
12. Case Study II
UNIX (Linux)

9th ed: Ch. 6, 18
10th ed: Ch. 5, 20

Objectives

• To examine memory management in Linux
• To explore how Linux implements file systems
• To understand how Linux manages I/O devices
• To understand how a shell works

12. UNIX Case Study (II) 2

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Start of day

12. UNIX Case Study (II) 3

Outline

• Physical memory
• Page allocation
• Slab allocation

• Virtual memory
• File systems
• I/O
• Start of day

12. UNIX Case Study (II) 4

Physical memory management

• Deals with allocation/freeing of pages, groups of pages, small blocks of memory
• Additional mechanisms for handling virtual memory, memory mapped into the address

space of running processes

• Splits memory into zones based on hardware characteristics
• DMA, DMA32, NORMAL, HIGHMEM

• Architecture specific; e.g., x86_32
• Some devices only address lower 16MB,

so DMA must take place there
• HIGHMEM is memory not mapped into kernel space, all else is NORMAL

• Other systems have different constraints
• E.g., some devices can only access first 4GB (even with 64 bit addresses)
• x86-64 has (small) 16MB DMA zone for legacy devices, and the rest is ZONE_NORMAL

18.6 Memory Management 801

18.6.1 Management of Physical Memory

Due to specific hardware constraints, Linux separates physical memory into
four different zones, or regions:

• ZONE DMA

• ZONE DMA32

• ZONE NORMAL

• ZONE HIGHMEM

These zones are architecture specific. For example, on the Intel x86-32 architec-
ture, certain ISA (industry standard architecture) devices can only access the
lower 16 MB of physical memory using DMA. On these systems, the first 16
MB of physical memory comprise ZONE DMA. On other systems, certain devices
can only access the first 4 GB of physical memory, despite supporting 64-
bit addresses. On such systems, the first 4 GB of physical memory comprise
ZONE DMA32. ZONE HIGHMEM (for “high memory”) refers to physical memory
that is not mapped into the kernel address space. For example, on the 32-bit Intel
architecture (where 232 provides a 4-GB address space), the kernel is mapped
into the first 896 MB of the address space; the remaining memory is referred
to as high memory and is allocated from ZONE HIGHMEM. Finally, ZONE NORMAL
comprises everything else—the normal, regularly mapped pages. Whether
an architecture has a given zone depends on its constraints. A modern, 64-bit
architecture such as Intel x86-64 has a small 16 MB ZONE DMA (for legacy devices)
and all the rest of its memory in ZONE NORMAL, with no “high memory”.

The relationship of zones and physical addresses on the Intel x86-32
architecture is shown in Figure 18.3. The kernel maintains a list of free pages
for each zone. When a request for physical memory arrives, the kernel satisfies
the request using the appropriate zone.

The primary physical-memory manager in the Linux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone and is capable of allocating ranges
of physically contiguous pages on request. The allocator uses a buddy system
(Section 9.8.1) to keep track of available physical pages. In this scheme,
adjacent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner (or buddy). Whenever two
allocated partner regions are freed up, they are combined to form a larger
region—a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request

zone physical memory

< 16 MB

16 .. 896 MB

> 896 MB

ZONE_DMA

ZONE_NORMAL

ZONE_HIGHMEM

Figure 18.3 Relationship of zones and physical addresses in Intel x86-32.

12. UNIX Case Study (II) 5

Physical page allocation

• Page allocator allocates and frees all physical pages
• Can allocate ranges of physically-contiguous pages on request

• Uses a buddy-heap algorithm to track available physical pages
• Each allocatable memory region is paired with an adjacent partner
• Two allocated partner regions freed

together are combined into a larger region
• If no small free region exists to satisfy

a small memory request, subdivide a
larger free region into two pieces to
satisfy the request

802 Chapter 18 The Linux System

cannot be satisfied by allocation of an existing small free region, then a larger
free region will be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size.
Under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 18.4 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultimately, all memory allocations in the Linux kernel are made either
statically, by drivers that reserve a contiguous area of memory during system
boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memory. Several specialized
memory-management subsystems use the underlying page allocator to man-
age their own pools of memory. The most important are the virtual memory
system, described in Section 18.6.2; the kmalloc() variable-length allocator;
the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel
provides an additional allocator for arbitrary-sized requests, where the size of
a request is not known in advance and may be only a few bytes. Analogous
to the C language’s malloc() function, this kmalloc() service allocates entire
physical pages on demand but then splits them into smaller pieces. The kernel
maintains lists of pages in use by the kmalloc() service. Allocating memory
involves determining the appropriate list and either taking the first free piece
available on the list or allocating a new page and splitting it up. Memory regions
claimed by the kmalloc() system are allocated permanently until they are
freed explicitly with a corresponding call to kfree(); the kmalloc() system
cannot reallocate or reclaim these regions in response to memory shortages.

Another strategy adopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data
structures and is made up of one or more physically contiguous pages. A
cache consists of one or more slabs. There is a single cache for each unique
kernel data structure—for example, a cache for the data structure representing
process descriptors, a cache for file objects, a cache for inodes, and so forth.

16KB

8KB

8KB

8KB

4KB

4KB

Figure 18.4 Splitting of memory in the buddy system.

12. UNIX Case Study (II) 6

Slab allocation

• Allocation in the kernel occurs either
• Statically, drivers reserve contiguous memory during system boot, or
• Dynamically, via the page allocator

• Uses a slab allocator for kernel memory
• Using page cache, virtual memory

system also manages physical memory
• Kernel’s main cache for files
• Main mechanism for I/O to block devices
• Stores entire pages of file contents for

local and network file I/O

18.6 Memory Management 803

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

Figure 18.5 Slab allocator in Linux.

Each cache is populated with objects that are instantiations of the kernel
data structure the cache represents. For example, the cache representing
inodes stores instances of inode structures, and the cache representing process
descriptors stores instances of process descriptor structures. The relationship
among slabs, caches, and objects is shown in Figure 18.5. The figure shows two
kernel objects 3 KB in size and three objects 7 KB in size. These objects are stored
in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects are allocated to the cache. The number of
objects in the cache depends on the size of the associated slab. For example,
a 12-KB slab (made up of three contiguous 4-KB pages) could store six 2-KB
objects. Initially, all the objects in the cache are marked as free. When a new
object for a kernel data structure is needed, the allocator can assign any free
object from the cache to satisfy the request. The object assigned from the cache
is marked as used.

Let’s consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type struct task struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task struct object from its
cache. The cache will fulfill the request using a struct task struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

1. Full. All objects in the slab are marked as used.

2. Empty. All objects in the slab are marked as free.

3. Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical

12. UNIX Case Study (II) 7

Outline

• Physical memory
• Virtual memory
• Creation
• Running a program

• File systems
• I/O
• Start of day

12. UNIX Case Study (II) 8

Virtual memory

• Virtual memory system maintains each process’ address space
• Creates pages of virtual memory on demand
• Manages loading of those pages from disk or swapping back out as required

• VM manager maintains two views of a process’s address space
• Logical view describes the layout of the address space, a set of non-overlapping

regions, each representing a continuous, page-aligned subset of the address space
• Physical view stored in the process’ hardware page tables

• Virtual memory regions are characterized by
• The backing store, which describes from where the pages for a region come; regions

are usually backed by a file or by nothing (demand-zero memory)
• The region’s reaction to writes, either page sharing or copy-on-write

• Paging system uses page-out policy to decide which pages to move to and
from backing store using the paging mechanism

12. UNIX Case Study (II) 9

Virtual memory creation

• The kernel creates a new virtual address space for two reasons
• A process runs a new program via exec

• The existing process is given a new, completely empty virtual-address space
• Program-loading routines populate the address space with virtual-memory regions

• A process creates a new process via fork
• New process is given a complete copy of the parent’s virtual address space
• Kernel copies parent’s VMA descriptors and creates a new set of page tables for the child
• Then copies parent’s page tables into the child’s, incrementing the reference count of each

page covered
• Thus parent and child address spaces initially share the same physical pages of memory

• Kernel reserves a constant (architecture-dependent) area of two regions
• Static region has page table references to every available physical page to ease logical-

physical translation in kernel
• Remainder is unreserved and PTEs can be pointed to any other area of memory

12. UNIX Case Study (II) 10

Running a program

• Kernel has function table for program loading
• Supports multiple binary formats, commonly ELF

• ELF-format program has a header plus several
page-aligned sections
• Pages initially mapped into virtual memory,

and then faulted in to physical memory
• ELF loader reads header and maps sections of

the file into separate VM regions
• Unless statically linked there will be symbols

defined elsewhere
• Calling dynamic linker stubs trigger mapping of the link library into memory,

resolving references
• Shared libraries typically compiled to position-independent code (PIC) so can be

loaded anywhere

12. UNIX Case Study (II) 11

808 Chapter 18 The Linux System

kernel virtual memory memory invisible to user-mode code

stack

memory-mapped region

memory-mapped region

memory-mapped region

run-time data
uninitialized data

initialized data
program text

the ‘brk’ pointer

forbidden region

Figure 18.6 Memory layout for ELF programs.

its own privileged region of virtual memory inaccessible to normal user-mode
programs. The rest of virtual memory is available to applications, which can use
the kernel’s memory-mapping functions to create regions that map a portion
of a file or that are available for application data.

The loader’s job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized include
the stack and the program’s text and data regions.

The stack is created at the top of the user-mode virtual memory; it
grows downward toward lower-numbered addresses. It includes copies of the
arguments and environment variables given to the program in the exec()
system call. The other regions are created near the bottom end of virtual
memory. The sections of the binary file that contain program text or read-only
data are mapped into memory as a write-protected region. Writable initialized
data are mapped next; then any uninitialized data are mapped in as a private
demand-zero region.

Directly beyond these fixed-sized regions is a variable-sized region that
programs can expand as needed to hold data allocated at run time. Each
process has a pointer, brk, that points to the current extent of this data region,
and processes can extend or contract their brk region with a single system call
—sbrk().

Once these mappings have been set up, the loader initializes the process’s
program-counter register with the starting point recorded in the ELF header,
and the process can be scheduled.

18.6.3.2 Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary
contents of the binary file have been loaded into the process’s virtual address

Outline

• Physical memory
• Virtual memory
• File systems
• Implementation
• Directories and links
• Access control

• I/O
• Start of day

12. UNIX Case Study (II) 12

File systems

• To the user, Linux’s file system appears as a hierarchical directory tree obeying UNIX semantics
• Devices are represented by special files
• proc file system doesn’t store data but computes it on demand using inode number to identify the operation

• Kernel hides details, managing different file systems via the virtual file system (VFS), an
abstraction layer with four components
• The inode object structure represent an individual file
• The file object represents an open file
• The superblock object represents an entire file system
• A dentry object represents an individual directory entry

• Then manipulate those objects via a set of operations on the objects, e.g., for files include
• int (*open) (struct inode *, struct file *);
• ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
• ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
• int (*mmap) (struct file *, struct vm_area_struct *);

12. UNIX Case Study (II) 13

File system implementation

• UNIX file systems use inodes (index nodes) as FCBs
• A combined scheme: the inode contains pointers to blocks, and pointers to

pointers to blocks, and so on

• Alternatives include linked
schemes where an index block
points to blocks and ends with
either a null or a pointer to the
next index block

12. UNIX Case Study (II) 14

type mode

timestamps (x3)

direct blocks (x12)

single indirect

double indirect

triple indirect

direct
blocks
(512)

data

data

data

data

data

data

to block with 512
single indirect entries

to block with 512
double indirect entries

userid groupid

size nblocks

nlinks flags

Directories and links

• Directory is just a file, itself pointed to by an inode, mapping
filenames to inodes
• An instance of a file in a directory is a hardlink
• Reference counted in the inode with file removed when

reference count becomes zero
• Directories cannot have more

than one hardlink otherwise
cycles might be created

• Alternatively, a softlink or
symbolic-link is a normal file
containing a filename, interpreted
by the filesystem

12. UNIX Case Study (II) 15

home/

steve/ jean/

/

doc/

.

..
unix.ps
index.html

214
78
385

56

Filename I-Node

misc 47

.

..

unix.ps
hello.txt

2

78
107

13

Filename I-Node

misc/ index.html unix.ps

hello.txt

bin/

In-memory tables

• Each process sees files as file
descriptors
• Index into a process-specific open file

table

• Table entries point into a system-wide
open file table
• Multiple processes might operate on the

same file, including deleting it

• System-wide table entries then point
to in-memory inode table

12. UNIX Case Study (II) 16

Process A

Process B

0

1

2

3

4

N

11

3

25

17

1

6

0

1

2

3

4

N

2

27

62

5

17

32

0 47

1

17

135

78

process-specific
file tables

system-wide
open file table

Inode 78

acitve inode table

Access control

• Every object uses same mechanism: unique numeric identifiers
• User ID (UID) identifies single user (set of rights)
• Group ID (GID) identifies a group (rights held by one or more users)

• Processes have a single UID but one or more GIDs
• Process UID matches object UID, then process has user/owner rights
• Else if a process GID matches an object GID, then process has group rights
• Else process has world rights

• Object has protection mask indicating R/W/X for user/group/world
• Root UID process has automatic rights to everything

• Rights can be passed by forwarding fds down a local network socket
• E.g., Print server is passed a descriptor for the file to be printed, avoiding the need

for it to have rights to read any other of the user’s files

11. UNIX Case Study (I) 17

File access control

• Access control information held in each inode
• Three bits for each of owner, group and world
• For files, read, write execute
• For directories, read entry, write entry, traverse directory

• Also have setuid and setgid bits:
• Normally processes inherit permissions of invoking user
• setuid/setgid allow user to “become” someone else when running a given program

• E.g. an assessment application might have
• A sit-exam application owned by the examiner with permissions 0711 plus setuid
• A test-scores file also owned by the examiner but with permissions 0600

12. UNIX Case Study (II) 18

Owner Group World

R W E R W E R W E

= 0640

Owner Group World

R W E R W E R W E

= 0755
Owner Group World

R W E R W E R W E

= 0640

Owner Group World

R W E R W E R W E

= 0755

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Buffer cache
• Device types

• Start of day

12. UNIX Case Study (II) 19

Input/Output

• Device-oriented file system accesses disk storage via two caches:
• The page cache caches data, unified with the virtual memory system
• The buffer cache caches metadata separately, indexed by physical disk block

• Three classes of device:
• Block devices allow random access to independent, fixed size blocks of data
• Character devices include most other devices, not needing the functionality

of regular files
• Network devices are interfaced via the kernel’s networking subsystem

12. UNIX Case Study (II) 20

Buffer cache

• Maintain copies of some parts of disk in memory for speed
• Reading then involves

• Locate relevant blocks from inode
• Check if in buffer cache
• If not, read from disk into buffer cache memory
• Return data from buffer cache

• Writing is the same except final step updates the version in the cache
• “Typically” prevents majority (around 85%) of implied disk transfers
• But at risk of losing data while the update is only in the buffer cache

• Must periodically (30 seconds) flush dirty buffers to disk
• Can cache metadata too but what problems can that cause?

12. UNIX Case Study (II) 21

Device types

• Block devices provide the main interface to system’s disk devices
• Block buffer cache acts as a pool of buffers for active I/O and as a cache for

completed I/O
• Request manager handles reading/writing of buffer contents to/from block device

driver using Completely Fair Queueing (CFQ)
• Character devices do not offer random access, with driver just passing on

request directly
• Main exception are terminal devices where line discipline is responsible for

interpreting information from device
• Eg., tty discipline glues stdin/stdout onto terminal data/output streams

• Network structure complex with socket interface, protocol drivers,
network device drivers
• Also firewall management, filtering, marking etc

12. UNIX Case Study (II) 22

Outline

• Physical memory
• Virtual memory
• File systems
• I/O
• Start of day
• Shell operation
• Standard I/O

12. UNIX Case Study (II) 23

UNIX start of day

• Kernel (/vmunix) loaded from disk and executed, mounting root filesystem
• Bootloader required to read from the disk
• First process (PID=1), traditionally /etc/init, is hand-crafted

• Proceeds by reading /etc/inittab and, for each entry:
• Opens terminal special file, e.g. /dev/tty0, duplicates the resulting fd twice, and forks an /etc/tty

process
• Each tty process then:

• Initialises the terminal, outputs the string login: & waits for input
• On receiving input, execve /bin/login

• /bin/login then
• Outputs the string password: & waits for input
• On receiving input, hash it and check against entyr in /etc/passwd
• If match, set the UID & GID, and execve the indicated shell

• When the shell exits, the parent init resurrects the /etc/tty process which goes again

12. UNIX Case Study (II) 24

Shell operation

• Just another process – needn’t understand
commands, just files
• Using CWD avoids need for fully qualified

pathnames

• Command line parsing can be complex
• Wildcard expansion (globbing)
• Tilde (~) processing
• Conventionally trailing & backgrounds forked

process

12. UNIX Case Study (II) 25

execve
child

process

program
executes

fg?

repeat
ad

infinitum

yes

no

fork

read get command line

issue promptwrite

exitwait
zombie
process

Standard I/O

• Every process has three fds on creation:
• stdin from which to read input
• stdout to which output is sent
• stderr to which diagnostics are sent

• Inherited from parent but can be redirected to/from a file, e.g.,
ls >listing.txt ls >&listing.txt sh <commands.sh

• Consider: ls >temp.txt; wc <temp.txt >results
• Pipeline is better, e.g. ls | wc >results

• Unix command lines can become very complex e.g., with many filters
• Redirection can cause some buffering subtleties

12. UNIX Case Study (II) 26

Summary

• Physical memory
• Page allocation
• Slab allocation

• Virtual memory
• Creation
• Running a program

• File systems
• Implementation
• Directories and links
• Access control

• I/O
• Buffer cache
• Device types

• Start of day
• Shell operation
• Standard I/O

12. UNIX Case Study (II) 27

