
Lecture 4
Available expression 

analysis



Motivation

Programs may contain code whose result is 
needed, but in which some computation is 

simply a redundant repetition of earlier 
computation within the same program.

The concept of expression availability is useful 
in dealing with this situation. 



Expressions

Any given program contains a finite number of expressions 
(i.e. computations which potentially produce values),

so we may talk about the set of all expressions of a program.

int z = x * y; 
print s + t; 
int w = u / v; 
⋮

program contains expressions { x*y, s+t, u/v, ... }



Availability

Availability is a data-flow property of expressions: 
“Has the value of this expression already been computed?”

  ⋮  
  int z = x * y; 
}

? ??



Availability
At each instruction, each expression in the program

is either available or unavailable.

We therefore usually consider availability from an 
instruction’s perspective: each instruction (or node of the 
flowgraph) has an associated set of available expressions.

n: avail(n) = { x*y, s+t }

int z = x * y; 
print s + t; 
int w = u / v; 
⋮



Availability

So far, this is all familiar from live variable analysis.

Note that, while expression availability and variable 
liveness share many similarities (both are simple data-flow 

properties), they do differ in important ways.

By working through the low-level details of the availability 
property and its associated analysis we can see where the 

differences lie and get a feel for the capabilities of the 
general data-flow analysis framework.



Semantic vs. syntactic
For example, availability differs from earlier 

examples in a subtle but important way: we want 
to know which expressions are definitely available 

(i.e. have already been computed) at an instruction, 
not which ones may be available.

As before, we should consider the distinction 
between semantic and syntactic (or, alternatively, 

dynamic and static) availability of expressions, and 
the details of the approximation which we hope to 

discover by analysis.



int x = y * z; 
⋮ 
return y * z; 

Semantic vs. syntactic

An expression is semantically available at a node n if its 
value gets computed (and not subsequently invalidated) 

along every execution sequence ending at n.

y*z AVAILABLE



int x = y * z; 
⋮ 
y = a + b; 
⋮ 
return y * z; y*z UNAVAILABLE

Semantic vs. syntactic

An expression is semantically available at a node n if its 
value gets computed (and not subsequently invalidated) 

along every execution sequence ending at n.



An expression is syntactically available at a node n 
if its value gets computed (and not subsequently 
invalidated) along every path from the entry of 

the flowgraph to n. 

As before, semantic availability is concerned with 
the execution behaviour of the program, whereas 

syntactic availability is concerned with the 
program’s syntactic structure.

And, as expected, only the latter is decidable.

Semantic vs. syntactic



if ((x+1)*(x+1) == y) { 
  s = x + y; 
} 
if (x*x + 2*x + 1 != y) { 
  t = x + y; 
} 
return x + y;

Semantic vs. syntactic

Semantically: one of the conditions will be true, so on 
every execution path x+y is computed twice.

The recomputation of x+y is redundant.

x+y AVAILABLE



      ADD t32,x,#1 
      MUL t33,t32,t32 
      CMPNE t33,y,lab1 
      ADD s,x,y 
lab1: MUL t34,x,x 
      MUL t35,x,#2 
      ADD t36,t34,t35 
      ADD t37,t36,#1 
      CMPEQ t37,y,lab2 
      ADD t,x,y 
lab2: ADD res1,x,y

Semantic vs. syntactic



ADD s,x,y

ADD t,x,y

ADD s,x,y

ADD t,x,y

Semantic vs. syntactic
ADD t32,x,#1 
MUL t33,t32,t32 
CMPNE t33,y

MUL t34,x,x 
MUL t35,x,#2 
ADD t36,t34,t35 
ADD t37,t36,#1 
CMPEQ t37,y

ADD res1,x,y

On this path through the 
flowgraph, x+y is only 

computed once, so x+y 
is syntactically unavailable 
at the last instruction.

Note that this path never 
actually occurs during 

execution.

x+y UNAVAILABLE

x,y



Semantic vs. syntactic

If an expression is deemed to be available, we 
may do something dangerous (e.g. remove an 

instruction which recomputes its value).

Whereas with live variable analysis we found 
safety in assuming that more variables were live, 

here we find safety in assuming that fewer 
expressions are available.



Semantic vs. syntactic

program expressions

semantically
available at n

semantically
unavailable at n



Semantic vs. syntactic

syntactically available at n

imprecision



sem-avail(n) ⊇ syn-avail(n)

Semantic vs. syntactic

This time, we safely underestimate availability.

2 Live Variable Analysis—LVA

A variable x is semantically live at node n if there is some execution sequence starting at n
whose I/O behaviour can be a�ected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node
n� at which the current value of x may be used (i.e. a path from n to n� which contains no
definition of x and with n� containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */
if ((x+1)*(x+1) == y) t = 1;
if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⇥ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⌅.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

�

⇤
⇧

s⇥succ(n)

live(s)

⇥

⌅ \ def (n) ⇤ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ⇤ ref (n)
out-live(n) =

⇧

s⇥succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;
x = 1, y = 2, z = 3;
p = &y;
if (...) p = &y;
*p = 7;
if (...) p = &x;
t = *p;
print z+t;

8

(cf.                                      )



Warning

Danger: there is a standard presentation of 
available expression analysis (textbooks, notes 
for this course) which is formally satisfying but 

contains an easily-overlooked subtlety.

We’ll first look at an equivalent, more intuitive 
bottom-up presentation, then amend it slightly 
to match the version given in the literature.



Available expression analysis
Available expressions is a forwards data-flow analysis: 

information from past instructions must be propagated 
forwards through the program to discover which 

expressions are available.

  ⋮  
  int z = x * y; 
}

print x * y; if (x*y > 0)
t = x * y;



Available expression analysis

Unlike variable liveness, expression availability flows 
forwards through the program.

As in liveness, though, each instruction has an effect 
on the availability information as it flows past.



Available expression analysis

An instruction makes an expression available 
when it generates (computes) its current value.



e = f / g;

print a*b;

c = d + 1;

e = f / g;

print a*b;

c = d + 1;

{ a*b, d+1 }{ a*b, d+1, f/g }

{ a*b }{ a*b, d+1 }

Available expression analysis
{ }

{ }

GENERATE a*b

GENERATE d+1

GENERATE f/g

{ a*b }



Available expression analysis

An instruction makes an expression unavailable 
when it kills (invalidates) its current value.



{ d/e, d-1 }{ }

{ c+1, d/e, d-1 }{ d/e, d-1 }

{ a*b, c+1, d/e, d-1 }{ c+1, d/e, d-1 }

d = 13;d = 13;

c = 11;c = 11;

a = 7;a = 7;

Available expression analysis
{ a*b, c+1, d/e, d-1 }

KILL a*b

KILL c+1

KILL d/e, d-1



Available expression analysis

As in LVA, we can devise functions gen(n) and kill(n) 
which give the sets of expressions generated and killed 

by the instruction at node n.

The situation is slightly more complicated this time: an 
assignment to a variable x kills all expressions in the 

program which contain occurrences of x. 



Available expression analysis

gen( print x+1 ) = { x+1 }gen( x = 3 ) = { }

So, in the following, Ex is the set of expressions in the 
program which contain occurrences of x.

kill( x = 3 ) = Ex kill( print x+1 ) = { }

gen( x = x + y ) = { x+y }

kill( x = x + y ) = Ex



Available expression analysis
As availability flows forwards past an instruction, we 

want to modify the availability information by adding any 
expressions which it generates (they become available) 

and removing any which it kills (they become unavailable).

kill( x = 3 ) = Exgen( print x+1 ) = { x+1 }

{ x+1, y+1 }

{ y+1 }

{ y+1 }

{ x+1, y+1 }



{ x+1, y+1 }{ x+1, x+y, y+1 }{ x+1, x+y, y+1 }{ y+1 }

gen( x = x + y ) = { x+y }

Available expression analysis

If an instruction both generates and kills expressions, 
we must remove the killed expressions after adding the 
generated ones (cf. removing def(n) before adding ref(n)).

x = x + y

{ x+1, y+1 }

kill( x = x + y ) = Ex



out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)

Available expression analysis

So, if we consider in-avail(n) and out-avail(n), 
the sets of expressions which are available 
immediately before and immediately after a 
node, the following equation must hold:



= ({ x+1, y+1 } ∪ { x+y }) ∖ { x+1, x+y }
= { y+1 }= { x+1, x+y, y+1 } ∖ { x+1, x+y }

out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)

out-avail(n) = (in-avail(n) ∪ gen(n)) ∖ kill(n)

Available expression analysis

in-avail(n) = { x+1, y+1 }

gen(n) = { x+y }

x = x + yn:

kill(n) = { x+1, x+y }



out-avail(n) = (in-avail(n) ∪ gen(n)) ∖ kill(n)

in-avail(n) = ?

Available expression analysis

As in LVA, we have devised one equation for calculating 
out-avail(n) from the values of gen(n), kill(n) and in-avail(n), 

and now need another for calculating in-avail(n).

x = x + yn:



Available expression analysis

When a node n has a single predecessor m, the 
information propagates along the control-flow edge as 

you would expect: in-avail(n) = out-avail(m).

When a node has multiple predecessors, the expressions 
available at the entry of that node are exactly those 

expressions available at the exit of all of its predecessors
(cf. “any of its successors” in LVA).



Available expression analysis

x = 11;o:

z = x * y;m: print x*y;n:

y = 13;p:

{ x+5 } { y-7 }

{ x*y }

{ x+5, x*y } { x*y, y-7 }

{ }

{ }

{ x+5, x*y } ∩ { 
x*y, y-7 }
= { x*y }

{ x+5 } { y-7 }



Available expression analysis

So the following equation must also hold:

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)



Data-flow equations

These are the data-flow equations for available expression 
analysis, and together they tell us everything we need to 
know about how to propagate availability information 

through a program.

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)



Data-flow equations

Each is expressed in terms of the other, so we can 
combine them to create one overall availability equation.

avail(n) =
⋂

p∈pred(n)

(

(avail(p) ∪ gen(p)) \ kill(p)
)



Data-flow equations
Danger: we have overlooked one important detail.

x = 42;n:

avail(n) =        ((avail(p) ∪ gen(p)) ∖ kill(p)) ∩
p ∈ pred(n)

=        { }∩
= U

Clearly there should be no expressions available here, 
so we must stipulate explicitly that

avail(n) = { }  if  pred(n) = { }.

(i.e. all expressions
in the program)

pred(n) = { }



Data-flow equations

With this correction, our data-flow equation for 
expression availability is

avail(n) =

{ ⋂

p∈pred(n) ((avail(p) ∪ gen(p)) \ kill(p)) if pred(n) ≠ { }
{ } if pred(n) = { }



Data-flow equations

The functions and equations presented so far are 
correct, and their definitions are fairly intuitive.

However, we may wish to have our data-flow 
equations in a form which more closely matches 
that of the LVA equations, since this emphasises 

the similarity between the two analyses and 
hence is how they are most often presented.

A few modifications are necessary to achieve this.



Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)

These differences are inherent in the analyses.



These differences are an arbitrary result of our definitions.

Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)



Data-flow equations

We might instead have decided to define gen(n) and kill(n) 
to coincide with the following (standard) definitions:

• A node generates an expression e if it must 
compute the value of e and does not 
subsequently redefine any of the variables 
occuring in e.

• A node kills an expression e if it may redefine 
some of the variables occurring in e and does 
not subsequently recompute the value of e.



Data-flow equations
By the old definition:

gen( x = x + y ) = { x+y }

kill( x = x + y ) = Ex

By the new definition:
gen( x = x + y ) = { }

kill( x = x + y ) = Ex

(The new kill(n) may visibly differ when n is a basic block.)



out-avail(n) =
(

in-avail(n) ∪ gen(n)
)

\ kill(n)

Data-flow equations

Since these new definitions take account of which 
expressions are generated overall by a node (and exclude 

those which are generated only to be immediately 
killed), we may propagate availability information through 
a node by removing the killed expressions before adding 

the generated ones, exactly as in LVA.

out-avail(n) =
(

in-avail(n) \ kill(n)
)

∪ gen(n)out-avail(n) =
(

in-avail(n) \ kill(n)
)

∪ gen(n)

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)



Data-flow equations

From this new equation for out-avail(n) we may produce 
our final data-flow equation for expression availability:

This is the equation you will find in the course 
notes and standard textbooks on program 

analysis; remember that it depends on these 
more subtle definitions of gen(n) and kill(n).

avail(n) =

{ ⋂

p∈pred(n) ((avail(p) \ kill(p)) ∪ gen(p)) if pred(n) ≠ { }
{ } if pred(n) = { }



Algorithm

• We again use an array, avail[], to store the 
available expressions for each node.

• We initialise avail[] such that each node has all 
expressions available (cf. LVA: no variables live).

• We again iterate application of the data-flow 
equation at each node until avail[] no longer 
changes.



Algorithm

for i = 1 to n do avail[i] := U
while (avail[] changes) do
  for i = 1 to n do
    avail[i] := 

⋂

p∈pred(i)

((avail[p] \ kill(p)) ∪ gen(p))



Algorithm

We can do better if we assume that the flowgraph 
has a single entry node (the first node in avail[]).

Then avail[1] may instead be initialised to the 
empty set, and we need not bother recalculating 
availability at the first node during each iteration.



Algorithm

avail[1] := {}
for i = 2 to n do avail[i] := U
while (avail[] changes) do
  for i = 2 to n do
    avail[i] := 

⋂

p∈pred(i)

((avail[p] \ kill(p)) ∪ gen(p))



Algorithm

As with LVA, this algorithm is guaranteed to terminate 
since the effect of one iteration is monotonic (it only 
removes expressions from availability sets) and an 

empty availability set cannot get any smaller.

Any solution to the data-flow equations is safe, but 
this algorithm is guaranteed to give the largest (and 

therefore most precise) solution.



Algorithm

• If we arrange our programs such that each 
assignment assigns to a distinct temporary variable, 
we may number these temporaries and hence 
number the expressions whose values are assigned 
to them.

• If the program has n such expressions, we can 
implement each element of avail[] as an n-bit 
value, with the mth bit representing the availability of 
expression number m.

Implementation notes:



Algorithm

• Again, we can store availability once per basic 
block and recompute inside a block when 
necessary. Given each basic block n has kn 
instructions n[1], ..., n[kn]:

Implementation notes:

avail(n) =
⋂

p∈pred(n)

(avail(p) \ kill(p[1]) ∪ gen(p[1]) · · · \ kill(p[kp]) ∪ gen(p[kp]))



Safety of analysis
• Syntactic availability safely underapproximates 

semantic availability.

• Address-taken variables are again a problem. For 
safety we must 

• underestimate ambiguous generation (assume no 
expressions are generated) and

• overestimate ambiguous killing (assume all 
expressions containing address-taken variables are 
killed); this decreases the size of the largest 
solution.



Analysis framework

The two data-flow analyses we’ve seen, LVA and AVAIL, 
clearly share many similarities.

In fact, they are both instances of the same simple data-
flow analysis framework: some program property is 

computed by iteratively finding the most precise solution 
to data-flow equations, which express the relationships 
between values of that property immediately before and 

immediately after each node of a flowgraph.



Analysis framework

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(

in-avail(n) \ kill(n)
)

∪ gen(n)



Analysis framework

AVAIL’s data-flow equations have the form

out(n) = (in(n) ∖ ...) ∪ ... in(n) =       out(p)∩
p ∈ pred(n)

in(n) = (out(n) ∖ ...) ∪ ...

LVA’s data-flow equations have the form

out(n) =       in(s)∪
s ∈ succ(n)

union over successors

intersection over predecessors



Analysis framework

∩ ∪
pred AVAIL

succ LVA

RD

VBE

...and others



Analysis framework

So, given a single algorithm for iterative 
solution of data-flow equations of this form, 
we may compute all these analyses and any 

others which fit into the framework.



Summary
• Expression availability is a data-flow property

• Available expression analysis (AVAIL) is a forwards 
data-flow analysis for determining expression 
availability

• AVAIL may be expressed as two complementary 
data-flow equations, which may be combined

• A simple iterative algorithm can be used to find 
the largest solution to the data-flow equations

• AVAIL and LVA are both instances (among others) 
of the same data-flow analysis framework
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