Lecture 12 Inference-based analysis

Motivation

In this part of the course we're examining several methods of higher-level program analysis.

We have so far seen *abstract interpretation* and *constraintbased analysis*, two general frameworks for formally specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.

Inference-based analysis

Inference systems consist of sets of rules for determining program properties.

Typically such a property of an entire program depends recursively upon the properties of the program's subexpressions; inference systems can directly express this relationship, and show how to recursively compute the property.

Inference-based analysis

An inference system specifies judgements:



- e is an expression (e.g. a complete program)
- Γ is a set of assumptions about free variables of e
- ϕ is a program property

Consider the ML type system, for example.

This particular inference system specifies judgements about a *well-typedness* property:

F *e : t*

means "under the assumptions in Γ , the expression e has type t".

We will avoid the more complicated ML typing issues (see Types course for details) and just consider the expressions in the lambda calculus:

$$e ::= x | \lambda x. e | e_1 e_2$$

Our program properties are types t:

$t ::= \alpha \mid int \mid t_1 \rightarrow t_2$

 Γ is a set of type assumptions of the form

$$\{x_1:t_1,...,x_n:t_n\}$$

where each identifier x_i is assumed to have type t_i .

We write $\Gamma[x:t]$

to mean Γ with the additional assumption that x has type t (overriding any other assumption about x).

In all inference systems, we use a set of *rules* to inductively define which judgements are valid.

In a type system, these are the typing rules.

$$\frac{1}{\Gamma[x:t] \vdash x:t} \quad (\text{VAR})$$

$$\frac{\Gamma[x:t] \vdash e:t'}{\Gamma \vdash \lambda x.e:t \to t'} \quad (LAM)$$

$$\frac{\Gamma \vdash e_1 : t \to t' \quad \Gamma \vdash e_2 : t}{\Gamma \vdash e_1 e_2 : t'} \quad (APP)$$

 $\Gamma = \{ 2 : int, add : int \rightarrow int \rightarrow int, multiply : int \rightarrow int \rightarrow int \}$ $e = \lambda x. \lambda y. add (multiply 2 x) y$ $t = int \rightarrow int \rightarrow int$

 $\begin{array}{c|c} \hline \Gamma[x:int][y:int] \vdash add:int \rightarrow int & \hline \Gamma[x:int][y:int] \vdash multiply \ 2 \ x:int} \\ \hline \hline \Gamma[x:int][y:int] \vdash add \ (multiply \ 2 \ x):int \rightarrow int & \hline \Gamma[x:int][y:int] \vdash y:int \\ \hline \hline \Gamma[x:int][y:int] \vdash add \ (multiply \ 2 \ x) \ y:int \\ \hline \hline \Gamma[x:int] \vdash \lambda y. \ add \ (multiply \ 2 \ x) \ y:int \rightarrow int \\ \hline \hline \Gamma \vdash \lambda x. \ \lambda y. \ add \ (multiply \ 2 \ x) \ y:int \rightarrow int \\ \hline \end{array}$

Optimisation

In the absence of a compile-time type checker, all values must be tagged with their types and run-time checks must be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed, execution can proceed safely without these tags and checks; if necessary, the final result of evaluation can be tagged with its inferred type.

Hence the final result of evaluation is identical, but less run-time computation is required to produce it.

Safety

The safety condition for this inference system is

$$(\{\} \vdash e : t) \Rightarrow (\llbracket e \rrbracket \in \llbracket t \rrbracket)$$

where [[e]] and [[t]] are the *denotations* of e and t respectively: [[e]] is the value obtained by evaluating e, and [[t]] is the set of all values of type t.

This condition asserts that the run-time behaviour of the program will agree with the type system's prediction.

Type-checking is just one application of inference-based program analysis.

The properties do not have to be types; in particular, they can carry more (or completely different!) information than traditional types do.

We'll consider a more program-analysis–related example: detecting odd and even numbers.

This time, the program property ϕ has the form $\phi := odd | even | \phi_1 \rightarrow \phi_2$

$$\frac{1}{\Gamma[x:\phi] \vdash x:\phi} \quad \text{(VAR)}$$

$$\frac{\Gamma[x:\phi] \vdash e:\phi'}{\Gamma \vdash \lambda x.e:\phi \to \phi'} \quad (LAM)$$

$$\frac{\Gamma \vdash e_1 : \phi \to \phi' \quad \Gamma \vdash e_2 : \phi}{\Gamma \vdash e_1 e_2 : \phi'} \quad (APP)$$

 $\Gamma = \{ 2 : even, add : even \rightarrow even \rightarrow even,$ $multiply : even \rightarrow odd \rightarrow even \}$ $e = \lambda x. \lambda y. add (multiply 2 x) y$ $<math display="block">\Phi = odd \rightarrow even \rightarrow even$

Safety

The safety condition for this inference system is

$$(\{\} \vdash e : \phi) \Rightarrow (\llbracket e \rrbracket \in \llbracket \phi \rrbracket)$$

where $\llbracket \phi \rrbracket$ is the denotation of ϕ : $\llbracket odd \rrbracket = \{ z \in \mathbb{Z} \mid z \text{ is odd } \},$ $\llbracket even \rrbracket = \{ z \in \mathbb{Z} \mid z \text{ is even } \},$ $\llbracket \phi_1 \rightarrow \phi_2 \rrbracket = \llbracket \phi_1 \rrbracket \rightarrow \llbracket \phi_2 \rrbracket$

Richer properties

Note that if we want to show a judgement like

 $\Gamma \vdash \lambda x. \lambda y. add (multiply 2 x) (multiply 3 y) : even \rightarrow even \rightarrow even$

we need more than one assumption about multiply:

$$\Gamma = \{ ..., multiply : even \rightarrow even \rightarrow even, \\ multiply : odd \rightarrow even \rightarrow even, ... \}$$

Richer properties

This might be undesirable, and one alternative is to enrich our properties instead; in this case we could allow *conjunction* inside properties, so that our single assumption about *multiply* looks like:

multiply : even
$$\rightarrow$$
 even \rightarrow even \land
even \rightarrow odd \rightarrow even \land
odd \rightarrow even \rightarrow even \land
odd \rightarrow odd \rightarrow odd

We would need to modify the inference system to handle these richer properties.

Summary

- Inference-based analysis is another useful framework
- Inference rules are used to produce judgements about programs and their properties
- Type systems are the best-known example
- Richer properties give more detailed information
- An inference system used for analysis has an associated safety condition