
Lecture 5
Data-flow anomalies 

and clash graphs



Motivation

Both human- and computer-generated programs 
sometimes contain data-flow anomalies.

These anomalies result in the program being 
worse, in some sense, than it was intended to be.

Data-flow analysis is useful in locating, and 
sometimes correcting, these code anomalies.



Optimisation vs. debugging

Data-flow anomalies may manifest themselves in 
different ways: some may actually “break” the program 
(make it crash or exhibit undefined behaviour), others 
may just make the program “worse” (make it larger or 

slower than necessary).

Any compiler needs to be able to report when a 
program is broken (i.e. “compiler warnings”), so the 
identification of data-flow anomalies has applications 

in both optimisation and bug elimination.



Dead code

Dead code is a simple example of a data-flow 
anomaly, and LVA allows us to identify it.

Recall that code is dead when its result goes 
unused; if the variable x is not live on exit 

from an instruction which assigns some value 
to x, then the whole instruction is dead.



{ a, b, z }

Dead code
⋮ 

a = x + 11; 

b = y + 13; 

c = a * b; 

⋮ 

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

c DEAD

⋮

{ }



Dead code

For this kind of anomaly, an automatic remedy is not 
only feasible but also straightforward: dead code with 

no live side effects is useless and may be removed.



{ a, b, z }

Dead code
⋮ 

a = x + 11; 

b = y + 13; 

c = a * b; 

⋮ 

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

Successive iterations may yield further improvements.

{ a, y, z }{ y, z }

⋮

{ }



Dead code

The program resulting from this transformation 
will remain correct and will be both smaller and 
faster than before (cf. just smaller in unreachable 

code elimination), and no programmer 
intervention is required.



Uninitialised variables

In some languages, for example C and our 3-address 
intermediate code, it is syntactically legitimate for a 

program to read from a variable before it has 
definitely been initialised with a value.

If this situation occurs during execution, the effect of 
the read is usually undefined and depends upon 

unpredictable details of implementation and 
environment.



Uninitialised variables

This kind of behaviour is often undesirable, so we 
would like a compiler to be able to detect and warn 

of the situation.

Happily, the liveness information collected by LVA 
allows a compiler to see easily when a read from an 

undefined variable is possible.



Uninitialised variables

In a “healthy” program, variable liveness produced by 
later instructions is consumed by earlier ones; if an 
instruction demands the value of a variable (hence 

making it live), it is expected that an earlier instruction 
will define that variable (hence making it dead again).



x = 11; 

y = 13; 

z = 17; 

⋮ 

print x; 

print y;

{ }{ }

⋮
{ x, y }

Uninitialised variables

{ y }

{ x, y }

{ x }

{ x, y }

{ }

✓



Uninitialised variables

If any variables are still live at the beginning of a 
program, they represent uses which are potentially 
unmatched by corresponding definitions, and hence 
indicate a program with potentially undefined (and 

therefore incorrect) behaviour.



x = 11; 

y = 13; 

⋮ 

print x; 

print y; 

print z;

{ z }{ z }

{ x, y, z }

Uninitialised variables

{ z }

{ x, y, z }

{ x, z }

{ y, z }

z LIVE

{ }

⋮✗



Uninitialised variables

In this situation, the compiler can issue a warning: 
“variable z may be used before it is initialised”.

However, because LVA computes a safe (syntactic) 
overapproximation of variable liveness, some of these 

compiler warnings may be (semantically) spurious.



{ } ∪ { x }{ x }{ x }

{ x } ∪ { }

Uninitialised variables

{ x }
⋮

if (p) { 

  x = 42; 

} 

⋮ 

if (p) { 

  print x; 

}

{ }

{ }

{ x }

{ x }

{ x }

{ }

x LIVE

✗
Note: 
intentionally 
ignoring p!



Uninitialised variables

Here the analysis is being too safe, and the warning is 
unnecessary, but this imprecision is the nature of our 

computable approximation to semantic liveness.

So the compiler must either risk giving unnecessary 
warnings about correct code (“false positives”) or 
failing to give warnings about incorrect code (“false 

negatives”). Which is worse?

Opinions differ.



Uninitialised variables

Although dead code may easily be remedied by the 
compiler, it’s not generally possible to automatically 

fix the problem of uninitialised variables.

As just demonstrated, even the decision as to 
whether a warning indicates a genuine problem 

must often be made by the programmer, who must 
also fix any such problems by hand.



Uninitialised variables

Note that higher-level languages have the concept of 
(possibly nested) scope, and our expectations for 
variable initialisation in“healthy” programs can be 

extended to these.

In general we expect the set of live variables at the 
beginning of any scope to not contain any of the 

variables local to that scope.



int x = 5; 
int y = 7; 
if (p) { 
  int z; 
  ⋮ 
  print z; 
} 
print x+y;

{ x, y, z }{ x, y, z }

Uninitialised variables

✗ z LIVE



Write-write anomalies
While LVA is useful in these cases, some similar data-flow 
anomalies can only be spotted with a different analysis.

Write-write anomalies are an example of this. They occur 
when a variable may be written twice with no intervening 
read; the first write may then be considered unnecessary 

in some sense.

x = 11; 
x = 13; 
print x;



Write-write anomalies

A simple data-flow analysis can be used to track 
which variables may have been written but not 

yet read at each node.

In a sense, this involves doing LVA in reverse (i.e. 
forwards!): at each node we should remove all 

variables which are referenced, then add all 
variables which are defined.



Write-write anomalies

in-wnr(n) =
⋃

p∈pred(n)

out-wnr(p)

out-wnr(n) =
(

in-wnr(n) \ ref (n)
)

∪ def (n)

wnr(n) =
⋃

p∈pred(n)

(

(wnr(p) \ ref (p)) ∪ def (p)
)



x = 11; 

y = 13; 

z = 17; 

⋮ 

print x; 

y = 19; 

⋮

{ }

⋮
{ x, y, z }

Write-write anomalies

{ y, z }

{ x, y }

{ x }

{ x, y, z }

{ y, z }
⋮

{ y, z }

y is also 
dead here. y

y is rewritten 
here without 
ever having 
been read.



Write-write anomalies

But, although the second write to a variable 
may turn an earlier write into dead code, the 
presence of a write-write anomaly doesn’t 
necessarily mean that a variable is dead — 

hence the need for a different analysis.



Write-write anomalies

x = 11; 
if (p) { 
  x = 13; 
} 
print x;

x is live throughout this code, but if p is true during 
execution, x will be written twice before it is read.
In most cases, the programmer can remedy this.



Write-write anomalies

if (p) { 
  x = 13; 
} else { 
  x = 11; 
} 
print x;

This code does the same job, but avoids writing to x 
twice in succession on any control-flow path.



if (p) { 
  x = 13; 
} 
if (!p) { 
  x = 11; 
} 
print x;

Write-write anomalies

Again, the analysis may be too approximate to notice 
that a particular write-write anomaly may never occur 
during any execution, so warnings may be inaccurate.



Write-write anomalies

As with uninitialised variable anomalies, the 
programmer must be relied upon to investigate 

the compiler’s warnings and fix any genuine 
problems which they indicate.



Clash graphs

The ability to detect data-flow anomalies is a 
nice compiler feature, but LVA’s main utility is in 
deriving a data structure known as a clash graph 

(aka interference graph).



Clash graphs

When generating intermediate code it is 
convenient to simply invent as many variables as 
necessary to hold the results of computations; 

the extreme of this is “normal form”, in which a 
new temporary variable is used on each occasion 

that one is required, with none being reused.



Clash graphs

x = (a*b) + c; 
y = (a*b) + d;

MUL t1,a,b 
ADD x,t1,c 
MUL t2,a,b 
ADD y,t2,d

lex, parse, translate



Clash graphs

This makes generating 3-address code as straightforward 
as possible, and assumes an imaginary target machine 
with an unlimited supply of “virtual registers”, one to 
hold each variable (and temporary) in the program.

Such a naïve strategy is obviously wasteful, however, and 
won’t generate good code for a real target machine.



Clash graphs

Before we can work on improving the situation, we 
must collect information about which variables actually 
need to be allocated to different registers on the target 
machine, as opposed to having been incidentally placed 

in different registers by our translation to normal form.

LVA is useful here because it can tell us which variables 
are simultaneously live, and hence must be kept in 

separate virtual registers for later retrieval.



Clash graphs

x = 11; 
y = 13; 
z = (x+y) * 2; 
a = 17; 
b = 19; 
z = z + (a*b);



Clash graphs

MOV x,#11    { } 
MOV y,#13    { x } 
ADD t1,x,y   { x, y } 
MUL z,t1,#2  { t1 } 
MOV a,#17    { z } 
MOV b,#19    { a, z } 
MUL t2,a,b   { a, b, z } 
ADD z,z,t2   { t2, z }



Clash graphs

             { } 
             { x } 
             { x, y } 
             { t1 } 
             { z } 
             { a, z } 
             { a, b, z } 
             { t2, z }

In a program’s clash graph there is 
one vertex for each virtual register 
and an edge between vertices when 

their two registers are ever 
simultaneously live.



             { } 
             { x } 
             { x, y } 
             { t1 } 
             { z } 
             { a, z } 
             { a, b, z } 
             { t2, z }

Clash graphs

x y t1

ba

z

t2



This graph shows us, 
for example, that a, b 
and z must all be kept 
in separate registers, 

but that we may reuse 
those registers for the 

other variables.

Clash graphs

z

x y t1

t2

x y t1

t2 ba

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV a,#11 
MOV b,#13 
ADD a ,a,b 
MUL z,a ,#2 
MOV a,#17 
MOV b,#19 
MUL a ,a,b 
ADD z,z,a



Summary

• Data-flow analysis is helpful in locating (and 
sometimes correcting) data-flow anomalies

• LVA allows us to identify dead code and possible 
uses of uninitialised variables

• Write-write anomalies can be identified with a 
similar analysis

• Imprecision may lead to overzealous warnings

• LVA allows us to construct a clash graph
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