
Lecture 10
Strictness analysis



Motivation
The operations and control structures of imperative 
languages are strongly influenced by the way most 

real computer hardware works.

This makes imperative languages relatively easy to 
compile, but (arguably) less expressive; many people 

use functional languages, but these are harder to 
compile into efficient imperative machine code.

Strictness optimisation can help to improve the 
efficiency of compiled functional code.



Call-by-value evaluation

e2 ⇓ v2 e1[v2/x] ⇓ v1

(λx.e1) e2 ⇓ v1

Strict (“eager”) functional languages (e.g. ML) 
use a call-by-value evaluation strategy:

• Efficient in space and time, but

• might evaluate more arguments than necessary.



Call-by-name evaluation

e1[e2/x] ⇓ v

(λx.e1) e2 ⇓ v

Non-strict (“lazy”) functional languages (e.g. Haskell) 
use a call-by-name evaluation strategy:

• Only evaluates arguments when necessary, but

• copies (and redundantly re-evaluates) arguments.



Call-by-need evaluation

One simple optimisation is to use call-by-need 
evaluation instead of call-by-name.

If the language has no side-effects, duplicated 
instances of an argument can be shared, evaluated 
once if required, and the resulting value reused.

This avoids recomputation and is better than call-by-
name, but is still more expensive than call-by-value.



Call-by-need evaluation

Using call-by-value:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ↦ if 3=0 then 4 else plus(3-1,4+1) 
↦ plus(2,5) 
↦ plus(1,6) 
↦ plus(0,7) 
↦ 7



Call-by-need evaluation

Using call-by-need:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ↦ if 3=0 then 4 else plus(3-1,4+1) 
↦ plus(3-1,4+1) 
↦ plus(2-1,4+1+1) 
↦ plus(1-1,4+1+1+1) 
↦ 4+1+1+1 
↦ 5+1+1 
↦ 6+1 
↦ 7



Replacing CBN with CBV

So why not just replace call-by-name with call-by-value?

Because, while replacing call-by-name with call-by-need 
never changes the semantics of the original program (in 
the absence of side-effects), replacing CBN with CBV 

does.

In particular, the program’s termination behaviour changes.



Replacing CBN with CBV
Assume we have some nonterminating expression, Ω.

• Using CBN, the expression (λx. 42) Ω will 
evaluate to 42.

• But using CBV, evaluation of (λx. 42) Ω will 
not terminate: Ω gets evaluated first, even 
though its value is not needed here.

We should therefore try to use call-by-value wherever 
possible, but not when it will affect the termination 

behaviour of a program.



Neededness

Intuitively, it will be safe to use CBV in place of CBN 
whenever an argument is definitely going to be evaluated.

We say that an argument is needed by a function if the 
function will always evaluate it.

• λx,y. x+y needs both its arguments.

• λx,y. x+1 needs only its first argument.

• λx,y. 42 needs neither of its arguments.



Neededness

These needed arguments can safely be passed by value: 
if their evaluation causes nontermination, this will just 

happen sooner rather than later.



Neededness
In fact, neededness is too conservative:

λx,y,z. if x then y else Ω
This function might not evaluate y, so only x is needed.

But actually it’s still safe to pass y by value: if y doesn’t 
get evaluated then the function doesn’t terminate 
anyway, so it doesn’t matter if eagerly evaluating y 

causes nontermination.



Strictness
What we really want is a more refined notion:

It is safe to pass an argument by value when 
the function fails to terminate whenever the 

argument fails to terminate.

When this more general statement holds, we 
say the function is strict in that argument.

λx,y,z. if x then y else Ω
is strict in x and strict in y.



Strictness

If we can develop an analysis that discovers which 
functions are strict in which arguments, we can 
use that information to selectively replace CBN 
with CBV and obtain a more efficient program.



Strictness analysis

We can perform strictness analysis by 
abstract interpretation.

First, we must define a concrete world of 
programs and values.

We will use the simple language of recursion 
equations, and only consider integer values.



Recursion equations

F1(x1, . . . , xk1
) = e1

· · · = · · ·

Fn(x1, . . . , xkn
) = en

e ::= xi | Ai(e1, . . . , eri
) | Fi(e1, . . . eki

)

where each Ai is a symbol representing a built-in 
(predefined) function of arity ri.



Recursion equations
For our earlier example,

plus(x,y) = if x=0 then y else plus(x-1,y+1)

we can write the recursion equation

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

where cond, eq, 0, sub1 and add1 are built-in functions.



Standard interpretation

We must have some representation of 
nontermination in our concrete domain.

As values we will consider the integer results of 
terminating computations, ℤ, and a single extra value 

to represent nonterminating computations: ⊥.

Our concrete domain D is therefore ℤ⊥ = ℤ ∪ { ⊥ }.



Standard interpretation
Each built-in function needs a standard interpretation.

We will interpret each Ai as a function ai on values in D:

cond(⊥, x, y) = ⊥

cond(0, x, y) = y

cond(p, x, y) = x otherwise

eq(⊥, y) = ⊥

eq(x,⊥) = ⊥

eq(x, y) = x =Z y otherwise



Standard interpretation

The standard interpretation fi of a user-defined function Fi 
is constructed from the built-in functions by composition 

and recursion according to its defining equation. 

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))



Abstract interpretation

Our abstraction must capture the properties we’re 
interested in, while discarding enough detail to make 

analysis computationally feasible.

Strictness is all about termination behaviour, and in 
fact this is all we care about: does evaluation of an 
expression definitely not terminate (as with Ω), or 
may it eventually terminate and return a result?

Our abstract domain D# is therefore { 0, 1 }.



Abstract interpretation

For each built-in function Ai we need a corresponding 
strictness function ai# — this provides the strictness 

interpretation for Ai.

Whereas the standard interpretation of each built-in is 
a function on concrete values from D, the strictness 
interpretation of each will be a function on abstract 

values from D# (i.e. 0 and 1).



Abstract interpretation

A formal relationship exists between the standard and 
abstract interpretations of each built-in function; the 

mathematical details are in the lecture notes.

Informally, we use the same technique as for 
multiplication and addition of integers in the last lecture: 
we define the abstract operations using what we know 

about the behaviour of the concrete operations.



Abstract interpretation

x y eq#(x,y)

0 0 0

0 1 0

1 0 0

1 1 1



Abstract interpretation
p x y cond#(p,x,y)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1



Abstract interpretation

These functions may be expressed more compactly as 
boolean expressions, treating 0 and 1 from D# as false 

and true respectively.

We can use Karnaugh maps (from IA DigElec) to turn 
each truth table into a simple boolean expression.



Abstract interpretation

cond# 0, 0 0, 1 1, 1 1, 0

0 0 0 0 0

1 0 1 1 1

x, y

p

p ∧ y p ∧ x
cond#(p, x, y) = (p ∧ y) ∨ (p ∧ x)



x ∧ y

Abstract interpretation

eq#(x, y) = x ∧ y

eq# 0 1

0 0 0

1 0 1
x

y



Strictness analysis

So far, we have set up

• a concrete domain, D, equipped with

• a standard interpretation ai of each built-in Ai, and

• a standard interpretation fi of each user-defined Fi;

• and an abstract domain, D#, equipped with

• an abstract interpretation ai# of each built-in Ai.



Strictness analysis

The point of this analysis is to discover the 
missing piece: what is the strictness function fi# 

corresponding to each user-defined Fi?

These strictness functions will show us exactly 
how each Fi is strict with respect to each of its 

arguments — and that’s the information that tells 
us where we can replace lazy, CBN-style 

parameter passing with eager CBV.



Strictness analysis

But recall that the recursion equations show us how 
to build up each user-defined function, by composition 

and recursion, from all the built-in functions:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

So we can build up the fi# from the ai# in the same way:

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))



Strictness analysis

We already know all the other strictness functions:

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

cond ♯(p, x, y) = p ∧ (x ∨ y)

eq♯(x, y) = x ∧ y

0♯ = 1

sub1 ♯(x) = x

add1 ♯(x) = x

So we can use these to simplify the expression for plus#.



Strictness analysis

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))



Strictness analysis

plus♯(x, y) = x ∧ (y ∨ plus♯(x, y))

This is a recursive definition, and so unfortunately 
doesn’t provide us with the strictness function directly.

We want a definition of plus# which satisfies this 
equation — actually we want the least fixed point of this 
equation, which (as ever!) we can compute iteratively.



Algorithm

for i = 1 to n do f#[i] := λx.0
while (f#[] changes) do
  for i = 1 to n do
    f#[i] := λx.ei#

ei# means “ei (from the recursion equations) with each Aj 
replaced with aj# and each Fj replaced with f#[j]”.



Algorithm

We have only one user-defined function, plus, and so 
only one recursion equation:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

We initialise the corresponding element of our f#[] 
array to contain the always-0 strictness function of 

the appropriate arity:

f#[1] := λx,y. 0



Algorithm

On the first iteration, we calculate e1#:

• The recursion equations say                                 
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is λx,y. 0

• So:

e1# = cond#(eq#(x, 0#), y, (λx,y. 0) (sub1#(x), add1#(y)))



Algorithm
e1# = cond#(eq#(x, 0#), y, (λx,y. 0) (sub1#(x), add1#(y)))

e1# = cond#(eq#(x, 0#), y, 0)
Simplifying:

Using definitions of cond#, eq# and 0#:
e1# = (x ∧ 1) ∧ (y ∨ 0)

Simplifying again:
e1# = x ∧ y



Algorithm

So, at the end of the first iteration,

f#[1] := λx,y. x ∧ y



Algorithm

On the second iteration, we recalculate e1#:

• The recursion equations still say                                 
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is λx,y. x ∧ y

• So:

e1# = cond#(eq#(x, 0#), y, (λx,y. x ∧ y) (sub1#(x), add1#(y)))



Algorithm
e1# = cond#(eq#(x, 0#), y, (λx,y. x ∧ y) (sub1#(x), add1#(y)))

e1# = cond#(eq#(x, 0#), y, sub1#(x) ∧ add1#(y))
Simplifying:

Using definitions of cond#, eq#, 0#, sub1# and add1#:
e1# = (x ∧ 1) ∧ (y ∨ (x ∧ y))

Simplifying again:
e1# = x ∧ y



Algorithm

So, at the end of the second iteration,

f#[1] := λx,y. x ∧ y

This is the same result as last time, so we stop.



Algorithm

plus#(x, y) = x ∧ y



Optimisation

So now, finally, we can see that

plus#(1, 0) = 1 ∧ 0 = 0

plus#(0, 1) = 0 ∧ 1 = 0

and

which means our concrete plus function is strict in 
its first argument and strict in its second argument: 
we may always safely use CBV when passing either.



Summary
• Functional languages can use CBV or CBN 

evaluation

• CBV is more efficient but can only be used in place 
of CBN if termination behaviour is unaffected

• Strictness shows dependencies of termination

• Abstract interpretation may be used to perform 
strictness analysis of user-defined functions

• The resulting strictness functions tell us when it is 
safe to use CBV in place of CBN
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