
Lecture 2
Unreachable-code &

-procedure elimination

Control-flow analysis

Discovering information about how control (e.g. the
program counter) may move through a program.

?

?

?

?

?

Intra-procedural analysis
An intra-procedural analysis collects information

about the code inside a single procedure.

We may repeat it many times (i.e. once per procedure),
but information is only propagated within

the boundaries of each procedure,
not between procedures.

One example of an intra-procedural control-flow
optimisation (an analysis and an accompanying
transformation) is unreachable-code elimination.

int f(int x, int y) {
 int z = x * y;
 return x + y;
}

Dead vs. unreachable code

Dead code computes unused values.

DEAD

(Waste of time.)

int f(int x, int y) {
 return x + y;
 int z = x * y;
}

Dead vs. unreachable code

Unreachable code cannot possibly be executed.

UNREACHABLE

(Waste of space.)

Dead vs. unreachable code

Deadness is a data-flow property:
“May this data ever arrive anywhere?”

int f(int x, int y) {
 int z = x * y;
 ⋮

? ?
?

Dead vs. unreachable code

Unreachability is a control-flow property:
“May control ever arrive here?”

 ⋮
 int z = x * y;
}

? ??

bool g(int x) {
 return false;
}

Safety of analysis

UNREACHABLE?

int f(int x, int y) {
 if (g(x)) {
 int z = x * y;
 }
 return x + y;
}

✓

Safety of analysis

UNREACHABLE?

bool g(int x) {
 return ...x...;
}

int f(int x, int y) {
 if (g(x)) {
 int z = x * y;
 }
 return x + y;
}

?

Safety of analysis

UNREACHABLE?

int f(int x, int y) {
 if (g(x)) {
 int z = x * y;
 }
 return x + y;
}

In general, this is undecidable.
(Arithmetic is undecidable; cf. halting problem.)

Safety of analysis

• Many interesting properties of programs are
undecidable and cannot be computed
precisely...

• ...so they must be approximated.

• A broken program is much worse than an
inefficient one...

• ...so we must err on the side of safety.

Safety of analysis
• If we decide that code is unreachable then we

may do something dangerous (e.g. remove it!)...

• ...so the safe strategy is to overestimate
reachability.

• If we can’t easily tell whether code is reachable,
we just assume that it is. (This is conservative.)

• For example, we assume

• both branches of a conditional are reachable

• and that loops always terminate.

Safety of analysis
Naïvely,

if (false) {
 int z = x * y;
}

this instruction is reachable,

while (true) {
 // Code without ‘break’
}
int z = x * y;

and so is this one.

Safety of analysis

Another source of uncertainty is encountered
when constructing the original flowgraph:

the presence of indirect branches
(also known as “computed jumps”).

 ⋮
 MOV t32,r1
 JMP lab1

 ⋮
lab1: ADD r0,r1,r2
 ⋮

Safety of analysis

⋮
MOV t32,r1

ADD r0,r1,r2
⋮

⋮
MOV t33,#&lab1
MOV t34,#&lab2
MOV t35,#&lab3

⋮
JMPI t32

Safety of analysis

lab1: ADD r0,r1,r2
 ⋮

lab2: MUL r3,r4,r5
 ⋮

lab3: MOV r0,r1
 ⋮

?

?

?

Safety of analysis

MUL r3,r4,r5
⋮

MOV t33,#&lab1
MOV t34,#&lab2
MOV t35,#&lab3
⋮

ADD r0,r1,r2
⋮

MOV r0,r1
⋮

Safety of analysis

Again, this is a conservative overestimation of reachability.

In the worst-case scenario in which branch-address
computations are completely unrestricted (i.e. the target
of a jump could be absolutely anywhere), the presence

of an indirect branch forces us to assume that all
instructions are potentially reachable

in order to guarantee safety.

Safety of analysis

program instructions

sometimes
executed

never
executed

Safety of analysis

“reachable”

imprecision

Unreachable code

This naïve reachability analysis is simplistic,
but has the advantage of corresponding to a

very straightforward operation on the
flowgraph of a procedure:

1.mark the procedure’s entry node as reachable;

2.mark every successor of a marked node as reachable
and repeat until no further marking is required.

?

??

?

??

Unreachable code
ENTRY f

?

?

EXIT

Unreachable code
ENTRY f

?

?

EXIT

Unreachable code

Programmers rarely write code which is
completely unreachable in this naïve sense.

Why bother with this analysis?

• Naïvely unreachable code may be introduced as a
result of other optimising transformations.

• With a little more effort, we can do a better job.

if (false) {
 int z = x * y;
}

Unreachable code

Obviously, if the conditional expression in an if
statement is literally the constant “false”, it’s safe to

assume that the statements within are unreachable.

UNREACHABLE

But programmers never write code like that either.

bool debug = false;
⋮
if (debug) {
 int z = x * y;
}

Unreachable code

However, other optimisations might produce such code.
For example, copy propagation:

⋮
if (false) {
 int z = x * y;
}

Unreachable code

However, other optimisations might produce such code.
For example, copy propagation:

UNREACHABLE

Unreachable code

We can try to spot (slightly) more subtle things too.

• if (!true) {... }

• if (false && ...) {... }

• if (x != x) {... }

• while (true) {... } ...

• ...

Unreachable code

Note, however, that the reachability analysis no longer
consists simply of checking whether any paths to an

instruction exist in the flowgraph, but whether any of the
paths to an instruction are actually executable.

With more effort we may get arbitrarily clever at
spotting non-executable paths in particular cases,

but in general the undecidability of arithmetic means that
we cannot always spot them all.

Unreachable code

Although unreachable-code elimination can only make a
program smaller, it may enable other optimisations which

make the program faster.

?

?

Unreachable code
For example, straightening is an optimisation which can

eliminate jumps between basic blocks by coalescing them:

?

ENTRY f

?

?

EXIT

?

?

Unreachable code
For example, straightening is an optimisation which can

eliminate jumps between basic blocks by coalescing them:

?

ENTRY f

?

?

EXIT

Unreachable code
For example, straightening is an optimisation which can

eliminate jumps between basic blocks by coalescing them:

ENTRY f

?

EXIT

?
Straightening

has removed a branch
instruction, so the

new program
will execute faster.

Inter-procedural analysis

An inter-procedural analysis collects information
about an entire program.

Information is collected from the instructions of each
procedure and then propagated between procedures.

One example of an inter-procedural control-flow
optimisation (an analysis and an accompanying

transformation) is unreachable-procedure elimination.

Unreachable procedures

Unreachable-procedure elimination is very similar in
spirit to unreachable-code elimination, but relies on a

different data structure known as a call graph.

Call graphs

f

i h

g

j

main

ENTRY g
⋮
EXIT

Call graphs
Again, the precision of the graph is compromised in

the presence of indirect calls.

ENTRY h
⋮
EXIT

ENTRY f
⋮
EXIT

ENTRY main
⋮
MOV t33,#&f
MOV t34,#&g
MOV t35,#&h
⋮
CALLI t32
⋮
EXIT

?

?

?

Call graphs
Again, the precision of the graph is compromised in

the presence of indirect calls.

f h

main

g

And as before, this is a safe overestimation of reachability.

Call graphs

In general, we assume that a procedure containing an
indirect call has all address-taken procedures as successors

in the call graph — i.e., it could call any of them.

This is obviously safe; it is also obviously imprecise.

As before, it might be possible to do better
by application of more careful methods

(e.g. tracking data-flow of procedure variables).

Unreachable procedures

The reachability analysis is virtually identical to that
used in unreachable-code elimination, but this time
operates on the call graph of the entire program

(vs. the flowgraph of a single procedure):

1.mark procedure main as callable;

2.mark every successor of a marked node as
callable and repeat until no further marking is
required.

i j

Unreachable procedures

f

h

g

main

i j

Unreachable procedures

f

h

g

main

Safety of transformations
• All instructions/procedures to which

control may flow at execution time will
definitely be marked by the reachability
analyses...

• ...but not vice versa, since some marked
nodes might never be executed.

• Both transformations will definitely not
delete any instructions/procedures which
are needed to execute the program...

• ...but they might leave others alone too.

If simplification

• Let’s look at another set of basic control-
flow transformations that can be carried
out with only small amounts of analysis

• In this case, if simplification, which alters the
structure of if statements (or removes
them altogether) when possible

if (f(x)) {
}

If simplication

Empty then in if-then

(Assuming that f has no side effects.)

if (f(x)) {
 z = x * y;
} else {
}

If simplication

Empty else in if-then-else

if (!f(x)) {
} else {
 z = x * y;
}

If simplication

Empty then in if-then-else

if (f(x)) {
} else {
}

If simplication

Empty then and else in if-then-else

if (true) {
 z = x * y;
}

If simplication

Constant condition

if (x > 3 && t) {
 ⋮
 if (x > 3) {
 z = x * y;
 } else {
 z = y - x;
 }
}

If simplication

Nested if with common subexpression

Loop simplification

int x = 0;
int i = 0;
while (i < 4) {
 i = i + 1;
 x = x + i;
}

Loop simplification

int x = 10;
int i = 4;

Summary
• Control-flow analysis operates on the control

structure of a program (flowgraphs and call
graphs)

• Unreachable-code elimination is an intra-
procedural optimisation which reduces code size

• Unreachable-procedure elimination is a similar,
inter-procedural optimisation making use of the
program’s call graph

• Analyses for both optimisations must be imprecise
in order to guarantee safety

