
Lecture 12
Inference-based analysis



Motivation

In this part of the course we’re examining several 
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally 
specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.



Inference-based analysis

Inference systems consist of sets of rules for 
determining program properties.

Typically such a property of an entire program 
depends recursively upon the properties of the 
program’s subexpressions; inference systems can 
directly express this relationship, and show how 

to recursively compute the property.



Inference-based analysis

Γ ⊢ e : φ
• e is an expression (e.g. a complete program)

• Γ is a set of assumptions about free variables of e

• ϕ is a program property

An inference system specifies judgements:



Type systems

Consider the ML type system, for example.

This particular inference system specifies 
judgements about a well-typedness property:

Γ ⊢ e : t
means “under the assumptions in Γ, the 

expression e has type t”.



Type systems
We will avoid the more complicated ML typing 
issues (see Types course for details) and just 

consider the expressions in the lambda calculus:

e ::= x | λx. e | e1 e2

Our program properties are types t:

t ::= α | int | t1 → t2



Type systems
Γ is a set of type assumptions of the form

{ x1 : t1, ..., xn : tn }
where each identifier xi is assumed to have type ti.

Γ[x : t]
We write

to mean Γ with the additional assumption that x has type t 
(overriding any other assumption about x).



Type systems

In all inference systems, we use a set of rules to 
inductively define which judgements are valid.

In a type system, these are the typing rules.



Type systems

Γ[x : t] ⊢ x : t

(Var)

Γ[x : t] ⊢ e : t
′

Γ ⊢ λx.e : t → t
′

(Lam)

Γ ⊢ e1 : t → t
′ Γ ⊢ e2 : t

Γ ⊢ e1e2 : t
′

(App)



t = ?t = int → int → int

e = λx. λy. add (multiply 2 x) y

Γ[x : int ][y : int ] ⊢ add : int → int → int

...

Γ[x : int ][y : int ] ⊢ multiply 2 x : int

Γ[x : int ][y : int ] ⊢ add (multiply 2 x) : int → int Γ[x : int ][y : int ] ⊢ y : int

Γ[x : int ][y : int ] ⊢ add (multiply 2 x) y : int

Γ[x : int ] ⊢ λy. add (multiply 2 x) y : int → int

Γ ⊢ λx. λy. add (multiply 2 x) y : int → int → int

Type systems

Γ = { 2 : int, add : int → int → int, multiply : int → int → int }



Optimisation
In the absence of a compile-time type checker, all values 

must be tagged with their types and run-time checks must 
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed, 
execution can proceed safely without these tags and 

checks; if necessary, the final result of evaluation can be 
tagged with its inferred type.

Hence the final result of evaluation is identical, but less 
run-time computation is required to produce it.



Safety

({} ⊢ e : t) ⇒ ([[e]] ∈ [[t]])
The safety condition for this inference system is

where   e   and   t   are the denotations of e and t 
respectively:   e   is the value obtained by evaluating e, 

and   t   is the set of all values of type t.

This condition asserts that the run-time behaviour of 
the program will agree with the type system’s prediction.
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Odds and evens

Type-checking is just one application of 
inference-based program analysis.

The properties do not have to be types; in 
particular, they can carry more (or completely 

different!) information than traditional types do.

We’ll consider a more program-analysis–related 
example: detecting odd and even numbers.



Odds and evens

This time, the program property ϕ has the form

ϕ ::= odd | even | ϕ1 → ϕ2



Odds and evens

Γ[x : φ] ⊢ x : φ
(Var)

Γ[x : φ] ⊢ e : φ′

Γ ⊢ λx.e : φ → φ′
(Lam)

Γ ⊢ e1 : φ → φ′ Γ ⊢ e2 : φ

Γ ⊢ e1e2 : φ′
(App)



ϕ = ?ϕ = odd → even → even

Γ[x : odd ][y : even] ⊢ add : even → even → even

...

Γ[x : odd ][y : even] ⊢ multiply 2 x : even

Γ[x : odd ][y : even] ⊢ add (multiply 2 x) : even → even Γ[x : odd ][y : even] ⊢ y : even

Γ[x : odd ][y : even] ⊢ add (multiply 2 x) y : even

Γ[x : odd ] ⊢ λy. add (multiply 2 x) y : even → even

Γ ⊢ λx. λy. add (multiply 2 x) y : odd → even → even

e = λx. λy. add (multiply 2 x) y

Odds and evens
Γ = { 2 : even, add : even → even → even,
                    multiply : even → odd → even }



({} ⊢ e : φ) ⇒ ([[e]] ∈ [[φ]])

Safety

The safety condition for this inference system is

  odd   = { z ∈ ℤ | z is odd },[      ][     ]

where   ϕ   is the denotation of ϕ:[  ][   ]

  ϕ1 → ϕ2   =   ϕ1   →   ϕ2  [     ][    ][     ][    ][               ][              ]

  even   = { z ∈ ℤ | z is even },[       ][      ]



Richer properties

Note that if we want to show a judgement like

Γ ⊢ λx. λy. add (multiply 2 x) (multiply 3 y) : even → even → even

we need more than one assumption about multiply:

Γ = { ..., multiply : even → even → even,
            multiply : odd → even → even, ... }



Richer properties
This might be undesirable, and one alternative is 
to enrich our properties instead; in this case we 
could allow conjunction inside properties, so that 
our single assumption about multiply looks like:

multiply : even → even → even ∧
             even → odd → even ∧
             odd → even → even ∧
             odd → odd → odd

We would need to modify the inference system 
to handle these richer properties.



Summary

• Inference-based analysis is another useful 
framework

• Inference rules are used to produce judgements 
about programs and their properties

• Type systems are the best-known example

• Richer properties give more detailed information

• An inference system used for analysis has an 
associated safety condition
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