2 UNIVERSITY OF

lxi‘lﬁl‘l‘l

¥ CAMBRIDGE

P51(bis): High Performance Networked-Systems

Prof. Andrew W. Moore

Lecture 4

With great appreciation to Dick Sites for sharing wisdom, patience, and teaching materials.

A huge thank you to Eben Upton, Raspberry Pi Foundation, and PiHut people for enabling this incarnation
of the module at incredibly short notice.

Disclaimer

* Material is a snapshot of evolving (not established) wisdom

* Material is incomplete

— many details on how and why datacenter networks
operate aren’t public

Datacenter networks

10’s to 100’s of thousands of hosts, often closely coupled, in
close proximity:

= e-business (e.g. Amazon)

= content-servers (e.g., YouTube, Akamai, Apple, Microsoft)

= search engines, data mining (e.g., Google)

challenges:

= multiple applications, each serving
massive numbers of clients

= reliability

* managing/balancing load, avoiding

processing, networking, data
bottle necks Inside a 40-ft Microsoft container, Chicago data center

network

Datacenter networks

= connections outside datacenter

Border routers

Tier-1 switches

= connecting to ~16 T-2s below

Tier-2 switches

= connecting to ~16 TORs below

: P
BT

= 40-100Gbps Ethernet to
blades

Top of Rack (TOR) switch
= one per rack

M T

T R RSSSSSSISISISN,

it

7 TP PP
W LTTTTTTTITID

RSSSSSSSSSN,

NOSSSSSSSEN,

RSSSSSSSSSN,

NESSSSSSSSSN,

= 20- 40 server blades: hosts

Server racks

=» from 4 x 128p multi-chip 400G fabric switches

FSW1 FSwW2 FSW3 FSW4

48 FSW ASICs + Control Planes per Pod

= to 16 x 128p single-chip 100G fabric switches

Sample Server Pod
4444444440444 44
v YYVVYVYVVY

1222222222

1 2 3 45 6 7 8 9 10 1 12 13 14 15 16

©@00PP000000000@00@®

16 FSW ASICs + Control Planes per Pod

4x400G=1.6T
uplink per rack

16 x 100G =1.6T
uplink per rack

Datacenter networks: network
elements

Facebook F16 data center network topology:

Spine switch

Fabric Switch

Top-of-rack switch

https://engineering.fb.com/data-center-engineering/f16-minipack/ (posted 3/2019)

Datacenter networks: multipath

= rich interconnection among switches, racks:
* increased throughput between racks (multiple routing paths possible)
* increased reliability via redundancy

TOR switches

Server racks

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1

e] 2 C [~

two disjoint paths highlighted between racks 1 and 11

Datacenter networks: application-

layer routing

Internet
>
S
N
el s

\
|/
\
/

'{.
i

v

n

\y
IV|
A

22 b
=< =<
P e

s, I, I

I}

)
—i
—1
— Ul
—
—

R -
—¥
—V
]
—1
—V

CECEEREEEEE]

load balancer:

application-layer

routing

= receives external
client requests

= directs workload
within data center

= returns results to

external client
(hiding data center
internals from client)

Observations on DC architecture

* Regular, well-defined arrangement
* Hierarchical structure with rack/aggr/core layers
* Mostly homogenous within a layer

e Supports communication between servers and
between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANSs

What's different?

SCALE!

How big exactly?

e 1Million servers [Microsoft]
— |less than google, more than amazon

e > S1B to build one site [Facebook]

e >S20M/month/site operational costs [Microsoft ‘09]

But only O(10-100) sites

What’s new?

e Scale

e Service model
— user-facing, revenue generating services
— multi-tenancy
— jargon: SaaS, Paa$, Daas, laas, ...

Implications

* Scale
— need scalable solutions
— improving efficiency, lowering cost is critical
- ‘scale out’ solutions w/ commodity technologies

e Service model
— performance means SS
— virtualization for isolation and portability

22

Multi-Tier Applications

* Applications decomposed into tasks
— Many separate components

—Running in parallel on different machines

Componentization leads to different
types of network traffic

e “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

North-South Traffic

user requests from the Internet

l

Router
Front-End Front-End
Proxy Proxy

You Live Here

Data
Cache

Data

D
Cache atabase

Database

25

Componentization leads to different
types of network traffic

* “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

» “East-West traffic”
— Traffic between machines in the datacenter
— Comm within “big data” computations (e.g. Map Reduce)
— Traffic may shift on small timescales (e.g., minutes)

26

East-West Traffic

Distributed Map Reduce Distributed
Storage Tasks Tasks Storage

27

East-West Traffic

28

3t-West T

i/
—

—>

Distributed
Storage

Distributed
Storage

29

East-West vs North-South

Machine-to-Machine

Machine to Machine: Machine to User:

Inter-Cluster Egress: out to
Traffic Users/Internet

What's different about DC networks?

Characteristics

 Huge scale:

— ~20,000 switches/routers
— contrast: AT&T ~500 routers

What's different about DC networks?

Characteristics

 Huge scale:

* Limited geographic scope:
— High bandwidth: 10/40/100G
— Contrast: Cable/aDSL/WIiFi

— Very low RTT: 10s of microseconds
— Contrast: 100s of milliseconds in the WAN

What's different about DC networks?

Characteristics

 Huge scale
* Limited geographic scope
e Single administrative domain

— Can deviate from standards, invent your own, etc.
— “Green field” deployment is still feasible

33

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

— can change (say) addressing, congestion control, etc.

— can add mechanisms for security/policy/etc. at the
endpoints (typically in the hypervisor)

34

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
— e.g., map-reduce scheduler chooses where tasks run
— alters traffic pattern (what traffic crosses which links)

35

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink

* Regular/planned topologies (e.g., trees/fat-trees)

— Contrast: ad-hoc WAN topologies (dictated by
real-world geography and facilities)

36

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

e Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
* Regular/planned topologies (e.g., trees/fat-trees)
* Limited heterogeneity

— link speeds, technologies, latencies, ... 37

An example problem at scale - INCAST

Worker 1 * Synchronized mice collide.
» Caused by Partition/Aggregate.
Worker 2 Aggregator
ﬁ
Worker 3

Worker 4

45

The Incast Workload

Data Block

Synchronized Read

R
R
R
R

-

Client
Server

| Request Unit
(SRU)

Client now sends

Storage Servers
next batch of requests

46
46

Incast Workload Overfills Buffers

Synchronized Read

=
-\

<
\. J

Client Switch
Server
1 . : - = Request Unit
(SRU)
Requests Responses 1-3
' completed
Received P Link Idle!
T | ,)
1 ! | |
Requests Response 4 Response 4

Sent dropped 47 Resent 47

Queue Buildup

Sender 1

IIIIIII * Big flows buildup queues.
» Increased latency for short flows.
Receiver

E

Sender 2 * Measurements in Bing cluster
» For 90% packets: RTT < 1ms
» For 10% packets: 1ms < RTT < 15ms

48

Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

* Another idea to reduce incast is to employ
Link-Layer Flow Control.....

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”

49

Link Layer Flow Control — The Dark side
Head of Line Blocking....

Such HOL blocking does not even
differentiate processes so this can occur
between competing processes on a pair of
machines — no datacenter required.

Waiting for no good
reason....

50

Link Layer Flow Control
But its worse that you imagine....

Double down on trouble....

Did | mention this is Link-
Layer!

That means no (IP) control
traffic, no routing
messages....

g 2 whole system waiting for
QM one machine
NG

@F) Incast is very unpleasant.

Reducing the impact of Head of Line (blocking) in Link Layer Flow Control can be

done through priority queues and overtaking....
51

Enough with Datacenter networks,
what about CPU?

Datacenter Servers are Different

Server programs start and run for months

— Tens of programs per server

Real-time user-facing transactions, not batch

— Minimize latency, not CPU idle time

SN

— only 1-10ms CPU time per server

Big fanout: one transaction to 1000+ sef\?é&\

10K+ computers, 100K+ disks, 1000k+
connections

network

N
\\\

N

64

Datacenter Servers are Different

(1) Move data: big and small

(2) Real-time transactions: 1000s
per second

(3) Isolation between programs
(4) Measurement underpinnings

65

big and smc

— .o-.. : - - it ¥ p
- \\ - - .-‘. - . - i
-,':"f | \\. ".‘a.. > % = > =
. s S —

'Av . .

Move data: big and small

Move /ots of data
— Disk to/from RAM
— Network to/from RAM
— SSD to/from RAM
— Within RAM
Bulk data
Short data: variable-length items

Compress, encrypt, checksum, hash, sort

67

Lots of memory

e 4004: no memory

e i7: 12MB L3 cache

Little brain, LOTS of memory

e Server

Pl S

S S

Drinking straw access

e AN IENIATLIV T ey

70

A Single Transaction Across ~40 Racks of ~60 Servers

|)\ | e
\ “/ \\ \‘ \ = - " HE
| | | I
| ‘ g I
N [\ | /;‘H "
T T —= |
[= \
) | - N A T
\ [o o L il |
| |
|
[1 I
“ >

e Each arc is a related client-server RPC (remote procedure call)

\

1§
\ L
W
i)Y
Al
1 /%
|
hse
e i -
| i

%

o=

72

A Single Transaction RPC Tree: Client & 93 Servers

Full 1a:16:az= =
. g 16:a= 346908 pyoess
so
eyheas/ o\ —=
') Bydess —
(= g=T——2=
s =
¢ ~Psa Evoit
Py U S
Py hua
Py Pes
ovtS 7
e ———— - i
oy a7 = -
Py
By fv2s
e vacss
By g
I — oy S

By o7 S e
py=26

Py hr=s

By sS=50 =S
By aAT= O

P

?

ENRTE
E — N it
PyYgaisS3 =

Pyii7 o

—— Pyoas
yvrrs
Susa
Pycywa S i i
— gl
oyt s =
S rvas
oyos
A ST
— PyEPas
vrrs
o
[t

By e S

e Py FUsSo
Py hp<

Pyt

Byakonss
By ak3D B

Single Transaction Tail Latency

e Canary transaction

— Pyksos

cvoas
erattd

74

Single Transaction Tail Latency

e One slow response out of 93 parallel RPCs slows the entire
transaction ‘

BRI

75

One Server, Four CPUs: User/kernel transitions

every CPU every nanosecond (Ktrace)

4 U O
- ——
]

D —————————
200 usec

CPUO

CPU1

CPU 2

CPU3

76

16 CPUs, 600us, Many RPCs

CPUs
0..15

RPCs
0..39

2011-03-17T12:47:00.000-07:00

6.6153
300us 360us 420us

--end Othe

600 usec across the page
480us 540us 600us 660us 720us 780us 840us 900us

" 7
CPU 1 600us = R

ot

CPU 2 600us

= — e G =

CPU 3 503us
CPU 4 592us

CPU 6 353us

%ﬂ: S \lg ‘
CPU 5 582us L “’mm = u?» uL = r1i"'_g\n ==

"l N _LII 1

CPU 7 558us
CPU 8 484us
CPU 9 334us

¥ 1
er
m e — ==
—_—
- h < 2\ ot

CPU 10 416us . = -
CPU 11 367us #p—‘—-—n—
CPU 12 569us — M

,,M 0 i —

ww \

CPU 13 600us ==
CPU 14 600us

--end CP!
/CP-bigtable_builtj
/CP-bigtable_builti
ro
JCP-bigtable_builti
/CP-bigtable_builtil

ICP able_builti
ICP = 1
/CP-bigtable_bu

/CP-bigtable_builti
/CP-bigtable_builtil
/CP-bigtable bullt!

Read 47906 38u:
Read 23076 74us
Read 51459 75us
/CP-bigtable_builtin@iRead 47687 94us

SP-bigtable_builtin.
CP-bigtable_builtin
JCP-bigtable_builti
JCP-bigtable_builti

/CP-bigtable_builti

5 —_“m 3 ﬁi:ﬂ_—'j = . -
T pruts) R— m B f E“__"mm -
&: w‘,{. o Ef E; } S ' %ﬁh‘ W = 3 3 y) i o
15 SSOUS 37128 15380 a0da7 o

J—an o
Ao

77

16 CPUs, 600us, Many RPCs

LABBTE 464us 'L‘ \

Ll 12576 226us '\ ==\ / \

Ll 14880 213us — e : \ \
16856 193us = + v m— / \ \
17624 298us ¥ — \ / \ - \
18392 336us : —— \)‘\ \Ly - : \ \
19160 208us | | 4 /] \
Kk 19928 13us 94y e > \ WAL \ \ \ \
20768 230us - = e A / \

TabletServer_eventmanager_sen
TabletServer_eventmanager_ser
TabletServer_eventmanager_se
TabletServer_eventmanager_sen
DefaultExecuyl
TabletServer_eventmanager_s,
DefaultExecul

DefaultExecu
TabletServer_eventmanager_sen
TabletServer_eventmanager_se!
TabletServer_eventmanager_se
TabletServer_eventmanager_: se

THREADs =
0 (] 4 6 “s;?;:régéz

DefaultExec|
TabletServer_eventmanager_ser

i e e gy I

t 11— N S——
1 \

That is A LOT going on at once

e Let’s look at just one long-tail RPC in
context

79

16 CPUs, 600us, one RPC

CPUs
0..15

RPCs
0..39

2011-03-17T12:47:00.000-07:00 600 usec across thc pagc

6.6153
300us 360us 420us 480us 540us 600us 660us
--end s — Ous
0 800us
CPU 1 600us 7o acos| sesos

CPU 2 600us
CPU 3 503us
CPU 4 592us
CPU 5 582us
CPU 6 353us
CPU 7 558us
CPU 8 484us | |
CPU 9 334us’ |
CPU 10 416us
CPU 11 367us
CPU 12 569us
CPU 13 600us ...
CPU 14 800us

Sieon Syeen

ot =2

= 15e1 Sysca

--end CP
/CP-bigtable_builti
ICP-bigtable_builtin|
rowi
/CP-bigtable_builtin
/CP-bigtable_builtin
ICP-big iltin
/CP-bigtable_|
/CP-bigtable_builtin
/CP-bigtable_builtin

i R L o i o e byca | Y sork

U

5= N~

sle_builtin
sle_builtin
sle_builtin

rer-uigwaole_builtin
ICP-bigtable_builtin
ICP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builti
/CP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builtin.
ICP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builtin
/CP-bigtable_builti
-—end RP

|

reu

S

[

WLl

Sysea

Sysca

Sysca

80

16 CPUs, 600us, one RPC

LOCKs
0..22

TabletServer_eventmanager_:
TabletServer_eventmanager_:
TabletServer_eventmanager_:

TabletServer_eventmanager_:

DefaultEx<]

il
TabletServer_eventmanager_siliver 32705 107us s : !
TabletServer_eventmanager_: er 32696 241us S " _—_—
TabletServer_eventmanager_ erver 32703 87us -
TabletServer_eventmanager_[lerver 32704 34us
BTSched_128lf 140 680 234us — ey
BTSched_103@f_140 637 241us 7 . o
TabletServer_sventmanager_:)
I
iz
Sheca

sea

OG 32734 600us =253 wanen o saone —am -sf
8322us

--end Thred

Wakeup Detalil

Thread 19 frees

lock, sends wakeup|..””

to waiting thread
25

Thread 25 g

actually runs

50us
wakeup
delay ??

82

CPU Scheduling, 2 Designs
e Re-dispatch on any idle CPU core

— But if idle CPU core is in deep sleep, can take 75-100us to wake up

e Wait to re-dispatch on previous CPU core, to get cache hits
— Saves nothing if could use same L1 cache
— Saves ~10us if could use same L2 cache
— Saves ~100us if could use same L3 cache
— Expensive if cross-socket cache refills
— Don't wait too long...

Real-time transactions: 1000s per second

e Not your father’s SPEC benchmarks

e To understand delays, need to track simultaneous
transactions across servers, CPU cores, threads, queues,
locks

84

Modern challenges in CPU design

e A single transaction can touch thousands of servers in
parallel

e The slowest parallel path dominates

e Tail latency is the enemy
— Must control lock-holding times
— Must control scheduler delays
— Must control interference via shared resources

85

Histogram: Disk Server Latency; Long Tail

15000 -
12000 - Lat 99th %il
atency oile
Lronn 696 msec
Laua -
)
f =
= rsuouvo
o
O
5000
3000
1000
mmn 1 1 e L mwrn o LLRLL Ll T mwiraTm
O T2 w9 o g € e DD WDy U € Ut DD uny CC Uy Ty D [t T S R e e B D e A S T e S B e A e R
R e B s B e T~ o K T == o = T e B e = o e S T T s o S e S o e S e S e S e S T o S e ST T e S S e S S e -
1000 - -—‘-—cr‘—\lmﬂ:\j\:-ﬁ—nx::-c-\r--«:'!oc\:r-gﬁ

87

Non-repeatable Tail Latency Comes from
Unknown Interference

Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.
Higher utilization = $$$.

Many Sources of Interference

e Most interference comes from software
e But a bit from the hardware underpinnings

e In a shared apartment building, most interference comes
from jerky neighbors

e But thin walls and bad kitchen venting can be the
hardware underpinnings

89

Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out, filling caches
4567

0123

Core 0

Core 1

00000000

L1 caches

60 61 62 63 PCs

Core 15

L1 caches

90

Isolation issue: Cache Interference

CPULO123
Core 0

00000000

Isolation issue: Cache Interference
e CPU thread 0 is moving 16B/cycle flat out

Today
0123 456 7
Core 0 Core 1

00000000 77777777

“obontGmmononr

Desired
0123 456 7
Core 0 Core 1
~00112233 ~4455667 7

P

92

Isolation between programs

e Good fences make good neighbors

e We need better hardware support for program isolation in
shared memory systems

93

Modern challenges in CPU design

Isolating programs from each other on a shared server is
hard

As an industry, we do it poorly
— Shared CPU scheduling
— Shared caches

— Shared network links
— Shared disks

More hardware support needed
More innovation needed

94

Differences from desktop software

Tens of thousands of user-facing transactions per second
Distributed computation across thousands of servers

The important metric is response time, i.e. latency

Excessive tail latency is the most important performance problem

As an industry, we have poor tools for observing and understanding tail latency

96

Tail latency

Some transactions, total latency for each one

VVYyVYVYYVYY Y

\ 4

A A A A A A A A A A

vy

We seek to understand why the one is slow

97

Easy case

A particular transaction is slow every time it is run

It is straightforward to run the transaction repeatedly offline on a few load-test
servers

Existing profiling tools, disk byte counts, network byte counts, etc. will reveal
where the time goes

98

"Interesting" case

A particular transaction is usually fast, but occasionally quite slow

It is only slow under live load during the busiest hour of the day

Running it again it runs fast

Until the reason for slowness is found, we cannot reproduce the problem offline

Existing tools are unable to reveal where the time goes

99

"Interesting” case -- why it matters

Until the reason for slowness is found, we cannot reproduce the problem offline

At 10,000 transactions/second and no call tree, the 99th percentile slow cases
happen 100 times per second

But, for software with 100:1 fanout transaction call trees, almost everything runs at
the 99th percentile slow rate

Existing tools are unable to reveal where the time goes

100

Tail latency

Some transactions, total latency

VVYyVYVYYVYY Y

\ 4

A A A A A A A A A A

vy

We seek to understand why the one is slow

101

Tail latency

Possible tool: average latency

VVYyVYVYYVYY Y

v

A A A A A A A A A A

vy

average

Tells us nothing about the slow one

102

Tail latency

Possible tool: average latency

VVYyVYVYYVYY Y

v

A A A A A A A A A A

vy

average

Tells us nothing about the slow one
Average is the wrong tool for understanding variance

103

Tail latency

Possible tool: latency histogram

count

latency

Tells us what we have but not why

104

Tail latency

Possible tool: latency histogram

count

latency
Tells us what we have but not why
Histogram is the wrong tool for understanding variance

105

Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?

106

Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?
Profiling is the wrong tool for understanding variance

107

Profiling: the wrong tool for understanding variance

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce output()

It merges together many normal transactions with few slow ones, hiding the 1%
signal in 99% noise

108

Tail latency

Possible tool: Profile of CPU time per source function

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

But where is the slow transaction?
CPU Profiling is the wrong tool for a second reason ...

109

CPU Profiling: the wrong tool for a second reason

Some transactions, total time

The delay may not be using CPU time at all; it may be waiting
for something. CPU profiling is blind to non-CPU wait time

110

Tail latency

Possible tool: trace events for each transaction

VVVYVYYVYYVYY

£4444444414

Now we can see what is different about the slow one.
But we don't know why it is different

111

Tail latency

Possible tool: trace events for each transaction, lined up in time

\ 4

1

4—
?2 =«
3, ° > A

Now we can see what is different about the slow one.
And the time alignment of 6's end-of-green (A) with 8's green blocking until B.

112

Tail latency

Possible tool: trace events for each transaction, lined up in time

1 « — ——e——p
?2 € - ——
3 +———
4 e A
5 <« — c——
6 e————
7 < ——- B
84 —
9 eE————

10 + W —

More detailed events at A or B will reveal the reason for starting or stopping
blocking. (Possibly a race condition or a contended software lock.)

113

Tail latency, summary

Average is the wrong tool for understanding variance
Histogram is the wrong tool for understanding variance
Profile is the wrong tool for understanding variance:
Event tracing is a good tool for understanding variance

Event tracing lined up in time is a great tool for understanding variance --
it can show causes of delay directly

114

Summary:
Datacenter Servers are Different

Datacenter Servers are Different

(1) Move data: big and small

(2) Real-time transactions: 1000s
per second

(3) Isolation between programs
(4) Measurement underpinnings

121

Thank You, Questions?

If one ox could not do the job they did not

- try to grow a bigger ox, but used two oxen.
When we need greater computer power,

the answer is not to get a bigger computer,

but...to build systems of computers and
operate them in parallel.

TR (Grace Hopper)

izquotes.com

125

