
Lecture 13a
Alias and points-to

analysis

Motivation
We’ve seen a number of different analyses that are

affected by ambiguity in variables accessed (e.g. in LVA
we assume all address-taken variables are referenced).

Alongside this, in modern machines we would like to
exploit parallelism where possible, either by running

code in separate threads on a multi-core, or in separate
lanes using short vector (SIMD) instructions.

Our ability to do this depends on us being able to tell
whether memory-access instructions alias (i.e. access

the same memory location).

Example
As a simple example, consider some MP3 player code:

for (channel = 0; channel < 2; channel++)
 process_audio(channel);

Or even

process_audio_left();
process_audio_right();

Can we run these two calls in parallel?
In other words, when is it safe to do so?

Memory accessed

In general we can parallelise if neither call writes to a
memory location read or written by the other.

We therefore want to know, at compile time, what
memory locations a procedure might read from and

write to at run time.

Essentially, we’re asking what locations the procedure’s
instructions access at run time.

Memory accessed

We can reduce this problem to finding locations
accessed by each instruction, then combining for all

instructions within a procedure.

So, given a pointer value, we are interested in finding a
finite description of the locations it might point to.

If two such descriptions have an empty intersection
then we can parallelise / reorder the instructions / …

Andersen’s analysis
Andersen’s points-to analysis is an O(n3) analysis—the

underlying problem is the same as 0-CFA.

We’ll only look at the intra-procedural case.

We won’t consider pointer arithmetic or functions
returning pointers.

All object fields are conflated, although a ‘field-sensitive’
analysis is possible too.

Andersen’s analysis
Assume the program has been re-written so that all

pointer-typed operations are of the form:

is a program point
optional, a variant of
C-like languages, also like

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

copy
field access of an object
field access of an object

Andersen’s analysis
We first define a set of abstract values:

18.1 Andersen’s analysis in detail

Define a set of abstract values

V = Var [{new` | ` 2 Prog} [{null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this a function pt(x) : V ! P(V). As said

before, we keep one pt per procedure (intra-procedural analysis).
Each line in the program generates zero of more constraints on pt :

` x := &y : y 2 pt(x) ` x := null : null 2 pt(x)

` x := new` : new` 2 pt(x) ` x := y : pt(y) ✓ pt(x)

z 2 pt(y)

` x := ⇤y : pt(z) ✓ pt(x)

z 2 pt(x)

` ⇤x := y : pt(y) ✓ pt(z)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-

flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

di↵erently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):

(ASS)` e := e0 : has abovei (SEQ)
` C : S ` C

0 : S0

` C;C 0 : S [S0

(COND)
` C : S ` C

0 : S0

` if e then C else C 0 : S [S0

(WHILE)
` C : S

` while e do C : S

The safety property A program analysis on its own never useful—we want to be able to use
it for transformations, and hence need to know what the analysis guarantees about run-time
execution.
Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for new` this means that x points to a
memory cell allocated there.

34

Note that all allocations at program point are
conflated, which makes things finite but loses precision.

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

We create the points-to relation as a function:

Some analyses have a different at each program point
(like LVA); Andersen keeps one per function.

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (2)

Get set of abstract values V = Var ∪ {new! | ! ∈ Prog} ∪ {null}.

Note that this means that all new allocations at program point ! are

conflated – makes things finite but loses precision.

The points-to relation is seen as a function pt : V → P(V). While we

might imagine having a different pt at each program point (like

liveness) Andersen keeps one per function.

Have type-like constraints (one per source-level assignment)

$ x := &y : y ∈ pt(x) $ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

$ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

$ ∗x := y : pt(y) ⊆ pt(z)

x := new! and x := null are treated identically to x := &y.

Alias and Points-to Analysis 8 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (2)

Get set of abstract values V = Var ∪ {new! | ! ∈ Prog} ∪ {null}.

Note that this means that all new allocations at program point ! are

conflated – makes things finite but loses precision.

The points-to relation is seen as a function pt : V → P(V). While we

might imagine having a different pt at each program point (like

liveness) Andersen keeps one per function.

Have type-like constraints (one per source-level assignment)

$ x := &y : y ∈ pt(x) $ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

$ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

$ ∗x := y : pt(y) ⊆ pt(z)

x := new! and x := null are treated identically to x := &y.

Alias and Points-to Analysis 8 Lecture 13a

Andersen’s analysis
We could use type-like constraints (one per

source-level assignment):

18.1 Andersen’s analysis in detail

Define a set of abstract values

V = Var [{new` | ` 2 Prog} [{null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this a function pt(x) : V ! P(V). As said

before, we keep one pt per procedure (intra-procedural analysis).
Each line in the program generates zero of more constraints on pt :

` x := &y : y 2 pt(x) ` x := null : null 2 pt(x)

` x := new` : new` 2 pt(x) ` x := y : pt(y) ✓ pt(x)

z 2 pt(y)

` x := ⇤y : pt(z) ✓ pt(x)

z 2 pt(x)

` ⇤x := y : pt(y) ✓ pt(z)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-

flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

di↵erently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):

(ASS)` e := e0 : has abovei (SEQ)
` C : S ` C

0 : S0

` C;C 0 : S [S0

(COND)
` C : S ` C

0 : S0

` if e then C else C 0 : S [S0

(WHILE)
` C : S

` while e do C : S

The safety property A program analysis on its own never useful—we want to be able to use
it for transformations, and hence need to know what the analysis guarantees about run-time
execution.
Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for new` this means that x points to a
memory cell allocated there.

34

Andersen’s analysis
Or use the style of 0-CFA:

x := &y

pt(x) ⊇ { y }

Andersen’s analysis
Or use the style of 0-CFA:

x := y

pt(x) ⊇ pt(y)

Andersen’s analysis
Or use the style of 0-CFA:

x := *y

pt(y) ⊇ { z } ⟹ pt(x) ⊇ pt(z)

Andersen’s analysis
Or use the style of 0-CFA:

*x := y

pt(x) ⊇ { z } ⟹ pt(z) ⊇ pt(y)

Note that this is just stylistic, it’s the same
constraint system but no obvious deep connections
between 0-CFA and Andersen’s points-to analysis.

Andersen’s analysis
The algorithm is flow-insensitive—it only considers

the statements and not the order in which they occur.
This is faster but less precise.

Property inference rules are then essentially:

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (4)

Flow-insensitive – we only look at the assignments, not in which

order they occur. Faster but less precise – syntax-directed rules all

use the same set-like combination of constraints (∪ here).

Flow-insensitive means property inference rules are essentially of the

form:

(ASS)
" x := e : . . .

(SEQ)
" C : S " C ′ : S′

" C; C ′ : S ∪ S′

(COND)
" C : S " C ′ : S′

" if e then C else C ′ : S ∪ S′

(WHILE)
" C : S

" while e do C : S

Alias and Points-to Analysis 10 Lecture 13a

Andersen example
Consider the following code:

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

Andersen example

pt(a) = {}
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

Andersen example

pt(a) ⊇ { b }

pt(a) = {}
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(a) = { b }

Andersen example

pt(c) ⊇ { d }

pt(a) = { b }
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(c) = { d }

Andersen example

pt(d) ⊇ { a }

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = {}

pt(e) = {}

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(d) = { a }

Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = { a }

pt(e) = {}

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(e) = { d }

Andersen example

pt(e) ⊇ { d }
 ⟹ pt(c) ⊇ pt(d)

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = { a }

pt(e) = { d }

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(c) = { a, d }

Andersen example
a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(a) = { b }
pt(b) = {}

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { d }
pt(b) = { a }

pt(a) ⊇ { b }
 ⟹ pt(b) ⊇ pt(d)

Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { d }

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(e) = { a, d }

Andersen example

pt(e) ⊇ { a, d }
 ⟹ pt(c) ⊇ pt(a)
 ⟹ pt(c) ⊇ pt(d)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { a, d }

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(c) = { a, b, d }

Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, b, d }
pt(d) = { a }

pt(e) = { a, d }

a = &b;
c = &d;
d = &a;
e = c;
c = *e;
*a = d;

pt(e) = { a, b, d }

Andersen example

pt(a) = { b }

pt(b) = { a }

pt(c) = { a, b, d }

pt(d) = { a }

pt(e) = { a, b, d }

Note that a flow-sensitive algorithm would give
pt(c) = { a, d } and pt(e) = { d }

assuming the statements appear in the given
order in a single basic block that is not in a loop.

Other approaches
Steensgaard’s algorithm merges a and b if any pointer
can reference both. This is less accurate but runs in

almost linear time.

Shape analysis (Sagiv, Wilhelm, Reps) models abstract
heap nodes and edges between them representing must
or may point-to. More accurate but the abstract heaps

can get very large.

In general, coarse techniques give poor results whereas
more sophisticated techniques are expensive.

Summary

• Points-to analysis identifies which memory
locations variables (and other memory locations)
point to

• We can use this information to improve data-
dependence analysis

• This allows us to reorder loads and stores, or
parallelise / vectorise parts of the code

• Andersen’s analysis is a flow-insensitive algorithm
that works in O(n3)

