
11. Case Study I
UNIX (Linux)

9th ed: Ch. 18
10th ed: Ch. 20

Objectives

• To know a little of the history of UNIX from which Linux is derived
• To understand some principles upon which Linux’s design is based
• To examine the Linux process model and lifecycle
• To describe how Linux schedules processes, provides kernel

synchronization, and provides inter-process communication

11. UNIX Case Study (I) 2

Outline

• UNIX / Linux
• Processes
• Tasks

11. UNIX Case Study (I) 3

Outline

• UNIX / Linux
• History
• Components
• Kernel modules

• Processes
• Tasks

11. UNIX Case Study (I) 4

UNIX key feature

• Separation of kernel from user space
• Only essential features inside the OS – editors, compilers etc are just

applications

• Processes are the units of
scheduling and protection
• Command interpreter (shell) just

another process

• All I/O looks like file operations
• In UNIX, everything is a file

11. UNIX Case Study (I) 5

UNIX

11. UNIX Case Study (I) 6

UNIX history

• Developed in 1969 by Thompson & Ritchie at Bell Labs
• A reaction to Multics which was rather bloated
• Focus on (relative) ease-of-use due to e.g., interactive shell
• In 1973 re-written from ASM to (portable) C even though performance critical

• Development continued through 1970s, 1980s
• Notably, 1976 release of 6th edition (“V6”) included source code, so features could

easily be added from other OSs
• From 1978 two main families

• System V from AT&T and BSD from University of California at Berkeley
• Introduction of POSIX standard, attempting to re-unify
• Addition over time of, e.g., virtual memory, networking
• Notably, 4.2BSD in 1983 included TCP/IP stack funded by DARPA

• Most common UNIX today is Linux

11. UNIX Case Study (I) 7

Linux history

• A modern free OS based on UNIX standards
• Originally a small self-contained kernel in 1991 by Linus Torvalds, release open-source
• Designed for efficiency on common PC hardware but now runs on a huge range of platforms
• Kernel entirely original but compatibility gives an entire UNIX-compatible OS, for free
• Different distributions provide package management, support, configurations, tools, etc
• Odd-number kernels are development kernels, even numbered are production

• Version 0.01, May 1991
• No networking, Intel 80386-compatible processors and PC hardware only, extremely limited

device-drive support, supported only the Minix file system
• Version 1.0, March 1994

• TCP/IP plus BSD-compatible socket interface and device-driver support for IP on Ethernet
• Enhanced file system and SCSI controller support for high-performance disk access
• Linux 1.2, March 1995, was the final PC-only Linux kernel

• Development continues at pace

11. UNIX Case Study (I) 8

Linux design principles

• Multiuser, multitasking system with a full set of UNIX-compatible
tools
• File system adheres to traditional UNIX semantics
• Fully implements the standard UNIX networking model
• Designed to be POSIX compliant, achieved by at least two distributions

• Main design goals are speed, efficiency, and standardization
• Constant tension between efficiency and security

• Supports Pthreads and a subset of POSIX real-time process control
• Linux programming interface has SVR4 UNIX semantics, not BSD

11. UNIX Case Study (I) 9

Components of a Linux system

• As most UNIX implementations, there are three main pieces
• Most important distinction is between kernel and the rest

• The kernel is responsible for maintaining the important abstractions of the
operating system
• Executes in kernel mode with full access to all the physical resources of the computer
• All kernel code and data structures share the same single address space

• System libraries define standard functions apps use to interact with
the kernel
• Implement much OS functionality that

does not need kernel privileges
• System utilities perform individual

specialized management tasks
• Rich and varied user-mode programs

18.2 Design Principles 787

standard, Linux currently supports the POSIX threading extensions—Pthreads
—and a subset of the POSIX extensions for real-time process control.

18.2.1 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

1. Kernel. The kernel is responsible for maintaining all the important
abstractions of the operating system, including such things as virtual
memory and processes.

2. System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implement much of the operating-system functionality that does not need
the full privileges of kernel code. The most important system library is
the C library, known as libc. In addition to providing the standard C
library, libc implements the user mode side of the Linux system call
interface, as well as other critical system-level interfaces.

3. System utilities. The system utilities are programs that perform indi-
vidual, specialized management tasks. Some system utilities are invoked
just once to initialize and configure some aspect of the system. Others
—known as daemons in UNIX terminology—run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 18.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and
everything else. All the kernel code executes in the processor’s privileged
mode with full access to all the physical resources of the computer. Linux
refers to this privileged mode as kernel mode. Under Linux, no user code is
built into the kernel. Any operating-system-support code that does not need to
run in kernel mode is placed into the system libraries and runs in user mode.
Unlike kernel mode, user mode has access only to a controlled subset of the
system’s resources.

system shared libraries

Linux kernel

loadable kernel modules

system-
management

programs

user
processes

user
utility

programs
compilers

Figure 18.1 Components of the Linux system.11. UNIX Case Study (I) 10

Kernel modules

• Sections of kernel code that can be compiled, loaded, and unloaded
independently
• Implement, e.g., device drivers, file systems, or networking protocols
• Interface enables third parties to write and distribute non-GPL components
• Enable a Linux system to be set up with a standard, minimal kernel, without

extra device drivers compiled in

• Dynamic loading/unloading requires conflict resolution
• Kernel must manage modules trying to access same hardware
• E.g., reservation requests via kernel before granting access

11. UNIX Case Study (I) 11

Outline

• UNIX / Linux
• Processes
• Management
• Properties
• Context
• Threads

• Tasks

11. UNIX Case Study (I) 12

Process management

• UNIX process management separates the creation of processes and
the running of a new program into two distinct operations.
• The fork system call creates a new process before exec runs a new program
• Under UNIX, a process encompasses all the information that the OS must

maintain to track the context of a single execution of a single program

• Under Linux, process properties fall into three groups:
• Identity
• Environment
• Context

11. UNIX Case Study (I) 13

Process properties

• Identity
• Process ID (PID) uniquely identifies and is used to specify the process
• Process credentials in the form of a User ID and one or more Group IDs
• Support for emulation gives personality – not traditional but allows slightly modified

semantics of system calls
• Namespace gives specific view of file system hierarchy – typically shared but can be unique

• Environment, inherited from parent as two null-terminated vectors
• Argument vector listing command-line arguments used to invoke the running program
• Environment vector lists NAME=VALUE pairs associating named variables with arbitrary

values
• Flexible way to pass information between user-mode components, giving per-process

customisation
• Context

• The (constantly changing) state of a running program at any point in time

11. UNIX Case Study (I) 14

Process context

• Most important part is the scheduling context
• Required for the scheduler to suspend and restart the process
• Also includes accounting information about current and past resources consumed

• An array of pointers into kernel file structures called the file table
• I/O system calls use indexes into this table, the file descriptor (fd)

• Separately, file-system context applies to requests to open new files
• Current root and default directories for new file searches are stored here

• Signal-handler table defines per-process per-signal signal handling routine
• Virtual-memory context describes full contents of process’ private address

space

11. UNIX Case Study (I) 15

Processes and threads

• The same internal representation
• A thread is just a new process that shares its parent’s address space

• Both called tasks by Linux, distinguished only when created via clone
• fork creates a new task with an entirely new task context
• clone creates a new task with its own identity, but sharing parent’s data

structures

• clone gives control over exactly what is shared between two threads
• File system, memory space, signal handlers, open files

11. UNIX Case Study (I) 16

Outline

• UNIX / Linux
• Processes
• Tasks
• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC

11. UNIX Case Study (I) 17

• Five states:
• Running/Runnable (R)
• Uninterruptible Sleep (D)
• Interruptible Sleep (S)
• Stopped (T)
• Zombie (Z)

Task lifecycle

11. UNIX Case Study (I) 18

108 Chapter 3 Processes

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8).

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

Running / Runnable
(R)

Zombie
(Z)

Stopped
(T)

Interruptible
Sleep (S)

Uninterruptible
Sleep (D)

SIGSTOP
received

SIGCONT
received

wakeup

wait for
resources

wakeup/
signal

wait for
resources/
signals

new

exit or termination
signals

Task scheduling

• Allocation of CPU time to different tasks
• As well as processes, in Linux this includes various kernel tasks
• Those requested by a running process and those executed for a device driver

• Traditional UNIX scheduling uses fixed time slices and priorities to
boost/penalise
• Quantum 100ms, round-robin within priority levels
• Priority set from process’ base priority, average length of process’ run queue,

and nice value

• Worked ok for early time-sharing systems but did not scale or provide
good interactive performance for current systems

11. UNIX Case Study (I) 19

Completely Fair Scheduler (CFS)

• Since 2.6.23 – no more time slices
• Start by assuming every task should have 1/N of the CPU
• Adjust based on nice value from -20 to +19: smaller is higher priority giving higher weighting
• Run task j for a time slice 𝑡! ∝ ⁄𝑤! ∑"𝑤"

• Actual length of time given a task is the target latency
• Interval during which time every runnable task should run at least once
• E.g., target latency is 10ms, two runnable tasks of equal priority, each will run for 5ms
• If ten runnable tasks, each runs for 1ms – but what if 1000 runnable tasks?
• To avoid excessive switching overheads, minimum granularity is the minimum length of time

for which a process will be scheduled
• CFS scheduler maintains per-task virtual run time in variable vruntime

• Scheduler picks task with lowest vruntime, in default case, the same as actual run time
• Lower priority means higher decay rate of vruntime
• Implemented as red-black tree with left-most bottom-most value (lowest vruntime) cached

11. UNIX Case Study (I) 20

Kernel synchronisation

• Kernel-mode execution requested in two ways:
• Process requests an OS service, explicitly via a system call or implicitly

e.g. when a page fault occurs
• A device driver delivers a hardware interrupt causing the CPU to start

executing a kernel-defined handler for that interrupt
• Need guarantees that kernel’s critical sections run without

interruption by another critical section
• Before 2.6, kernel code is non-

preemptible so timer
interrupt sets need_resched
• After 2.6, either spin locks or

enable/disable pre-emption

11. UNIX Case Study (I) 21

798 Chapter 18 The Linux System

difference between FCFS and round-robin scheduling is that FCFS processes
continue to run until they either exit or block, whereas a round-robin process
will be preempted after a while and will be moved to the end of the scheduling
queue, so round-robin processes of equal priority will automatically time-share
among themselves.

Linux’s real-time scheduling is soft—rather than hard—real time. The
scheduler offers strict guarantees about the relative priorities of real-time
processes, but the kernel does not offer any guarantees about how quickly
a real-time process will be scheduled once that process becomes runnable. In
contrast, a hard real-time system can guarantee a minimum latency between
when a process becomes runnable and when it actually runs.

18.5.3 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules processes. A request for kernel-mode execution
can occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly—for example, when a
page fault occurs. Alternatively, a device controller may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem for the kernel is that all these tasks may try to access the same
internal data structures. If one kernel task is in the middle of accessing some
data structure when an interrupt service routine executes, then that service
routine cannot access or modify the same data without risking data corruption.
This fact relates to the idea of critical sections—portions of code that access
shared data and thus must not be allowed to execute concurrently. As a result,
kernel synchronization involves much more than just process scheduling. A
framework is required that allows kernel tasks to run without violating the
integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a
process running in kernel mode could not be preempted—even if a higher-
priority process became available to run. With version 2.6, the Linux kernel
became fully preemptive. Now, a task can be preempted when it is running in
the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader–
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed
so that spinlocks are held for only short durations. On single-processor
machines, spinlocks are not appropriate for use and are replaced by enabling
and disabling kernel preemption. That is, rather than holding a spinlock, the
task disables kernel preemption. When the task would otherwise release the
spinlock, it enables kernel preemption. This pattern is summarized below:

single processor multiple processors

Acquire spin lock.

Release spin lock.

Disable kernel preemption.

Enable kernel preemption.

Interrupt handlers, top and bottom

• Want long critical sections to be able to run without disabling interrupts for
long periods of time
• Split interrupt service routines into a top half and a bottom half

• Top half is a normal interrupt
service routine, run with
recursive interrupts disabled

• Bottom half is run, with all
interrupts enabled, by a
miniature scheduler that ensures
bottom halves never self-interrupt

• This architecture is completed by a mechanism for disabling selected
bottom halves while executing normal, foreground kernel code

11. UNIX Case Study (I) 22

800 Chapter 18 The Linux System

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible)

user-mode programs (preemptible) in
cr

ea
si

ng
 p

rio
rit

y

Figure 18.2 Interrupt protection levels.

bottom halves to prevent any other critical sections from interrupting it. At
the end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 18.2 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level
but will never be interrupted by code running at the same or a lower level.
Except for user-mode code, user processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs.

18.5.4 Symmetric Multiprocessing

The Linux 2.0 kernel was the first stable Linux kernel to support symmetric
multiprocessor (SMP) hardware, allowing separate processes to execute in
parallel on separate processors. The original implementation of SMP imposed
the restriction that only one processor at a time could be executing kernel code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for “big kernel lock”) was created to allow multiple processes (running on
different processors) to be active in the kernel concurrently. However, the BKL
provided a very coarse level of locking granularity, resulting in poor scalability
to machines with many processors and processes. Later releases of the kernel
made the SMP implementation more scalable by splitting this single kernel
spinlock into multiple locks, each of which protects only a small subset of the
kernel’s data structures. Such spinlocks are described in Section 18.5.3. The 3.0
kernel provides additional SMP enhancements, including ever-finer locking,
processor affinity, and load-balancing algorithms.

18.6 Memory Management

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory—pages, groups of pages, and small
blocks of RAM. The second handles virtual memory, which is memory-mapped
into the address space of running processes. In this section, we describe these
two components and then examine the mechanisms by which the loadable
components of a new program are brought into a process’s virtual memory in
response to an exec() system call.

Inter-Process Communication

• Signals
• Process-to-process
• Limited number, carry no information other than which signal has occurred

• Wait queues
• Used inside the kernel
• Process puts itself on wait queue for an event, and informs scheduler that it is no longer

eligible for execution
• All waiting processes are woken when the event completes

• Pipes
• Just another type of inode in the VFS
• Each pipe has a pair of wait queues for reader and writer to synchronise

• Shared memory
• Fast but no synchronisation mechanism – need to be provided
• Persistent object, like a small independent address space

11. UNIX Case Study (I) 23

Summary

• UNIX / Linux
• History
• Components
• Kernel modules

• Processes
• Management
• Properties
• Context
• Threads

• Tasks
• Lifecycle
• Scheduling
• Synchronisation
• Interrupt handlers
• IPC

11. UNIX Case Study (I) 24

