
P51(bis): High Performance Networked-Systems

Prof. Andrew W. Moore

Lecture 4

With great appreciation to Dick Sites for sharing wisdom, patience, and teaching materials.

A huge thank you to Eben Upton, Raspberry Pi Foundation, and PiHut people for enabling this incarnation
of the module at incredibly short notice.

Disclaimer

• Material is a snapshot of evolving (not established) wisdom

• Material is incomplete
– many details on how and why datacenter networks

operate aren’t public

Datacenter networks
10’s to 100’s of thousands of hosts, often closely coupled, in
close proximity:
! e-business (e.g. Amazon)
! content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
! search engines, data mining (e.g., Google)

challenges:
! multiple applications, each serving

massive numbers of clients
! reliability
! managing/balancing load, avoiding

processing, networking, data
bottlenecks Inside a 40-ft Microsoft container, Chicago data center

Datacenter networks: network
elements

Server racks
! 20- 40 server blades: hosts

Top of Rack (TOR) switch
! one per rack
! 40-100Gbps Ethernet to

blades

Tier-2 switches
! connecting to ~16 TORs below

Tier-1 switches
! connecting to ~16 T-2s below

Border routers
! connections outside datacenter

…

…

…

…

…

…

…

…

6

Datacenter networks: network
elements

Facebook F16 data center network topology:

https://engineering.fb.com/data-center-engineering/f16-minipack/ (posted 3/2019)

Datacenter networks: multipath

9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

two disjoint paths highlighted between racks 1 and 11

! rich interconnection among switches, racks:
• increased throughput between racks (multiple routing paths possible)
• increased reliability via redundancy

…

…

…

…

…

…

…

…

Datacenter networks: application-
layer routing

Load
balancer

Internet

load balancer:
application-layer
routing
! receives external

client requests
! directs workload

within data center
! returns results to

external client
(hiding data center
internals from client)

Observations on DC architecture

• Regular, well-defined arrangement
• Hierarchical structure with rack/aggr/core layers
• Mostly homogenous within a layer
• Supports communication between servers and

between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs

17

What’s different?

18

SCALE!

19

How big exactly?

• 1Million servers [Microsoft]
– less than google, more than amazon

• > $1B to build one site [Facebook]

• >$20M/month/site operational costs [Microsoft ’09]

But only O(10-100) sites
20

What’s new?

• Scale
• Service model

– user-facing, revenue generating services
– multi-tenancy
– jargon: SaaS, PaaS, DaaS, IaaS, …

21

Implications

• Scale
– need scalable solutions
– improving efficiency, lowering cost is critical
"`scale out’ solutions w/ commodity technologies

• Service model
– performance means $$
– virtualization for isolation and portability

22

Multi-Tier Applications

• Applications decomposed into tasks
–Many separate components
–Running in parallel on different machines

23

Componentization leads to different
types of network traffic

• “North-South traffic”
– Traffic between external clients and the datacenter
– Handled by front-end (web) servers, mid-tier application

servers, and back-end databases
– Traffic patterns fairly stable, though diurnal variations

24

North-South Traffic

25

Router

Web Server Web Server Web Server

Data
Cache

Data
Cache Database Database

Front-End
Proxy

Front-End
Proxy

user requests from the Internet You Live Here

Componentization leads to different
types of network traffic

• “North-South traffic”
– Traffic between external clients and the datacenter
– Handled by front-end (web) servers, mid-tier application

servers, and back-end databases
– Traffic patterns fairly stable, though diurnal variations

• “East-West traffic”
– Traffic between machines in the datacenter
– Comm within “big data” computations (e.g. Map Reduce)
– Traffic may shift on small timescales (e.g., minutes)

26

East-West Traffic

27

Distributed
Storage

Distributed
Storage

Map
Tasks

Reduce
Tasks

East-West Traffic
CR CR

AR AR AR AR

SS

SS

A AA …

SS

A AA …

. .

.

SS

SS

A AA …

SS

A AA …

28

East-West Traffic

29

Distributed
Storage

Distributed
Storage

Map
Tasks

Reduce
Tasks

Often doesn’t
cross the
network

Always goes over
the network

Some fraction
(typically 2/3)

crosses the network

East-West vs North-South

30

What’s different about DC networks?

Characteristics
• Huge scale:

– ~20,000 switches/routers
– contrast: AT&T ~500 routers

What’s different about DC networks?

Characteristics
• Huge scale:
• Limited geographic scope:

– High bandwidth: 10/40/100G
– Contrast: Cable/aDSL/WiFi
– Very low RTT: 10s of microseconds
– Contrast: 100s of milliseconds in the WAN

32

What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain

– Can deviate from standards, invent your own, etc.
– “Green field” deployment is still feasible

33

What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints

– can change (say) addressing, congestion control, etc.
– can add mechanisms for security/policy/etc. at the

endpoints (typically in the hypervisor)

34

What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink

– e.g., map-reduce scheduler chooses where tasks run
– alters traffic pattern (what traffic crosses which links)

35

What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink
• Regular/planned topologies (e.g., trees/fat-trees)

– Contrast: ad-hoc WAN topologies (dictated by
real-world geography and facilities)

36

What’s different about DC networks?

Characteristics
• Huge scale
• Limited geographic scope
• Single administrative domain
• Control over one/both endpoints
• Control over the placement of traffic source/sink
• Regular/planned topologies (e.g., trees/fat-trees)
• Limited heterogeneity

– link speeds, technologies, latencies, … 37

An example problem at scale - INCAST

45

TCP timeout

Worker 1

Worker 2

Worker 3

Worker 4

Aggregator

RTOmin = 300 ms

• Synchronized mice collide.
Caused by Partition/Aggregate.

The Incast Workload

Client Switch

Storage Servers

R
R

R
R

1

2

Data Block

Server
Request Unit
(SRU)

3

4

Synchronized Read

Client now sends
next batch of requests

1 2 3 4

46
46

Client Switch

R
R

R
R

1

2

3

4

4

Synchronized Read

1 2 3 4 Server
Request Unit
(SRU)

4

Incast Workload Overfills Buffers

47

Requests
Sent

Requests
Received

Responses 1-3
completed

Response 4
dropped

Response 4
Resent

Link Idle!

47

Queue Buildup

48

Sender 1

Sender 2

Receiver

• Big flows buildup queues.
Increased latency for short flows.

• Measurements in Bing cluster
For 90% packets: RTT < 1ms
For 10% packets: 1ms < RTT < 15ms

Link-Layer Flow Control
Common between switches but this is flow-control to the end host too…

• Another idea to reduce incast is to employ
Link-Layer Flow Control…..

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”

49

Link Layer Flow Control – The Dark side
Head of Line Blocking….

Waiting for no good
reason….

Such HOL blocking does not even
differentiate processes so this can occur
between competing processes on a pair of
machines – no datacenter required.

50

Link Layer Flow Control
But its worse that you imagine….

…

Double down on trouble….

Did I mention this is Link-
Layer!

That means no (IP) control
traffic, no routing
messages….

a whole system waiting for
one machine

Incast is very unpleasant.

Reducing the impact of Head of Line (blocking) in Link Layer Flow Control can be
done through priority queues and overtaking….

51

Enough with Datacenter networks,
what about CPU?

60

Datacenter Servers are Different

• Server programs start and run for months
– Tens of programs per server

• Real-time user-facing transactions, not batch
– Minimize latency, not CPU idle time

• Big fanout: one transaction to 1000+ servers
– only 1-10ms CPU time per server

• 10K+ computers, 100K+ disks, 1000k+ network
connections

64

① Move data: big and small
② Real-time transactions: 1000s

per second
③ Isolation between programs
④ Measurement underpinnings

Datacenter Servers are Different

65

① Move data: big and small

Move data: big and small
• Move lots of data

– Disk to/from RAM
– Network to/from RAM
– SSD to/from RAM
– Within RAM

• Bulk data
• Short data: variable-length items
• Compress, encrypt, checksum, hash, sort

67

Lots of memory
• 4004: no memory

• i7: 12MB L3 cache

69

Little brain, LOTS of memory
• Server 64GB-1TB

Drinking straw access

70

② Real-time transactions:
1000s per second

• Each arc is a related client-server RPC (remote procedure call)

A Single Transaction Across ~40 Racks of ~60 Servers

72

A Single Transaction RPC Tree: Client & 93 Servers

?

?

73

Single Transaction Tail Latency
• Canary transaction

74

Single Transaction Tail Latency
• One slow response out of 93 parallel RPCs slows the entire

transaction

75

One Server, Four CPUs: User/kernel transitions
every CPU every nanosecond (Ktrace)

200 usec

CPU 0

CPU 1

CPU 2

CPU 3

76

16 CPUs, 600us, Many RPCs

CPUs
0..15

RPCs
0..39

77

16 CPUs, 600us, Many RPCs

THREADs
0..46

LOCKs
0..22

78

That is A LOT going on at once

• Let’s look at just one long-tail RPC in
context

79

16 CPUs, 600us, one RPC

CPUs
0..15

RPCs
0..39

80

16 CPUs, 600us, one RPC

THREADs
0..46

LOCKs
0..22

81

Thread 25
actually runs

Wakeup Detail

Thread 19 frees
lock, sends wakeup
to waiting thread
25

50 us
50us
wakeup
delay ??

82

CPU Scheduling, 2 Designs
• Re-dispatch on any idle CPU core

– But if idle CPU core is in deep sleep, can take 75-100us to wake up

• Wait to re-dispatch on previous CPU core, to get cache hits
– Saves nothing if could use same L1 cache
– Saves ~10us if could use same L2 cache
– Saves ~100us if could use same L3 cache
– Expensive if cross-socket cache refills
– Don’t wait too long…

83

Real-time transactions: 1000s per second

• Not your father’s SPEC benchmarks

• To understand delays, need to track simultaneous
transactions across servers, CPU cores, threads, queues,
locks

84

Modern challenges in CPU design
• A single transaction can touch thousands of servers in

parallel
• The slowest parallel path dominates
• Tail latency is the enemy

– Must control lock-holding times
– Must control scheduler delays
– Must control interference via shared resources

85

③ Isolation between
programs

Histogram: Disk Server Latency; Long Tail

Latency 99th %ile
= 696 msec

87

Isolation of programs reduces tail latency.
Reduced tail latency = higher utilization.

Higher utilization = $$$.

Non-repeatable Tail Latency Comes from
Unknown Interference

Many Sources of Interference
• Most interference comes from software
• But a bit from the hardware underpinnings

• In a shared apartment building, most interference comes
from jerky neighbors

• But thin walls and bad kitchen venting can be the
hardware underpinnings

89

Isolation issue: Cache Interference

0000000000000000000000000000000000

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1 2 3
Core 0
00000000

4 5 6 7
Core 1

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

0000000000000000000 L2 cache…

000 000

CPU thread 0 is moving 16B/cycle flat out, filling caches

90

Isolation issue: Cache Interference

CPU thread 0 is moving 16B/cycle flat out, filling caches

0000000000000000000000000000000000

DRAMDRAMDRAMDRAMDRAMDRAM

DRAMDRAMDRAMDRAMDRAMDRAM

…0 1 2 3
Core 0
00000000

4 5 6 7
Core 1

L1 caches

60 61 62 63 PCs
Core 15
L1 caches

0000000000000000000 L2 cache…

000 000

91

Isolation issue: Cache Interference
• CPU thread 0 is moving 16B/cycle flat out

000000000000000000000
…

0 1 2 3
Core 0

00000000

4 5 6 7
Core 1

77777777

Today

~000111222333444555666777…

0 1 2 3
Core 0

~00112233

4 5 6 7
Core 1
~44556677

Desired

92

Isolation between programs

• Good fences make good neighbors

• We need better hardware support for program isolation in
shared memory systems

93

Modern challenges in CPU design
• Isolating programs from each other on a shared server is

hard
• As an industry, we do it poorly

– Shared CPU scheduling
– Shared caches
– Shared network links
– Shared disks

• More hardware support needed
• More innovation needed

94

④Measurement underpinnings

Differences from desktop software

Tens of thousands of user-facing transactions per second

Distributed computation across thousands of servers

The important metric is response time, i.e. latency

Excessive tail latency is the most important performance problem

As an industry, we have poor tools for observing and understanding tail latency

96

Tail latency
Some transactions, total latency for each one

We seek to understand why the one is slow

97

Easy case
A particular transaction is slow every time it is run

It is straightforward to run the transaction repeatedly offline on a few load-test
servers

Existing profiling tools, disk byte counts, network byte counts, etc. will reveal
where the time goes

98

"Interesting" case

A particular transaction is usually fast, but occasionally quite slow

It is only slow under live load during the busiest hour of the day

Running it again it runs fast

Until the reason for slowness is found, we cannot reproduce the problem offline

Existing tools are unable to reveal where the time goes

99

"Interesting" case -- why it matters
Until the reason for slowness is found, we cannot reproduce the problem offline

At 10,000 transactions/second and no call tree, the 99th percentile slow cases
happen 100 times per second

But, for software with 100:1 fanout transaction call trees, almost everything runs at
the 99th percentile slow rate

Existing tools are unable to reveal where the time goes

100

Tail latency
Some transactions, total latency

We seek to understand why the one is slow

101

Tail latency
Possible tool: average latency

Tells us nothing about the slow one

average

102

Tail latency
Possible tool: average latency

Tells us nothing about the slow one

Average is the wrong tool for understanding variance

average

103

Tail latency
Possible tool: latency histogram

Tells us what we have but not why
latency

co
un
t

104

Tail latency
Possible tool: latency histogram

Tells us what we have but not why
Histogram is the wrong tool for understanding variance

latency

co
un
t

105

Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

106

Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

Profiling is the wrong tool for understanding variance

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

107

Profiling: the wrong tool for understanding variance
Possible tool: Profile of CPU time per source function

It merges together many normal transactions with few slow ones, hiding the 1%
signal in 99% noise

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

108

Tail latency
Possible tool: Profile of CPU time per source function

But where is the slow transaction?

CPU Profiling is the wrong tool for a second reason ...

gather_inputs()

process_item()

process_more()

calculate()

produce_output()

109

CPU Profiling: the wrong tool for a second reason
Some transactions, total time

The delay may not be using CPU time at all; it may be waiting
for something. CPU profiling is blind to non-CPU wait time

110

Tail latency
Possible tool: trace events for each transaction

Now we can see what is different about the slow one.
But we don't know why it is different

111

Tail latency
Possible tool: trace events for each transaction, lined up in time

Now we can see what is different about the slow one.
And the time alignment of 6's end-of-green (A) with 8's green blocking until B.

1
2
3
4

5
6
7
8

9
10

B

A

112

Tail latency
Possible tool: trace events for each transaction, lined up in time

More detailed events at A or B will reveal the reason for starting or stopping
blocking. (Possibly a race condition or a contended software lock.)

1
2
3
4

9
10

A

B
5
6
7
8

113

Tail latency, summary
Average is the wrong tool for understanding variance

Histogram is the wrong tool for understanding variance

Profile is the wrong tool for understanding variance

Event tracing is a good tool for understanding variance

Event tracing lined up in time is a great tool for understanding variance --
it can show causes of delay directly

114

Summary:
Datacenter Servers are Different

Datacenter Servers are Different

① Move data: big and small
② Real-time transactions: 1000s

per second
③ Isolation between programs
④ Measurement underpinnings

121

Thank You, Questions?

125

