

2 ...

3 }

▶ Members from both base classes exist in the derived class

▶ If there is a name clash, explicit naming is required

▶ This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle::maxSpeed();

47 / 75

Multiple instances of a base class

▶ With multiple inheritance, we can build:

1 class A { int var; };

2 class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

▶ This means we have two instances of A even though we only have a
single instance of D

▶ This is legal C++, but means all accesses to members of A within a D

must be stated explicitly:

1 D d;

2 d.B::var=3;

3 d.C::var=4;

48 / 75

Virtual base classes

▶ Alternatively, we can have a single instance of the base class

▶ Such a “virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

2 class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

▶ Multiple inheritance is often regarded as problematic, and one of the
reasons for Java creating interface.

49 / 75

Casts in C++
▶ In C, casts play multiple roles, e.g. given double *p

1 int i = (int)*p; // well-defined, safe

2 int j = *(int *)p; // undefined behaviour

▶ In C++ the role of constructors and casts overlap. Given double x

consider (slide 25 defines Complex):

1 Complex c1(x,0); // C++ initialisation syntax

2 Complex c2 = Complex(x); // beware (two constructors?)

3 Complex c3 = x; // OK, but ’explicit’ would forbid

4 int i0 = (int)x; // classic C syntax

5 int i1(x); // C++ initialisation syntax

6 int i2 = int(x); // C++ constructor syntax for cast

7 int i3 = x; // implicit cast

▶ c3 is OK—the Complex constructor can take one argument. Declare
the constructor explicit if you want to disallow c3 (but not c2).
Compare i3, some languages might forbid this.

50 / 75

Casts from a class type

What if I want to write either of the following:

1 Complex c;

2 double d1 = (double)c; // explicit cast

3 double d2 = c; // implicit cast

These are faulted by the type checker.

Answer: overload operator double() for class Complex:

1 Class Complex {

2 ...

3 operator double() const { return re; }

4 }

Adding qualifier explicit requires casts to be explicit, allowing d1 but
forbidding d2.

51 / 75

Casts in C++ (new forms)

Downsides of C-style casts:

▶ hard to find (and classify) using a text editor in C or Java.

▶ they do no checking (cf. Java downcasts)

C++ encourages the more-descriptive forms:

▶ dynamic_cast<T>(e): like Java reference casts: run-time checks when
casting pointers within an inheritance hierarchy. This uses RTTI.

▶ static_cast<T>(e): nearest to C—best efforts at compile time, e.g.
static_cast<int>(3.14).

▶ reinterpret_cast<T>(e): to explicitly flag re-use of bit patterns.

▶ const_cast<T>(e): remove const (or volatile) from a type, to
modify something the type says you can’t!

52 / 75

Pointer casts and multiple inheritance

C-style casts (C1 *)p (and indeed static_cast<C1 *>(p)) are risky in an
inheritance hierarchy when multiple inheritance or virtual bases are used;
the compiler must be able to see the inheritance tree otherwise it might
not compile the right operation (casting to a superclass might require an
addition or indirection).

Java single inheritance means that storage for a base class is always at
offset zero in any subclass, making casting between references a no-op
(albeit with a run-time check for a downcast).

53 / 75

Exercises

1. If a function f has a static instance of a class as a local variable,
when might the class constructor be called?

2. Write a class Matrix which allows a programmer to define 2× 2
matrices. Overload the common operators (e.g. +, -, *, and /)

3. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
inter-operate correctly (e.g. v2 = m*v1 should work as expected)

4. Why should destructors in an abstract class almost always be declared
virtual?

54 / 75

Exceptions

Just like Java, but you normally throw an object value rather than an
object reference:

▶ Some code (e.g. a library module) may detect an error but not know
what to do about it; other code (e.g. a user module) may know how
to handle it

▶ C++ provides exceptions to allow an error to be communicated

▶ In C++ terminology, one portion of code throws an exception;
another portion catches it.

▶ If an exception is thrown, the call stack is unwound until a function is
found which catches the exception

▶ If an exception is not caught, the program terminates

C++ has no try-finally (use local variables having destructors – RAII).

55 / 75

Throwing exceptions

▶ Exceptions in C++ are just normal values, matched by type

▶ A class is often used to define a particular error type:
class MyError {};

▶ An instance of this can then be thrown, caught and possibly
re-thrown:

1 void f() { ... throw MyError(); ... }

2 ...

3 try {

4 f();

5 }

6 catch (MyError) {

7 //handle error

8 throw; //re-throw error

9 }

56 / 75

Conveying information

▶ The “thrown” type can carry information:

1 struct MyError {

2 int errorcode;

3 MyError(i):errorcode(i) {}

4 };

5

6 void f() { ... throw MyError(5); ... }

7

8 try {

9 f();

10 }

11 catch (MyError x) {

12 //handle error (x.errorcode has the value 5)

13 ...

14 }

57 / 75

Handling multiple errors

▶ Multiple catch blocks can be used to catch different errors:

1 try {

2 ...

3 }

4 catch (MyError x) {

5 //handle MyError

6 }

7 catch (YourError x) {

8 //handle YourError

9 }

▶ The wildcard syntax catch(...) catches all exceptions but
discouraged in practice (what have you caught?)

▶ Class hierarchies can be used to express exceptions. BUT, they need
RTTI for the following code to work (the virtual function in
SomeError causes it to have a vtable—and hence RTTI):

58 / 75

1 #include <iostream>

2

3 struct SomeError {virtual void print() = 0;};

4 struct ThisError : public SomeError {

5 virtual void print() {

6 std::cout << "This Error" << std::endl;

7 }

8 };

9 struct ThatError : public SomeError {

10 virtual void print() {

11 std::cout << "That Error" << std::endl;

12 }

13 };

14 int main() {

15 try { throw ThisError(); }

16 catch (SomeError& e) { //reference, not value

17 e.print();

18 }

19 return 0;

20 }

59 / 75

Exceptions and local variables [important]

▶ When an exception is thrown, the stack is unwound

▶ The destructors of any local variables are called as this process
continues

▶ Therefore it is good C++ design practice to wrap any locks, open file
handles, heap memory etc., inside stack-allocated object(s), with
constructors doing allocation and destructors doing deallocation. This
design pattern is analogous to Java’s try-finally, and is often referred
to as “RAII: Resource Acquisition is Initialisation”.

60 / 75

Templates

▶ Templates support metaprogramming, where code can be evaluated
at compile time rather than run time

▶ Templates support generic programming by allowing types to be
parameters in a program

▶ Generic programming means we can write one set of algorithms and
one set of data structures to work with objects of any type

▶ We can achieve some of this flexibility in C, by casting everything to
void * (e.g. sort routine presented earlier), but at the cost of losing
static checking.

▶ The C++ Standard Library makes extensive use of templates

▶ C++ templates are similar to, but richer than, Java generics.

61 / 75

Templates – big-picture view (TL;DR)

▶ Templates are like Java generics, but can have both type and value
parameters:
template <typename T, int max>class Buffer { T[max] v; int n;};

▶ You can also specify ‘template specialisations’, special cases for
certain types (think compile-time pattern matching).

▶ This gives lots of power (Turing-powerful) at compile time:
‘metaprogramming’.

▶ Top-level functions can also be templated, with ML-style inference
allowing template parameters to be omitted, given

1 template<typename T> void sort(T a[], const unsigned& len);

2 int a[] = {2,1,3};

then sort(a,3) ≡ sort<int>(a,3)

▶ The rest of the slides explore the details.

62 / 75

An example: a generic stack [revision]

▶ The stack data structure is a useful data abstraction concept for
objects of many different types

▶ In one program, we might like to store a stack of ints

▶ In another, a stack of NetworkHeader objects

▶ Templates allow us to write a single generic stack implementation for
an unspecified type T

▶ What functionality would we like a stack to have?
▶ bool isEmpty();
▶ void push(T item);
▶ T pop();
▶ . . .

▶ Many of these operations depend on the type T

[Just like Java so far.]

63 / 75

Template for Stack

▶ A class template is defined in the following manner:

template<typename T> class Stack { ... }

or equivalently (using historical pre-ISO syntax)

template<class T> class Stack { ... }

▶ Instantiating such a Stack is syntactically like Java, so (e.g.) we can
declare a variable by Stack<int> intstack;.

▶ Note that template parameter T can in principle be instantiated to
any C++ type (here int). Java programmers: note Java forbids
List<int> (generics cannot use primitive types); this is a good reason
to prefer syntax template <typename T> over template <class T>.

▶ We can then use the object as normal: intstack.push(3);
▶ So, how do we implement Stack?

▶ Write T whenever you would normally use a concrete type

64 / 75

1 // example16.hh

2

3 template<typename T> class Stack {

4

5 struct Item { //class with all public members

6 T val;

7 Item* next;

8 Item(T v) : val(v), next(0) {}

9 };

10 Item* head;

11 // forbid users being able to copy stacks:

12 Stack(const Stack& s) {} //private

13 Stack& operator=(const Stack& s) {} //private

14 public:

15 Stack() : head(0) {}

16 ~Stack(); // should generally be virtual

17 T pop();

18 void push(T val);

19 void append(T val);

20 };

65 / 75

1 // sample implementation and use of template Stack:

2

3 #include "example16.hh"

4

5 template<typename T> void Stack<T>::append(T val) {

6 Item **pp = &head;

7 while(*pp) {pp = &((*pp)->next);}

8 *pp = new Item(val);

9 }

10

11 //Complete these as an exercise

12 template<typename T> void Stack<T>::push(T) {/* ... */}

13 template<typename T> T Stack<T>::pop() {/* ... */}

14 template<typename T> Stack<T>::~Stack() {/* ... */}

15

16 int main() {

17 Stack<char> s;

18 s.push(’a’), s.append(’b’), s.pop();

19 }

66 / 75

Template richer details

▶ A template parameter can take an integer value instead of a type:
template<int i> class Buf { int b[i]; ... };

▶ A template can take several parameters:
template<typename T,int i> class Buf { T b[i]; ... };

▶ A template parameter can be used to declare a subsequent parameter:
template<typename T, T val> class A { ... };

▶ Template parameters may be given default values

1 template <typename T,int i=128> struct Buffer{

2 T buf[i];

3 };

4

5 int main() {

6 Buffer<int> B; //i=128

7 Buffer<int,256> C;

8 }

67 / 75

Templates behave like macros

▶ A templated class is not type checked until the template is
instantiated:
template<typename T> class B {const static T a=3;};
▶ B<int> b; is fine, but what about B<B<int> > bi;?

Historically, template expansion behaved like macro expansion and
could give rise to mysterious diagnostics for small errors; C++20 adds
syntax for concept to help address this.

▶ Template definitions often need to go in a header file, since the
compiler needs the source to instantiate an object

Java programmers: in Java generics are implemented by “type erasure”.
Every generic type parameter is replaced by Object so a generic class
compiles to a single class definition. Each call to a generic method has
casts to/from Object inserted—these can never fail at run-time.

68 / 75

Template specialisation
▶ The typename T template parameter will accept any type T

▶ We can define a specialisation for a particular type as well (effectively
type comparison by pattern-matching at compile time)

1 #include <iostream>

2 class A {};

3

4 template<typename T> struct B {

5 void print() { std::cout << "General" << std::endl;}

6 };

7 template<> struct B<A> {

8 void print() { std::cout << "Special" << std::endl;}

9 };

10 int main() {

11 B<A> b1;

12 B<int> b2;

13 b1.print(); //Special

14 b2.print(); //General

15 }
69 / 75

Templated functions

▶ A top-level function definition can also be specified as a template; for
example (think ML):

1 template<typename T> void sort(T a[],

2 const unsigned int& len);

▶ The type of the template is inferred from the argument types:
int a[] = {2,1,3}; sort(a,3); =⇒ T is an int

▶ The type can also be expressed explicitly:
sort<int>(a,3)

▶ There is no such type inference for templated classes
▶ Using templates in this way enables:

▶ better type checking than using void *
▶ potentially faster code (no function pointers in vtables)
▶ larger binaries if sort() is used with data of many different types

70 / 75

1 #include <iostream>

2

3 template<typename T> void sort(T a[], const unsigned int& len) {

4 T tmp;

5 for(unsigned int i=0;i<len-1;i++)

6 for(unsigned int j=0;j<len-1-i;j++)

7 if (a[j] > a[j+1]) //type T must support "operator>"

8 tmp = a[j], a[j] = a[j+1], a[j+1] = tmp;

9 }

10

11 int main() {

12 const unsigned int len = 5;

13 int a[len] = {1,4,3,2,5};

14 float f[len] = {3.14,2.72,2.54,1.62,1.41};

15

16 sort(a,len), sort(f,len);

17 for(unsigned int i=0; i<len; i++)

18 std::cout << a[i] << "\t" << f[i] << std::endl;

19 }

71 / 75

Overloading templated functions

▶ Templated functions can be overloaded with templated and
non-templated functions

▶ Resolving an overloaded function call uses the “most specialised”
function call

▶ If this is ambiguous, then an error is given, and the programmer must
fix by:
▶ being explicit with template parameters (e.g. sort<int>(...))
▶ re-writing definitions of overloaded functions

72 / 75

Template specialisation enables metaprogramming
Template metaprogramming means separating compile-time and run-time
evaluation (we use enum to ensure compile-time evaluation of fact<7>).

1 #include <iostream>

2

3 template<unsigned int n> struct fact {

4 enum { value = n * fact<n-1>::value };

5 };

6

7 template <> struct fact<0> {

8 enum { value = 1 };

9 };

10

11 int main() {

12 std::cout << "fact<7>::value = "

13 << (unsigned int)fact<7>::value << std::endl;

14 }

Templates are a Turing-complete compile-time programming language!
73 / 75

Exercises

1. Provide an implementation for:
template<typename T> T Stack<T>::pop(); and
template<typename T> Stack<T>::~Stack();

2. Provide an implementation for:
Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using metaprogramming, write a templated class prime, which
evaluates whether a literal integer constant (e.g. 7) is prime or not at
compile time.

4. How can you be sure that your implementation of class prime has
been evaluated at compile time?

74 / 75

Miscellaneous things [non-examinable]

▶ C++ annotations [[thing]] – like Java @thing

▶ C++ lambdas: like Java, but lambda is spelt ‘[]’. E.g.

1 auto addone = [](int x){ return x+1; }

2 std::cout << addone(5);

Lambdas have class type (like Java), and the combination of auto
and overloading the ‘operator()’ makes everything just work.
Placing variables between the ‘[]’ enables access to free variables:
default by rvalue, prefix with ‘&’ for lvalue, e.g. ‘[i,&j]’

▶ C++20 lets programmers define operator ‘<=>’ (3-way compare) on a
class, and get 6 binary comparisons (‘==, ‘<‘, ‘<=‘ etc.) for free.

▶ use keyword constexpr to require an expression to be compile-time
evaluable—helps with template metaprogramming.

▶ use nullptr for new C++ code—instead of NULL or 0, which still
largely work.

75 / 75

