
Lecture 12
Inference-based analysis

Motivation

In this part of the course we’re examining several
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally
specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.

Inference-based analysis

Inference systems consist of sets of rules for
determining program properties.

Typically such a property of an entire program
depends recursively upon the properties of the
program’s subexpressions; inference systems can
directly express this relationship, and show how

to recursively compute the property.

Inference-based analysis

Γ ⊢ e : φ
• e is an expression (e.g. a complete program)

• Γ is a set of assumptions about free variables of e

• ϕ is a program property

An inference system specifies judgements:

Type systems

Consider the ML type system, for example.

This particular inference system specifies
judgements about a well-typedness property:

Γ ⊢ e : t
means “under the assumptions in Γ, the

expression e has type t”.

Type systems
We will avoid the more complicated ML typing
issues (see Types course for details) and just

consider the expressions in the lambda calculus:

e ::= x | λx. e | e1 e2

Our program properties are types t:

t ::= α | int | t1 → t2

Type systems
Γ is a set of type assumptions of the form

{ x1 : t1, ..., xn : tn }
where each identifier xi is assumed to have type ti.

Γ[x : t]
We write

to mean Γ with the additional assumption that x has type t
(overriding any other assumption about x).

Type systems

In all inference systems, we use a set of rules to
inductively define which judgements are valid.

In a type system, these are the typing rules.

Type systems

Γ[x : t] ⊢ x : t

(Var)

Γ[x : t] ⊢ e : t
′

Γ ⊢ λx.e : t → t
′

(Lam)

Γ ⊢ e1 : t → t
′ Γ ⊢ e2 : t

Γ ⊢ e1e2 : t
′

(App)

t = ?t = int → int → int

e = λx. λy. add (multiply 2 x) y

Γ[x : int][y : int] ⊢ add : int → int → int

...

Γ[x : int][y : int] ⊢ multiply 2 x : int

Γ[x : int][y : int] ⊢ add (multiply 2 x) : int → int Γ[x : int][y : int] ⊢ y : int

Γ[x : int][y : int] ⊢ add (multiply 2 x) y : int

Γ[x : int] ⊢ λy. add (multiply 2 x) y : int → int

Γ ⊢ λx. λy. add (multiply 2 x) y : int → int → int

Type systems

Γ = { 2 : int, add : int → int → int, multiply : int → int → int }

Optimisation
In the absence of a compile-time type checker, all values

must be tagged with their types and run-time checks must
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed,
execution can proceed safely without these tags and

checks; if necessary, the final result of evaluation can be
tagged with its inferred type.

Hence the final result of evaluation is identical, but less
run-time computation is required to produce it.

Safety

({} ⊢ e : t) ⇒ ([[e]] ∈ [[t]])
The safety condition for this inference system is

where e and t are the denotations of e and t
respectively: e is the value obtained by evaluating e,

and t is the set of all values of type t.

This condition asserts that the run-time behaviour of
the program will agree with the type system’s prediction.

[][] [][]
[][]

[][]

Odds and evens

Type-checking is just one application of
inference-based program analysis.

The properties do not have to be types; in
particular, they can carry more (or completely

different!) information than traditional types do.

We’ll consider a more program-analysis–related
example: detecting odd and even numbers.

Odds and evens

This time, the program property ϕ has the form

ϕ ::= odd | even | ϕ1 → ϕ2

Odds and evens

Γ[x : φ] ⊢ x : φ
(Var)

Γ[x : φ] ⊢ e : φ′

Γ ⊢ λx.e : φ → φ′
(Lam)

Γ ⊢ e1 : φ → φ′ Γ ⊢ e2 : φ

Γ ⊢ e1e2 : φ′
(App)

ϕ = ?ϕ = odd → even → even

Γ[x : odd][y : even] ⊢ add : even → even → even

...

Γ[x : odd][y : even] ⊢ multiply 2 x : even

Γ[x : odd][y : even] ⊢ add (multiply 2 x) : even → even Γ[x : odd][y : even] ⊢ y : even

Γ[x : odd][y : even] ⊢ add (multiply 2 x) y : even

Γ[x : odd] ⊢ λy. add (multiply 2 x) y : even → even

Γ ⊢ λx. λy. add (multiply 2 x) y : odd → even → even

e = λx. λy. add (multiply 2 x) y

Odds and evens
Γ = { 2 : even, add : even → even → even,
 multiply : even → odd → even }

({} ⊢ e : φ) ⇒ ([[e]] ∈ [[φ]])

Safety

The safety condition for this inference system is

 odd = { z ∈ ℤ | z is odd },[][]

where ϕ is the denotation of ϕ:[][]

 ϕ1 → ϕ2 = ϕ1 → ϕ2 [][][][][][]

 even = { z ∈ ℤ | z is even },[][]

Richer properties

Note that if we want to show a judgement like

Γ ⊢ λx. λy. add (multiply 2 x) (multiply 3 y) : even → even → even

we need more than one assumption about multiply:

Γ = { ..., multiply : even → even → even,
 multiply : odd → even → even, ... }

Richer properties
This might be undesirable, and one alternative is
to enrich our properties instead; in this case we
could allow conjunction inside properties, so that
our single assumption about multiply looks like:

multiply : even → even → even ∧
 even → odd → even ∧
 odd → even → even ∧
 odd → odd → odd

We would need to modify the inference system
to handle these richer properties.

Summary

• Inference-based analysis is another useful
framework

• Inference rules are used to produce judgements
about programs and their properties

• Type systems are the best-known example

• Richer properties give more detailed information

• An inference system used for analysis has an
associated safety condition

	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short

