
P51(bis): High Performance Networked-Systems

Prof. Andrew W. Moore 

Lecture 4

With great appreciation to Dick Sites for sharing wisdom, patience, and teaching materials.

A huge thank you to Eben Upton, Raspberry Pi Foundation, and PiHut people for enabling this incarnation 
of the module at incredibly short notice.



Disclaimer

• Material is a snapshot of evolving (not established) wisdom

• Material is incomplete
– many details on how and why datacenter networks

operate aren’t public 



Datacenter networks
10’s to 100’s of thousands of hosts, often closely coupled, in 
close proximity:
! e-business (e.g. Amazon)
! content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
! search engines, data mining (e.g., Google)

challenges:
! multiple applications, each serving 

massive numbers of clients 
! reliability
! managing/balancing load, avoiding 

processing, networking, data 
bottlenecks  Inside a 40-ft Microsoft container, Chicago data center



Datacenter networks: network 
elements

Server racks
! 20- 40 server blades: hosts 

Top of Rack (TOR) switch
! one per rack
! 40-100Gbps Ethernet to 

blades      

Tier-2 switches
! connecting to  ~16 TORs below

Tier-1 switches
! connecting to  ~16 T-2s below

Border routers
! connections outside datacenter

…
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…
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…

…

…

…
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Datacenter networks: network 
elements

Facebook F16 data center network topology:

https://engineering.fb.com/data-center-engineering/f16-minipack/    (posted 3/2019)



Datacenter networks: multipath
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two disjoint paths highlighted between racks 1 and 11

! rich interconnection among switches, racks:
• increased throughput between racks (multiple routing paths possible)
• increased reliability via redundancy
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Datacenter networks: application-
layer routing

Load 
balancer

Internet

load balancer: 
application-layer 
routing
! receives external 

client requests
! directs workload 

within data center
! returns results to 

external client 
(hiding data center 
internals from client)



Observations on DC architecture

• Regular, well-defined arrangement
• Hierarchical structure with rack/aggr/core layers
• Mostly homogenous within a layer
• Supports communication between servers and 

between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs
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What’s different?

18



SCALE!
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How big exactly?

• 1Million servers [Microsoft] 
– less than google, more than amazon

• > $1B to build one site [Facebook]

• >$20M/month/site operational costs [Microsoft ’09]

But only O(10-100) sites 
20



What’s new?

• Scale 
• Service model 

– user-facing, revenue generating services
– multi-tenancy
– jargon: SaaS, PaaS, DaaS, IaaS, …
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Implications

• Scale 
– need scalable solutions
– improving efficiency, lowering cost is critical 
"`scale out’ solutions w/ commodity technologies

• Service model 
– performance means $$
– virtualization for isolation and portability
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Multi-Tier Applications

• Applications decomposed into tasks
–Many separate components
–Running in parallel on different machines
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Componentization leads to different 
types of network traffic

• “North-South traffic”
– Traffic between external clients and the datacenter
– Handled by front-end (web) servers, mid-tier application 

servers, and back-end databases
– Traffic patterns fairly stable, though diurnal variations
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North-South Traffic

25

Router

Web Server Web Server Web Server

Data
Cache

Data
Cache Database Database

Front-End
Proxy

Front-End
Proxy

user requests from the Internet You Live Here



Componentization leads to different 
types of network traffic

• “North-South traffic”
– Traffic between external clients and the datacenter
– Handled by front-end (web) servers, mid-tier application 

servers, and back-end databases
– Traffic patterns fairly stable, though diurnal variations

• “East-West traffic”
– Traffic between machines in the datacenter
– Comm within “big data” computations (e.g. Map Reduce)
– Traffic may shift on small timescales (e.g., minutes)
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East-West Traffic
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East-West Traffic
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East-West Traffic

29

Distributed
Storage

Distributed
Storage

Map
Tasks

Reduce
Tasks

Often doesn’t 
cross the 
network

Always goes over 
the network

Some fraction 
(typically 2/3) 

crosses the network



East-West vs North-South
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What’s different about DC networks?

Characteristics
• Huge scale: 

– ~20,000 switches/routers
– contrast: AT&T ~500 routers 



What’s different about DC networks?

Characteristics
• Huge scale: 
• Limited geographic scope:

– High bandwidth: 10/40/100G 
– Contrast: Cable/aDSL/WiFi
– Very low RTT: 10s of microseconds
– Contrast: 100s of milliseconds in the WAN
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What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain

– Can deviate from standards, invent your own, etc.
– “Green field” deployment is still feasible 
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What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints

– can change (say) addressing, congestion control, etc.
– can add mechanisms for security/policy/etc. at the 

endpoints (typically in the hypervisor)
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What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink

– e.g., map-reduce scheduler chooses where tasks run
– alters traffic pattern (what traffic crosses which links)
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What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink
• Regular/planned topologies (e.g., trees/fat-trees)

– Contrast: ad-hoc WAN topologies (dictated by 
real-world geography and facilities)

36



What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink
• Regular/planned topologies (e.g., trees/fat-trees)
• Limited heterogeneity

– link speeds, technologies, latencies, … 37



An example problem at scale - INCAST

45

TCP timeout

Worker 1

Worker 2

Worker 3

Worker 4

Aggregator

RTOmin = 300 ms

• Synchronized mice collide.
# Caused by Partition/Aggregate.



The Incast Workload

Client Switch

Storage Servers

R
R

R
R

1

2

Data Block

Server 
Request Unit
(SRU)

3

4

Synchronized Read

Client now sends
next batch of requests

1 2 3 4
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Client Switch

R
R

R
R

1

2

3

4

4

Synchronized Read

1 2 3 4 Server 
Request Unit
(SRU)

4

Incast Workload Overfills Buffers
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Requests 
Sent

Requests 
Received

Responses 1-3 
completed

Response 4 
dropped

Response 4 
Resent

Link Idle!
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Queue Buildup

48

Sender 1

Sender 2

Receiver

• Big flows buildup queues. 
# Increased latency for short flows.

• Measurements in Bing cluster
# For 90% packets: RTT < 1ms
# For 10% packets: 1ms < RTT < 15ms



Link-Layer Flow Control
Common between switches but this is flow-control to the end host too…

• Another idea to reduce incast is to employ 
Link-Layer Flow Control…..

Recall: the Data-Link can use specially coded 
symbols in the coding to say “Stop” and “Start”
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Link Layer Flow Control – The Dark side
Head of Line Blocking….

Waiting for no good 
reason….

Such HOL blocking does not even 
differentiate processes so this can occur 
between competing processes on a pair of 
machines – no datacenter required.
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Link Layer Flow Control 
But its worse that you imagine….

…

Double down on trouble….

Did I mention this is Link-
Layer!

That means no (IP) control 
traffic, no routing 
messages….

a whole system waiting for 
one machine

Incast is very unpleasant.

Reducing the impact of Head of Line (blocking) in Link Layer Flow Control can be 
done through priority queues and overtaking….
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Enough with Datacenter networks,
what about CPU?
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Datacenter Servers are Different

• Server programs start and run for months
– Tens of programs per server

• Real-time user-facing transactions, not batch
– Minimize latency, not CPU idle time

• Big fanout: one transaction to 1000+ servers
– only 1-10ms CPU time per server

• 10K+ computers,  100K+ disks,  1000k+ network 
connections
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① Move data: big and small
② Real-time transactions: 1000s 

per second
③ Isolation between programs
④ Measurement underpinnings

Datacenter Servers are Different
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① Move data: big and small



Move data: big and small
• Move lots of data

– Disk to/from RAM
– Network to/from RAM
– SSD to/from RAM
– Within RAM

• Bulk data
• Short data: variable-length items
• Compress, encrypt, checksum, hash, sort
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Lots of memory
• 4004: no memory

• i7: 12MB L3 cache
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Little brain, LOTS of memory
• Server                                                64GB-1TB

Drinking straw access
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② Real-time transactions:
1000s per second



• Each arc is a related client-server RPC (remote procedure call)

A Single Transaction Across ~40 Racks of ~60 Servers
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A Single Transaction RPC Tree: Client & 93 Servers

?

?
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Single Transaction Tail Latency
• Canary transaction

74



Single Transaction Tail Latency
• One slow response out of 93 parallel RPCs slows the entire

transaction
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One Server, Four CPUs: User/kernel transitions
every CPU every nanosecond (Ktrace)

200 usec

CPU 0

CPU 1

CPU 2

CPU 3
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16 CPUs, 600us, Many RPCs

CPUs 
0..15

RPCs 
0..39
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16 CPUs, 600us, Many RPCs

THREADs 
0..46

LOCKs 
0..22
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That is A LOT going on at once

• Let’s look at just one long-tail RPC in 
context
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16 CPUs, 600us, one RPC

CPUs 
0..15

RPCs 
0..39
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16 CPUs, 600us, one RPC

THREADs 
0..46

LOCKs 
0..22
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Thread 25 
actually runs

Wakeup Detail

Thread 19 frees 
lock, sends wakeup 
to waiting thread 
25

50 us
50us 
wakeup 
delay ??
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CPU Scheduling, 2 Designs
• Re-dispatch on any idle CPU core

– But if idle CPU core is in deep sleep, can take 75-100us to wake up

• Wait to re-dispatch on previous CPU core, to get cache hits
– Saves nothing if could use same L1 cache
– Saves ~10us if could use same L2 cache
– Saves ~100us if could use same L3 cache
– Expensive if cross-socket cache refills
– Don’t wait too long…

83



Real-time transactions: 1000s per second

• Not your father’s SPEC benchmarks

• To understand delays, need to track simultaneous 
transactions across servers, CPU cores, threads, queues, 
locks
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Modern challenges in CPU design
• A single transaction can touch thousands of servers in 

parallel
• The slowest parallel path dominates 
• Tail latency is the enemy

– Must control lock-holding times
– Must control scheduler delays
– Must control interference via shared resources
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③ Isolation between 
programs



Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec

87



Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.

Higher utilization = $$$.

Non-repeatable Tail Latency Comes from 
Unknown Interference



Many Sources of Interference
• Most interference comes from software
• But a bit from the hardware underpinnings

• In a shared apartment building, most interference comes 
from jerky neighbors

• But thin walls and bad kitchen venting can be the 
hardware underpinnings
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Isolation issue: Cache Interference
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CPU thread 0 is moving 16B/cycle flat out, filling caches
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Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out, filling caches

0000000000000000000000000000000000

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1  2  3
Core 0
00000000

4  5  6  7
Core 1

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

0000000000000000000 L2 cache…

000 000

91



Isolation issue: Cache Interference
• CPU thread 0 is moving 16B/cycle flat out

000000000000000000000
…

0 1  2 3
Core 0

00000000

4  5  6 7
Core 1

77777777

Today

~000111222333444555666777…

0 1  2 3
Core 0

~00112233

4  5  6 7
Core 1
~44556677

Desired
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Isolation between programs

• Good fences make good neighbors

• We need better hardware support for program isolation in 
shared memory systems
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Modern challenges in CPU design
• Isolating programs from each other on a shared server is 

hard
• As an industry, we do it poorly

– Shared CPU scheduling
– Shared caches
– Shared network links
– Shared disks

• More hardware support needed
• More innovation needed
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④Measurement underpinnings



Differences from desktop software

Tens of thousands of user-facing transactions per second

Distributed computation across thousands of servers

The important metric is response time, i.e. latency

Excessive tail latency is the most important performance problem

As an industry, we have poor tools for observing and understanding tail latency
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Tail latency
Some transactions, total latency for each one

We seek to understand why the one is slow
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Easy case
A particular transaction is slow every time it is run

It is straightforward to run the transaction repeatedly offline on a few load-test 
servers

Existing profiling tools, disk byte counts, network byte counts, etc. will reveal 
where the time goes
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"Interesting" case

A particular transaction is usually fast, but occasionally quite slow

It is only slow under live load during the busiest hour of the day

Running it again it runs fast

Until the reason for slowness is found, we cannot reproduce the problem offline

Existing tools are unable to reveal where the time goes
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"Interesting" case -- why it matters
Until the reason for slowness is found, we cannot reproduce the problem offline

At 10,000 transactions/second and no call tree, the 99th percentile slow cases 
happen 100 times per second

But, for software with 100:1 fanout transaction call trees, almost everything runs at 
the 99th percentile slow rate 

Existing tools are unable to reveal where the time goes
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Tail latency
Some transactions, total latency

We seek to understand why the one is slow
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Tail latency
Possible tool: average latency

Tells us nothing about the slow one

average
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Tail latency
Possible tool: average latency

Tells us nothing about the slow one

Average is the wrong tool for understanding variance  

average
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Tail latency
Possible tool: latency histogram

Tells us what we have but not why
latency

co
un
t
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Tail latency
Possible tool: latency histogram

Tells us what we have but not why
Histogram is the wrong tool for understanding variance  

latency

co
un
t
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Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

gather_inputs()

process_item()

process_more()

calculate()

produce_output()
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Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

Profiling is the wrong tool for understanding variance  

gather_inputs()

process_item()

process_more()

calculate()

produce_output()
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Profiling: the wrong tool for understanding variance
Possible tool: Profile of CPU time per source function

It merges together many normal transactions with few slow ones, hiding the 1% 
signal in 99% noise

gather_inputs()

process_item()

process_more()

calculate()

produce_output()
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Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

CPU Profiling is the wrong tool for a second reason ...  

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

109



CPU Profiling: the wrong tool for a second reason
Some transactions, total time

The delay may not be using CPU time at all; it may be waiting
for something. CPU profiling is blind to non-CPU wait time
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Tail latency
Possible tool: trace events for each transaction

Now we can see what is different about the slow one.
But we don't know why it is different
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Tail latency
Possible tool: trace events for each transaction, lined up in time

Now we can see what is different about the slow one.
And the time alignment of 6's end-of-green (A) with 8's green blocking until B.

1
2
3
4

5
6
7
8

9
10

B

A
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Tail latency
Possible tool: trace events for each transaction, lined up in time

More detailed events at A or B will reveal the reason for starting or stopping 
blocking. (Possibly a race condition or a contended software lock.)

1
2
3
4

9
10

A

B
5
6
7
8
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Tail latency, summary
Average is the wrong tool for understanding variance  

Histogram is the wrong tool for understanding variance  

Profile is the wrong tool for understanding variance  

Event tracing is a good tool for understanding variance  

Event tracing lined up in time is a great tool for understanding variance --
it can show causes of delay directly 
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Summary: 
Datacenter Servers are Different



Datacenter Servers are Different

① Move data: big and small
② Real-time transactions: 1000s 

per second
③ Isolation between programs
④ Measurement underpinnings
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Thank You, Questions?
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