
Lecture 13
Effect systems

Motivation

We have so far seen many analyses which deal with
control- and data-flow properties of pure languages.

However, many languages contain operations with side-
effects, so we must also be able to analyse and safely

transform these impure programs.

Effect systems, a form of inference-based analysis, are
often used for this purpose.

Side-effects

A side-effect is some event — typically a change of state
— which occurs as a result of evaluating an expression.

• “x++” changes the value of variable x.

• “malloc(42)” allocates some memory.

• “print 42” outputs a value to a stream.

Side-effects

e ::= x | λx.e | e1 e2 | ξ?x.e | ξ!e1.e2

As an example language, we will use the lambda calculus
extended with read and write operations on “channels”.

• ξ represents some channel name.

• ξ?x.e reads an integer from the channel named ξ,
binds it to x, and returns the result of evaluating e.

• ξ!e1.e2 evaluates e1, writes the resulting integer to
channel ξ, and returns the result of evaluating e2.

Side-effects

ξ?x. x
ξ!x. y

ξ?x. ζ!x. x

Some example expressions:

read an integer from
channel ξ and return it

write the (integer) value
of x to channel ξ and
return the value of y

read an integer from
channel ξ, write it to

channel ζ and return it

Side-effects

Ignoring their side-effects, the typing rules for
these new operations are straightforward.

Γ[x : int] ⊢ e : t

Γ ⊢ ξ?x.e : t

(Read)

Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t

(Write)

Side-effects

Effect systems

However, in order to perform any transformations on
a program in this language it would be necessary to

pay attention to its potential side-effects.

For example, we might need to devise an analysis to
tell us which channels may be read or written during

evaluation of an expression.

We can do this by modifying our existing type system
to create an effect system (or “type and effect system”).

Effect systems
First we must formally define our effects:

An expression has effects F.
F is a set containing elements of the form

Rξ
Wξ

read from channel ξ

write to channel ξ

Effect systems

ξ?x. x
ξ!x. y

ξ?x. ζ!x. x

For example:

F = { Rξ }

F = { Wξ }

F = { Rξ, Wζ }

Effect systems

But we also need to be able to handle expressions like

λx. ξ!x. x
whose evaluation doesn’t have any immediate effects.

In this case, the effect Wξ may occur later, whenever
this newly-created function is applied.

Effect systems

To handle these latent effects we extend the syntax of
types so that function types are annotated with the
effects that may occur when a function is applied:

t ::= int | t1 → t2
F

Effect systems
So, although it has no immediate effects, the type of

λx. ξ!x. x
is

int → int
{ Wξ }

Effect systems

Γ ⊢ e : t, F

We can now modify the existing type system
to make an effect system — an inference
system which produces judgements about

the type and effects of an expression:

Γ[x : int] ⊢ e : t

Γ ⊢ ξ?x.e : t

(Read)

Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t

(Write)

Effect systems

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F
′

Γ ⊢ ξ!e1.e2 : t, F ∪ {Wξ} ∪ F
′

(Write)

Γ[x : int] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, {Rξ} ∪ F

(Read)

Effect systems

Γ[x : t] ⊢ x : t, {}
(Var)

Γ ⊢ e1 : t
F

′′

→ t
′
, F Γ ⊢ e2 : t, F

′

Γ ⊢ e1e2 : t
′
, F ∪ F

′ ∪ F
′′

(App)

Γ[x : t] ⊢ e : t
′
, F

Γ ⊢ λx.e : t
F

→ t
′
, {}

(Lam)

Effect systems

Effect systems

{x : int , y : int} ⊢ x : int , {}

{x : int , y : int} ⊢ ξ!x. x : int, {Wξ}

{y : int} ⊢ λx. ξ!x. x : int
{Wξ}
→ int , {} {y : int} ⊢ y : int , {}

{y : int} ⊢ (λx. ξ!x. x) y : int , {Wξ}

Effect subtyping

We would probably want more expressive
control structure in a real programming language.

For example, we could add if-then-else:

e ::= x | λx.e | e1 e2 | ξ?x.e | ξ!e1.e2 | if e1 then e2 else e3

Effect subtyping

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F
′ Γ ⊢ e3 : t, F

′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F
′ ∪ F

′′
(Cond)

Effect subtyping

However, there are some valid uses of if-then-else
which this rule cannot handle by itself.

Effect subtyping

if x then λx. ξ!3. x + 1 else λx. x + 2
int → int

{ Wξ }
int → int

{ }

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F
′ Γ ⊢ e3 : t, F

′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F
′ ∪ F

′′
(Cond)

Effect subtyping

if x then λx. ξ!3. x + 1 else λx. x + 2
int → int

{ Wξ }
int → int

{ }
✗

Effect subtyping

We can solve this problem by adding a new
rule to handle subtyping.

Effect subtyping

Γ ⊢ e : t
F

′

→ t
′
, F F

′ ⊆ F
′′

Γ ⊢ e : t
F

′′

→ t
′
, F

(Sub)

Effect subtyping

int → int
{ Wξ }

int → int
{ }

int → int
{ Wξ }

int → int
{ }

if x then λx. ξ!3. x + 1 else λx. x + 2

(SUB)

Effect subtyping

int → int
{ Wξ }

int → int
{ }

int → int
{ Wξ }

int → int
{ }

if x then λx. ξ!3. x + 1 else λx. x + 2

✓

Optimisation
The information discovered by the effect system is

useful when deciding whether particular
transformations are safe.

An expression with no immediate side-effects is
referentially transparent: it can safely be replaced with
another expression (with the same value and type)
with no change to the semantics of the program.

For example, referentially transparent expressions
may safely be removed if LVA says they are dead.

Safety

({} ⊢ e : t, F) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])
({} ⊢ e : t, F) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])

Extra structure
In this analysis we are using sets of effects.

As a result, we aren’t collecting any information
about how many times each effect may occur,

or the order in which they may happen.

ξ?x. ζ!x. x F = { Rξ, Wζ }

ζ!y. ξ?x. x F = { Rξ, Wζ }

ζ!y. ξ?x. ζ!x. x F = { Rξ, Wζ }

Extra structure

If we use a different representation of effects,
and use different operations on them, we can

keep track of more information.

One option is to use sequences of effects and
use an append operation when combining them.

Extra structure

Γ[x : int] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, ⟨Rξ⟩ @ F

(Read)

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F
′

Γ ⊢ ξ!e1.e2 : t, F ∪ {Wξ} ∪ F
′

(Write)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F

′

Γ ⊢ ξ!e1.e2 : t, F @ ⟨Wξ⟩ @ F
′

(Write)

Extra structure

In the new system, these expressions
all have different effects:

ξ?x. ζ!x. x F =〈 Rξ; Wζ 〉

ζ!y. ξ?x. x F =〈 Wζ; Rξ 〉

ζ!y. ξ?x. ζ!x. x F =〈 Wζ; Rξ; Wζ 〉

Extra structure
Whether we use sequences instead of sets depends
upon whether we care about the order and number
of effects. In the channel example, we probably don’t.

But if we were tracking file accesses, it would be
important to ensure that no further read or write

effects occurred after a file had been closed.

And if we were tracking memory allocation, we
would want to ensure that no block of memory got

deallocated twice.

Summary

• Effect systems are a form of inference-based analysis

• Side-effects occur when expressions are evaluated

• Function types must be annotated to account for
latent effects

• A type system can be modified to produce
judgements about both types and effects

• Subtyping may be required to handle annotated types

• Different effect structures may give more information

	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short

