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Disclaimer

* Material is a snapshot of evolving (not established) wisdom

* Material is incomplete

— many details on how and why datacenter networks
operate aren’t public



Datacenter networks

10’s to 100’s of thousands of hosts, often closely coupled, in
close proximity:

= e-business (e.g. Amazon)

= content-servers (e.g., YouTube, Akamai, Apple, Microsoft)

= search engines, data mining (e.g., Google)

challenges:

= multiple applications, each serving
massive numbers of clients

= reliability

* managing/balancing load, avoiding

processing, networking, data
bottle necks Inside a 40-ft Microsoft container, Chicago data center




network

Datacenter networks

= connections outside datacenter

Border routers

Tier-1 switches

= connecting to ~16 T-2s below

Tier-2 switches

= connecting to ~16 TORs below
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= 40-100Gbps Ethernet to
blades

Top of Rack (TOR) switch
= one per rack
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= 20- 40 server blades: hosts

Server racks



=» from 4 x 128p multi-chip 400G fabric switches

FSW1 FSwW2 FSW3 FSW4

48 FSW ASICs + Control Planes per Pod

= to 16 x 128p single-chip 100G fabric switches

Sample Server Pod
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16 FSW ASICs + Control Planes per Pod

4x400G=1.6T
uplink per rack

16 x 100G =1.6T
uplink per rack



Datacenter networks: network
elements

Facebook F16 data center network topology:

Spine switch

Fabric Switch

Top-of-rack switch

https://engineering.fb.com/data-center-engineering/f16-minipack/ (posted 3/2019)



Datacenter networks: multipath

= rich interconnection among switches, racks:
* increased throughput between racks (multiple routing paths possible)
* increased reliability via redundancy

TOR switches

Server racks

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1

e ] 2 C [~

two disjoint paths highlighted between racks 1 and 11



Datacenter networks: application-

layer routing

Internet
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load balancer:

application-layer

routing

= receives external
client requests

= directs workload
within data center

= returns results to

external client
(hiding data center
internals from client)



Observations on DC architecture

* Regular, well-defined arrangement
* Hierarchical structure with rack/aggr/core layers
* Mostly homogenous within a layer

e Supports communication between servers and
between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANSs



What's different?



SCALE!




How big exactly?

e 1Million servers [Microsoft]
— |less than google, more than amazon

e > S1B to build one site [Facebook]

e >S20M/month/site operational costs [Microsoft ‘09]

But only O(10-100) sites



What’s new?

e Scale

e Service model
— user-facing, revenue generating services
— multi-tenancy
— jargon: SaaS, Paa$, Daas, laas, ...



Implications

* Scale
— need scalable solutions
— improving efficiency, lowering cost is critical
- ‘scale out’ solutions w/ commodity technologies

e Service model
— performance means SS
— virtualization for isolation and portability
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Multi-Tier Applications

* Applications decomposed into tasks
— Many separate components

—Running in parallel on different machines



Componentization leads to different
types of network traffic

e “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations



North-South Traffic

user requests from the Internet

l

Router
Front-End Front-End
Proxy Proxy

You Live Here

Data
Cache

Data

D
Cache atabase

Database
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Componentization leads to different
types of network traffic

* “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

» “East-West traffic”
— Traffic between machines in the datacenter
— Comm within “big data” computations (e.g. Map Reduce)
— Traffic may shift on small timescales (e.g., minutes)
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East-West Traffic

Distributed Map Reduce Distributed
Storage Tasks Tasks Storage
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East-West Traffic
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3t-West T
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Distributed
Storage

Distributed
Storage
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East-West vs North-South

Machine-to-Machine

Machine to Machine: Machine to User:

Inter-Cluster Egress: out to
Traffic Users/Internet




What's different about DC networks?

Characteristics

 Huge scale:

— ~20,000 switches/routers
— contrast: AT&T ~500 routers



What's different about DC networks?

Characteristics

 Huge scale:

* Limited geographic scope:
— High bandwidth: 10/40/100G
— Contrast: Cable/aDSL/WIiFi

— Very low RTT: 10s of microseconds
— Contrast: 100s of milliseconds in the WAN



What's different about DC networks?

Characteristics

 Huge scale
* Limited geographic scope
e Single administrative domain

— Can deviate from standards, invent your own, etc.
— “Green field” deployment is still feasible
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What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

— can change (say) addressing, congestion control, etc.

— can add mechanisms for security/policy/etc. at the
endpoints (typically in the hypervisor)
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What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
— e.g., map-reduce scheduler chooses where tasks run
— alters traffic pattern (what traffic crosses which links)
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What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink

* Regular/planned topologies (e.g., trees/fat-trees)

— Contrast: ad-hoc WAN topologies (dictated by
real-world geography and facilities)
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What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
* Regular/planned topologies (e.g., trees/fat-trees)
* Limited heterogeneity

— link speeds, technologies, latencies, ... 37



An example problem at scale - INCAST

Worker 1 * Synchronized mice collide.
» Caused by Partition/Aggregate.
Worker 2 Aggregator
ﬁ
Worker 3

Worker 4
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The Incast Workload

Data Block

Synchronized Read

R
R
R
R

-

Client
Server

| Request Unit
(SRU)

Client now sends

Storage Servers
next batch of requests
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Incast Workload Overfills Buffers

Synchronized Read

=
-\

<
\. J

Client Switch
Server
1 . : - = Request Unit
(SRU)
Requests Responses 1-3
' completed
Received P Link Idle!
T | , )
1 ! | |
Requests Response 4 Response 4

Sent dropped 47 Resent 47



Queue Buildup

Sender 1

IIIIIII * Big flows buildup queues.
» Increased latency for short flows.
Receiver

E

Sender 2 * Measurements in Bing cluster
» For 90% packets: RTT < 1ms
» For 10% packets: 1ms < RTT < 15ms
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Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

* Another idea to reduce incast is to employ
Link-Layer Flow Control.....

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”
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Link Layer Flow Control — The Dark side
Head of Line Blocking....

Such HOL blocking does not even
differentiate processes so this can occur
between competing processes on a pair of
machines — no datacenter required.

Waiting for no good
reason....
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Link Layer Flow Control
But its worse that you imagine....

Double down on trouble....

Did | mention this is Link-
Layer!

That means no (IP) control
traffic, no routing
messages....

g 2 whole system waiting for
QM one machine
NG

@F) Incast is very unpleasant.

Reducing the impact of Head of Line (blocking) in Link Layer Flow Control can be

done through priority queues and overtaking....
51



Enough with Datacenter networks,
what about CPU?



Datacenter Servers are Different

Server programs start and run for months

— Tens of programs per server

Real-time user-facing transactions, not batch

— Minimize latency, not CPU idle time

SN

— only 1-10ms CPU time per server

Big fanout: one transaction to 1000+ sef\?é&\

10K+ computers, 100K+ disks, 1000k+
connections

network

N
\\\

N
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Datacenter Servers are Different

(1) Move data: big and small

(2) Real-time transactions: 1000s
per second

(3) Isolation between programs
(4) Measurement underpinnings

65
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Move data: big and small

Move /ots of data
— Disk to/from RAM
— Network to/from RAM
— SSD to/from RAM
— Within RAM
Bulk data
Short data: variable-length items

Compress, encrypt, checksum, hash, sort

67



Lots of memory

e 4004: no memory

e i7: 12MB L3 cache




Little brain, LOTS of memory

e Server

Pl S

S S

Drinking straw access

e AN IENIATLIV T ey
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A Single Transaction Across ~40 Racks of ~60 Servers
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A Single Transaction RPC Tree: Client & 93 Servers
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Single Transaction Tail Latency

e Canary transaction

— Pyksos

cvoas
erattd
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Single Transaction Tail Latency

e One slow response out of 93 parallel RPCs slows the entire
transaction ‘

BRI
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One Server, Four CPUs: User/kernel transitions

every CPU every nanosecond (Ktrace)

4 U O
- ——
]

D —————————
200 usec

CPUO

CPU1

CPU 2

CPU3
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16 CPUs, 600us, Many RPCs

CPUs
0..15

RPCs
0..39
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16 CPUs, 600us, Many RPCs

LABBTE 464us 'L‘ \

Ll 12576 226us '\ ==\ / \

Ll 14880 213us — e : \ \
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That is A LOT going on at once

e Let’s look at just one long-tail RPC in
context
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16 CPUs, 600us, one RPC

CPUs
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16 CPUs, 600us, one RPC

LOCKs
0..22
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Wakeup Detalil

Thread 19 frees

lock, sends wakeup|..””

to waiting thread
25

Thread 25 g

actually runs

50us
wakeup
delay ??
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CPU Scheduling, 2 Designs
e Re-dispatch on any idle CPU core

— But if idle CPU core is in deep sleep, can take 75-100us to wake up

e Wait to re-dispatch on previous CPU core, to get cache hits
— Saves nothing if could use same L1 cache
— Saves ~10us if could use same L2 cache
— Saves ~100us if could use same L3 cache
— Expensive if cross-socket cache refills
— Don't wait too long...



Real-time transactions: 1000s per second

e Not your father’s SPEC benchmarks

e To understand delays, need to track simultaneous
transactions across servers, CPU cores, threads, queues,
locks
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Modern challenges in CPU design

e A single transaction can touch thousands of servers in
parallel

e The slowest parallel path dominates

e Tail latency is the enemy
— Must control lock-holding times
— Must control scheduler delays
— Must control interference via shared resources
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Histogram: Disk Server Latency; Long Tail
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Non-repeatable Tail Latency Comes from
Unknown Interference

Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.
Higher utilization = $$$.



Many Sources of Interference

e Most interference comes from software
e But a bit from the hardware underpinnings

e In a shared apartment building, most interference comes
from jerky neighbors

e But thin walls and bad kitchen venting can be the
hardware underpinnings
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Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out, filling caches
4567

0123

Core 0

Core 1

00000000

L1 caches

60 61 62 63 PCs

Core 15

L1 caches
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Isolation issue: Cache Interference

CPULO123
Core 0

00000000




Isolation issue: Cache Interference
e CPU thread 0 is moving 16B/cycle flat out

Today
0123 456 7
Core 0 Core 1

00000000 77777777

“obontGmmononr

Desired
0123 456 7
Core 0 Core 1
~00112233 ~4455667 7

P
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Isolation between programs

e Good fences make good neighbors

e We need better hardware support for program isolation in
shared memory systems
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Modern challenges in CPU design

Isolating programs from each other on a shared server is
hard

As an industry, we do it poorly
— Shared CPU scheduling
— Shared caches

— Shared network links
— Shared disks

More hardware support needed
More innovation needed
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Differences from desktop software

Tens of thousands of user-facing transactions per second
Distributed computation across thousands of servers

The important metric is response time, i.e. latency

Excessive tail latency is the most important performance problem

As an industry, we have poor tools for observing and understanding tail latency
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Tail latency

Some transactions, total latency for each one

VVYyVYVYYVYY Y
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vy

We seek to understand why the one is slow

97



Easy case

A particular transaction is slow every time it is run

It is straightforward to run the transaction repeatedly offline on a few load-test
servers

Existing profiling tools, disk byte counts, network byte counts, etc. will reveal
where the time goes
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"Interesting" case

A particular transaction is usually fast, but occasionally quite slow

It is only slow under live load during the busiest hour of the day

Running it again it runs fast

Until the reason for slowness is found, we cannot reproduce the problem offline

Existing tools are unable to reveal where the time goes
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"Interesting” case -- why it matters

Until the reason for slowness is found, we cannot reproduce the problem offline

At 10,000 transactions/second and no call tree, the 99th percentile slow cases
happen 100 times per second

But, for software with 100:1 fanout transaction call trees, almost everything runs at
the 99th percentile slow rate

Existing tools are unable to reveal where the time goes
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Tail latency

Some transactions, total latency

VVYyVYVYYVYY Y

\ 4

A A A A A A A A A A

vy

We seek to understand why the one is slow

101



Tail latency

Possible tool: average latency

VVYyVYVYYVYY Y

v
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average

Tells us nothing about the slow one
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Tail latency

Possible tool: average latency

VVYyVYVYYVYY Y

v

A A A A A A A A A A

vy

average

Tells us nothing about the slow one
Average is the wrong tool for understanding variance
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Tail latency

Possible tool: latency histogram

count

latency

Tells us what we have but not why
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Tail latency

Possible tool: latency histogram

count

latency
Tells us what we have but not why
Histogram is the wrong tool for understanding variance
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Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?
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Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?
Profiling is the wrong tool for understanding variance
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Profiling: the wrong tool for understanding variance

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce output()

It merges together many normal transactions with few slow ones, hiding the 1%
signal in 99% noise
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Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?
CPU Profiling is the wrong tool for a second reason ...
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CPU Profiling: the wrong tool for a second reason

Some transactions, total time

The delay may not be using CPU time at all; it may be waiting
for something. CPU profiling is blind to non-CPU wait time
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Tail latency

Possible tool: trace events for each transaction

VVVYVYYVYYVYY

£4444444414

Now we can see what is different about the slow one.
But we don't know why it is different

111



Tail latency

Possible tool: trace events for each transaction, lined up in time

\ 4

1

4—
?2 =«
3, ° > A

Now we can see what is different about the slow one.
And the time alignment of 6's end-of-green (A) with 8's green blocking until B.
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Tail latency

Possible tool: trace events for each transaction, lined up in time

1 « — ——e——p
?2 € - ——
3 +———
4 e A
5 <« — c——
6  e————
7 < ——- B
84 .................................. —
9 eE————

10 + W —

More detailed events at A or B will reveal the reason for starting or stopping
blocking. (Possibly a race condition or a contended software lock.)
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Tail latency, summary

Average is the wrong tool for understanding variance
Histogram is the wrong tool for understanding variance
Profile is the wrong tool for understanding variance:
Event tracing is a good tool for understanding variance

Event tracing lined up in time is a great tool for understanding variance --
it can show causes of delay directly
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Summary:
Datacenter Servers are Different



Datacenter Servers are Different

(1) Move data: big and small

(2) Real-time transactions: 1000s
per second

(3) Isolation between programs
(4) Measurement underpinnings
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Thank You, Questions?

If one ox could not do the job they did not

- try to grow a bigger ox, but used two oxen.
When we need greater computer power,

the answer is not to get a bigger computer,

but...to build systems of computers and
operate them in parallel.

TR (Grace Hopper)

izquotes.com
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