
Lecture 5
Data-flow anomalies

and clash graphs

Motivation

Both human- and computer-generated programs
sometimes contain data-flow anomalies.

These anomalies result in the program being
worse, in some sense, than it was intended to be.

Data-flow analysis is useful in locating, and
sometimes correcting, these code anomalies.

Optimisation vs. debugging

Data-flow anomalies may manifest themselves in
different ways: some may actually “break” the program
(make it crash or exhibit undefined behaviour), others
may just make the program “worse” (make it larger or

slower than necessary).

Any compiler needs to be able to report when a
program is broken (i.e. “compiler warnings”), so the
identification of data-flow anomalies has applications

in both optimisation and bug elimination.

Dead code

Dead code is a simple example of a data-flow
anomaly, and LVA allows us to identify it.

Recall that code is dead when its result goes
unused; if the variable x is not live on exit

from an instruction which assigns some value
to x, then the whole instruction is dead.

{ a, b, z }

Dead code
⋮

a = x + 11;

b = y + 13;

c = a * b;

⋮

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

c DEAD

⋮

{ }

Dead code

For this kind of anomaly, an automatic remedy is not
only feasible but also straightforward: dead code with

no live side effects is useless and may be removed.

{ a, b, z }

Dead code
⋮

a = x + 11;

b = y + 13;

c = a * b;

⋮

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

Successive iterations may yield further improvements.

{ a, y, z }{ y, z }

⋮

{ }

Dead code

The program resulting from this transformation
will remain correct and will be both smaller and
faster than before (cf. just smaller in unreachable

code elimination), and no programmer
intervention is required.

Uninitialised variables

In some languages, for example C and our 3-address
intermediate code, it is syntactically legitimate for a

program to read from a variable before it has
definitely been initialised with a value.

If this situation occurs during execution, the effect of
the read is usually undefined and depends upon

unpredictable details of implementation and
environment.

Uninitialised variables

This kind of behaviour is often undesirable, so we
would like a compiler to be able to detect and warn

of the situation.

Happily, the liveness information collected by LVA
allows a compiler to see easily when a read from an

undefined variable is possible.

Uninitialised variables

In a “healthy” program, variable liveness produced by
later instructions is consumed by earlier ones; if an
instruction demands the value of a variable (hence

making it live), it is expected that an earlier instruction
will define that variable (hence making it dead again).

x = 11;

y = 13;

z = 17;

⋮

print x;

print y;

{ }{ }

⋮
{ x, y }

Uninitialised variables

{ y }

{ x, y }

{ x }

{ x, y }

{ }

✓

Uninitialised variables

If any variables are still live at the beginning of a
program, they represent uses which are potentially
unmatched by corresponding definitions, and hence
indicate a program with potentially undefined (and

therefore incorrect) behaviour.

x = 11;

y = 13;

⋮

print x;

print y;

print z;

{ z }{ z }

{ x, y, z }

Uninitialised variables

{ z }

{ x, y, z }

{ x, z }

{ y, z }

z LIVE

{ }

⋮✗

Uninitialised variables

In this situation, the compiler can issue a warning:
“variable z may be used before it is initialised”.

However, because LVA computes a safe (syntactic)
overapproximation of variable liveness, some of these

compiler warnings may be (semantically) spurious.

{ } ∪ { x }{ x }{ x }

{ x } ∪ { }

Uninitialised variables

{ x }
⋮

if (p) {

 x = 42;

}

⋮

if (p) {

 print x;

}

{ }

{ }

{ x }

{ x }

{ x }

{ }

x LIVE

✗
Note:
intentionally
ignoring p!

Uninitialised variables

Here the analysis is being too safe, and the warning is
unnecessary, but this imprecision is the nature of our

computable approximation to semantic liveness.

So the compiler must either risk giving unnecessary
warnings about correct code (“false positives”) or
failing to give warnings about incorrect code (“false

negatives”). Which is worse?

Opinions differ.

Uninitialised variables

Although dead code may easily be remedied by the
compiler, it’s not generally possible to automatically

fix the problem of uninitialised variables.

As just demonstrated, even the decision as to
whether a warning indicates a genuine problem

must often be made by the programmer, who must
also fix any such problems by hand.

Uninitialised variables

Note that higher-level languages have the concept of
(possibly nested) scope, and our expectations for
variable initialisation in“healthy” programs can be

extended to these.

In general we expect the set of live variables at the
beginning of any scope to not contain any of the

variables local to that scope.

int x = 5;
int y = 7;
if (p) {
 int z;
 ⋮
 print z;
}
print x+y;

{ x, y, z }{ x, y, z }

Uninitialised variables

✗ z LIVE

Write-write anomalies
While LVA is useful in these cases, some similar data-flow
anomalies can only be spotted with a different analysis.

Write-write anomalies are an example of this. They occur
when a variable may be written twice with no intervening
read; the first write may then be considered unnecessary

in some sense.

x = 11;
x = 13;
print x;

Write-write anomalies

A simple data-flow analysis can be used to track
which variables may have been written but not

yet read at each node.

In a sense, this involves doing LVA in reverse (i.e.
forwards!): at each node we should remove all

variables which are referenced, then add all
variables which are defined.

Write-write anomalies

in-wnr(n) =
⋃

p∈pred(n)

out-wnr(p)

out-wnr(n) =
(

in-wnr(n) \ ref (n)
)

∪ def (n)

wnr(n) =
⋃

p∈pred(n)

(

(wnr(p) \ ref (p)) ∪ def (p)
)

x = 11;

y = 13;

z = 17;

⋮

print x;

y = 19;

⋮

{ }

⋮
{ x, y, z }

Write-write anomalies

{ y, z }

{ x, y }

{ x }

{ x, y, z }

{ y, z }
⋮

{ y, z }

y is also
dead here. y

y is rewritten
here without
ever having
been read.

Write-write anomalies

But, although the second write to a variable
may turn an earlier write into dead code, the
presence of a write-write anomaly doesn’t
necessarily mean that a variable is dead —

hence the need for a different analysis.

Write-write anomalies

x = 11;
if (p) {
 x = 13;
}
print x;

x is live throughout this code, but if p is true during
execution, x will be written twice before it is read.
In most cases, the programmer can remedy this.

Write-write anomalies

if (p) {
 x = 13;
} else {
 x = 11;
}
print x;

This code does the same job, but avoids writing to x
twice in succession on any control-flow path.

if (p) {
 x = 13;
}
if (!p) {
 x = 11;
}
print x;

Write-write anomalies

Again, the analysis may be too approximate to notice
that a particular write-write anomaly may never occur
during any execution, so warnings may be inaccurate.

Write-write anomalies

As with uninitialised variable anomalies, the
programmer must be relied upon to investigate

the compiler’s warnings and fix any genuine
problems which they indicate.

Clash graphs

The ability to detect data-flow anomalies is a
nice compiler feature, but LVA’s main utility is in
deriving a data structure known as a clash graph

(aka interference graph).

Clash graphs

When generating intermediate code it is
convenient to simply invent as many variables as
necessary to hold the results of computations;

the extreme of this is “normal form”, in which a
new temporary variable is used on each occasion

that one is required, with none being reused.

Clash graphs

x = (a*b) + c;
y = (a*b) + d;

MUL t1,a,b
ADD x,t1,c
MUL t2,a,b
ADD y,t2,d

lex, parse, translate

Clash graphs

This makes generating 3-address code as straightforward
as possible, and assumes an imaginary target machine
with an unlimited supply of “virtual registers”, one to
hold each variable (and temporary) in the program.

Such a naïve strategy is obviously wasteful, however, and
won’t generate good code for a real target machine.

Clash graphs

Before we can work on improving the situation, we
must collect information about which variables actually
need to be allocated to different registers on the target
machine, as opposed to having been incidentally placed

in different registers by our translation to normal form.

LVA is useful here because it can tell us which variables
are simultaneously live, and hence must be kept in

separate virtual registers for later retrieval.

Clash graphs

x = 11;
y = 13;
z = (x+y) * 2;
a = 17;
b = 19;
z = z + (a*b);

Clash graphs

MOV x,#11 { }
MOV y,#13 { x }
ADD t1,x,y { x, y }
MUL z,t1,#2 { t1 }
MOV a,#17 { z }
MOV b,#19 { a, z }
MUL t2,a,b { a, b, z }
ADD z,z,t2 { t2, z }

Clash graphs

 { }
 { x }
 { x, y }
 { t1 }
 { z }
 { a, z }
 { a, b, z }
 { t2, z }

In a program’s clash graph there is
one vertex for each virtual register
and an edge between vertices when

their two registers are ever
simultaneously live.

 { }
 { x }
 { x, y }
 { t1 }
 { z }
 { a, z }
 { a, b, z }
 { t2, z }

Clash graphs

x y t1

ba

z

t2

This graph shows us,
for example, that a, b
and z must all be kept
in separate registers,

but that we may reuse
those registers for the

other variables.

Clash graphs

z

x y t1

t2

x y t1

t2 ba

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV a,#11
MOV b,#13
ADD a ,a,b
MUL z,a ,#2
MOV a,#17
MOV b,#19
MUL a ,a,b
ADD z,z,a

Summary

• Data-flow analysis is helpful in locating (and
sometimes correcting) data-flow anomalies

• LVA allows us to identify dead code and possible
uses of uninitialised variables

• Write-write anomalies can be identified with a
similar analysis

• Imprecision may lead to overzealous warnings

• LVA allows us to construct a clash graph

	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short

