
P51(bis): High Performance Networked-Systems
Prof. Andrew W. Moore

Part 2

Finally, a huge thank you to Eben Upton, Raspberry Pi Foundation, and PiHut people for enabling this
incarnation of the module at incredibly short notice.

Lessons from Lab1

• Ping isn’t the best tool for latency measurements

• Iperf isn’t the best tool for bandwidth measurements

• Control, variability, accuracy, ….

• If you didn’t conclude that; go back and look at your results….

• What should you expect? (do the math)

Networking and Systems Measurements (L50) 3

Networking and Systems Measurements (L50) 4

Ethernet switch
(48 x 1Gbps)

1m
Twisted pair (UTP)

1Gbps

1m
Twisted pair (UTP)

1Gbps

? Delay ? ? Delay ?? Delay ? ? Delay ? ? Delay ?

<0.4ns <0.4nsLatency < 10 µs

Networking and Systems Measurements (L50) 5

Ethernet switch
(48 x 1Gbps)

1m
Twisted pair (UTP)

1Gbps

1m
Twisted pair (UTP)

1Gbps

<0.4ns <0.4nsLatency < 10 µs

Networking and Systems Measurements (L50) 6

Ethernet switch
(48 x 1Gbps)

1m
Twisted pair (UTP)

1Gbps

1m
Twisted pair (UTP)

1Gbps

Ping reported ~90% results ~20 µs so ~2 x switch…. plus a bit….

<0.4ns <0.4nsLatency < 10 µs

Networking and Systems Measurements (L50) 7

Ethernet switch
(48 x 1Gbps)

1m
Twisted pair (UTP)

1Gbps

1m
Twisted pair (UTP)

1Gbps

Ping reported ~90% results ~20 µs so ~2 x switch…. plus a bit….

<0.4ns <0.4nsLatency < 10 µs

• So even if the end hosts added no extra time (they do); what about the rest of the 150µs?

• Systematic errors: clocks, speed of light

• Non-systematic errors: scheduling in host, competing demands on resources,

• BUFFERING in the switch

• “Where has my time gone?” https://www.repository.cam.ac.uk/handle/1810/263038

Example: Network Congestion

Networking and Systems Measurements (L50) 11

queue

How to control generated traffic?

! What is the packet format? (e.g. protocol,
payload)

! How many packets?
! What is the packet size(s)?
! What is the average data rate?
! What is the peak data rate? (e.g. burst

control)
! …

Networking and Systems Measurements (L50) 12

Traffic Generation Tools

$$$$$, Hardware, high quality
(Ixia, Spirent,..)

$$ Software/hardware based, medium quality
(OSNT, MoonGen,…)

Commodity, Software, low quality
(TCPReply,…)

Networking and Systems Measurements (L50) 13

TCP Replay

! Free, software-based
! Replays network traffic stored in pcap files

"Not just TCP
" (not just pcap)

! Included in Linux
! Packets are sent according to pcap file

timestamps

Networking and Systems Measurements (L50) 14

Software based traffic generators

! Traditional tools (e.g., D-ITG, trafgen):
" Rely on the interface provided by the kernel

for packet IO
! Modern tools (e.g., MoonGen, pktgen, zsend):

"Use special frameworks which bypass the
network stack of an OS

"Optimized for high speed and low latency
"Cost: compatibility and support for high-level

features

Networking and Systems Measurements (L50) 15

Measuring what happened.

! Recall: Active measurement (ping/iperf) &
Passive measurement (tcpdump/intercept)

Passive measurement means we control the clocks, and we see
what really happened (at least in one particular place)

Networking and Systems Measurements (L50) 20

How to capture traffic?

! When did the packet arrive?
" A hard question!

! Can part / all of the packet be captured?
! How many packets can be captured?
! What is the maximal rate of packets that can

be captured?
! …

21

What is the time?
! Free running clocks, e.g.,

"CPU’s time stamp counter (TSC)
"NIC’s on board oscillator
"Clocks drift!

! Synchronization signals, e.g.,
"1 PPS (pulse-per-second)

! Synchronization protocols, e.g.,
"Network Time Protocol (NTP) – milliseconds

accuracy
"Precision Time Protocol (PTP) – microseconds

accuracy (nanoseconds, depending on deployment)

22

Timestamping

23

User
Space

OS

Driver

PCIe

NIC

Host

Port

Port

! At the port – highest accuracy
" If you want to measure the network

! At the NIC – less accurate
"Buffering, clock domain crossing etc.

! At the OS
"Exhibits PCIe effects, scheduling

dependencies
! At the Application – least accurate

"Unless you are interested in the user’s
perspective – then it’s the only place

Traffic Capture

24

$$$$$, Hardware, high quality
(Ixia, Spirent,..)

$$ Software/hardware based, medium quality
(DAG, OSNT, NIC based,…)

Commodity, Software, low quality
(tcpdump, tshark, wireshark,…)

tcpdump (libpcap)

! Software only
! libpcap (historically tcpdump)
! Other applications: tshark, wireshark…
! Captures data and <does stuff> including

write stuff to a file
! Uses the pcap format (and others…)
! Timestamp comes from the Linux network

stack (default: kernel clock)

25

PCAP Files
! PCAP – Packet CAPture
! libpcap file format
! Commonly used for packet capture/generation
! Format:

! Global header: magic number, version, timezone,
max length of packet, L2 type, etc.

! PCAP Packet header:

Networking and Systems Measurements (L50) 26

Global
Header

Packet
Header

Packet Data Packet
Header

Packet Data Packet
Header

Packer
Data

ts_sec ts_usec incl_len orig_len

PCAP Files – a one slide outline
! PCAP – Packet CAPture
! libpcap file format
! Commonly used for packet capture/generation
! Format:

! Global header: magic number, version, timezone,
max length of packet, L2 type, etc.

! PCAP Packet header:

Networking and Systems Measurements (L50) 27

Global
Header

Packet
Header

Packet Data Packet
Header

Packet Data Packet
Header

Packer
Data

ts_sec ts_usec incl_len orig_len

Packet Capture

Common example:
! $ sudo tcpdump -i en0 -tt -nn host
www.cl.cam.ac.uk

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes
1507838714.207271 IP 192.168.1.107.50650 > 128.232.0.20.80: Flags [S], seq
3761395339, win 65535, options [mss 1460,nop,wscale 5,nop,nop,TS val 256908862 ecr
0,sackOK,eol], length 0
1507838714.207736 IP 192.168.1.107.50651 > 128.232.0.20.80: Flags [S], seq
527865303, win 65535, options [mss 1460,nop,wscale 5,nop,nop,TS val 256908862 ecr
0,sackOK,eol], length 0
….

28

Where do I trace?

! Sometimes on the interface of a host (eg ‘eth0’)
" Tcpdump -i en1 # this will spew entries to the console one line per

packet approximately
" -tt -nn # useful options long form timestamps & numbers not names

! Interception using “Tap”
(think wire-tapping)

29

Endace (DAG)

! DAG - Data Acquisition and Generation
! A commercial data capture card
! Packet capture at line rate
! Timestamping in the hardware (at the port)
! Nanosecond resolution
! Clock synronization possible
! Will be used in the labs

30

31

Why 232ps?

erf. binary dec
…..0001 232ps,
…..0010 466ps,
…..0011 698ps,
…..0100 931ps,
…..0101 1163ps,
…..0110 1397ps
…..0111 1629ps
…..1000 1862ps
erf = extensible record format

32

! Measuring (latency/change) between locations
" Common time base: ntp? Ptp? GPS?

! Where do I measure?
" Nic?
" When the packet turns into useful work?

! Measuring inside the system (tracing a system)

NTP

! Designed for Internet-scale synchronization
" E.g., email sent time < email received time
" Milliseconds scale – emphasises frequency not phase

! A hierarchical system
! Using a few reference clocks
! Typically:

" Host polls a few servers
" Compensates for RTT and

time offset
" NTPv4 – RFC5905

33

PTP
! IEEE standard 1588 (v2 – 1588-2008)
! Designed for local systems

" Microsecond level accuracy or better

! Uses a hierarchical master-slave architecture
for clock distribution
" Grandmaster – root timing reference clock
" Boundary clock – has multiple network connections,

can synchronize different segments
" Ordinary clock – has a single network connection (can

be master or slave)

! (And many more details)

34

PTP – clock synchronization

35

sy
nc

Fo
llo
w_
up

delay_req

de
lay
_r
es
p

tmater-slave tslave-master

t1

t2 t3

t4

t2 t1, t2 t1, t2, t3 t1, t2, t3, t4
Timestamps known
by slave:

Slave

Master

Offset =(tmater-slave-tslave-master)/2=tmater-slave-propagation time
mean propagation time =(tmater-slave+tslave-master)/2

Using NIC

! Either implement PTP-derived timestamps
or just timestamp the packets

sometimes in hardware
most times… not…

Not all NICs support time stamping
! Result: captured packets include a timestamp
! If PTP is used, end hosts are synchronized
! Else – free running counter

36

! Taken from Understanding Software Dynamics R. Sites

! Taken from https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf

38

Capturing to disk…..

! Most (physical) disk systems can not capture
10Gb/s of data

! Capture takes resources!

! Format wars…. PCAP vs PCAP-ng vs others

! Binary representations / digital representations

39

What makes high-speed capture hard?
! Disk bandwidth
! Host bandwidth (memory, CPU, PCIe)
! Data management
! Lousy OS and software APIs

" Byte primitives are dreadful when you want information on
events, packets, & transactions…

" A lot of effort has been invested into reinventing ring-buffers
(circular buffers) to accelerate network interface cards.

" Performance networking was done for capture first….

40

What makes high-speed capture work
(better)?

! NVMe Disks
! Big machines, latest interfaces
! Collect metadata (version OS/system/hw/DNS)
! Bypass the OS

"Older dedicated capture cards (e.g., Endace) pioneered
kernel bypass capture

"Any modern NIC 10Gb/s uses tricks that are useful for
capture too

41

Measuring – Do’s and Don’t
! Make sure that you capture correctly

" Disk, PCIe/DMA and other bottlenecks

! Make sure that your measurement does not affect
the results
" E.g., separate the capture unit from the device under test

! Understand what you are measuring
" E.g. single host, application-to-application, network device etc.

! Make sure your measurement system does not
affect the results

42

perf (not to be confused with iperf)

! So far we discussed performance
! What about events?
! Perf is a Linux profiler tool
! Allows us to instrument CPU performance

counters, tracepoints and probes (kernel, user)

43

perf

! list – find events
! stat – count events
! record – write event data to a file
! report – browse summary
! script – event dump for post processing

44

Perf - example
:~/.ssh$ perf stat ps

PID TTY TIME CMD
8747 pts/2 00:00:00 bash

11667 pts/2 00:00:00 perf
11670 pts/2 00:00:00 ps

Performance counter stats for 'ps':

12.745507 task-clock (msec) # 0.929 CPUs utilized
4 context-switches # 0.314 K/sec
0 cpu-migrations # 0.000 K/sec

140 page-faults # 0.011 M/sec
32,322,489 cycles # 2.536 GHz (40.80%)

<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend

27,644,922 instructions # 0.86 insns per cycle (68.86%)
5,133,583 branches # 402.776 M/sec (68.92%)

157,503 branch-misses # 3.07% of all branches (94.06%)

0.013726555 seconds time elapsed

45

the tool scales the count based on
total time enabled vs time running

Flame Graphs: an example of clever visualization

! Parsing traces is like finding a needle in a
haystack

! Flame graphs - Visualise the outputs of
profiling tools
"E.g., using perf, dtrace

! Easy to understand
! Open source

"https://github.com/brendangregg/FlameGraph
"Brendan Gregg has several other useful

performance-related tools

46

47

Flame Graphs
! Width is relative to “how much time spent running on the CPU”
! Top-down shows ancestry
! Not good for idles – so don’t try to use for profiling network

events!
! Different types of flame graphs

"E.g. CPU, memory,
differential

48

Conclusion

! There are many …. So so many …. tools
each is shaped by its heritage

! Select carefully (understand the limitations)

! Consider and collect metadata – always

! How will you find/process/interpret/visualize your data?

49

