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Objectives

• To understand the nature of mass storage
• To be aware of the challenges of (disk) storage management
• To understand concepts of files, directories and directory 

namespaces, directory structures, hard- and soft-links
• To know of basic file operations and access control mechanisms
• To be aware of the relationship between paging and block storage in 

the buffer cache
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Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Other issues
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Outline

• Mass storage
• Hard disks
• Solid state disks

• Disk scheduling
• Disk management
• Files
• Directories
• Other issues
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Mass storage: Hard disks (HDs)

• Stack of platters
• Historically 0.85” to 14”
• Commonly 3.5”, 2.5”, 1.8”
• Capacity continually increases but 

perhaps 30GB – 3TB
• Performance 
• Transfer Rate – theoretical – 6 Gb/sec
• Effective Transfer Rate – real – 1Gb/sec
• Seek time 3–12ms with around 9ms 

common
• Rotation typically 7200 or 15,000 RPM
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Figure 10.1 Moving-head disk mechanism.

A read–write head “flies” just above each surface of every platter. The
heads are attached to a disk arm that moves all the heads as a unit. The surface
of a platter is logically divided into circular tracks, which are subdivided into
sectors. The set of tracks that are at one arm position makes up a cylinder.
There may be thousands of concentric cylinders in a disk drive, and each track
may contain hundreds of sectors. The storage capacity of common disk drives
is measured in gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives
rotate 60 to 250 times per second, specified in terms of rotations per minute
(RPM). Common drives spin at 5,400, 7,200, 10,000, and 15,000 RPM. Disk speed
has two parts. The transfer rate is the rate at which data flow between the drive
and the computer. The positioning time, or random-access time, consists of
two parts: the time necessary to move the disk arm to the desired cylinder,
called the seek time, and the time necessary for the desired sector to rotate to
the disk head, called the rotational latency. Typical disks can transfer several
megabytes of data per second, and they have seek times and rotational latencies
of several milliseconds.

Because the disk head flies on an extremely thin cushion of air (measured
in microns), there is a danger that the head will make contact with the disk
surface. Although the disk platters are coated with a thin protective layer, the
head will sometimes damage the magnetic surface. This accident is called a
head crash. A head crash normally cannot be repaired; the entire disk must be
replaced.

A disk can be removable, allowing different disks to be mounted as needed.
Removable magnetic disks generally consist of one platter, held in a plastic
case to prevent damage while not in the disk drive. Other forms of removable
disks include CDs, DVDs, and Blu-ray discs as well as removable flash-memory
devices known as flash drives (which are a type of solid-state drive).
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Hard disk performance

• Average latency secs
= ½ Latency = 01 2× 001 60 0rotations

minute = ⁄30 RPM
• Access latency [secs] = Average seek time + average latency
• Average I/O time [secs]
= Access latency + 0amount to transfer

transfer rate + controller overhead

• E.g., 4kB block, 7200 RPM, 5ms average seek time, 1Gb/sec transfer rate,
0.1ms controller overhead
• Average latency = ⁄30 7200 = 4.17ms
• Transfer time = ⁄4096 B × 8 ⁄! " 1024# b/s = 0.031ms
• Average I/O time = 5ms + 4.17ms + 0.031ms + 0.1ms = 9.301ms
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Mass storage: Solid state disks (SSDs) 

• Non-volatile memory used like a hard drive; many variations
• Pros
• Can be more reliable than HDDs
• No moving parts, so no seek time or rotational latency
• Much faster

• Cons
• Reads/writes wear out cells leading to unreliability and potentially shorter
• More expensive per MB
• Lower capacity
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Outline

• Mass storage
• Disk scheduling
• First-Come First-Served
• Shortest Seek Time First
• SCAN, C-SCAN

• Disk management
• Files
• Directories
• Other issues
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Disk scheduling

• The disk controller receives a sequence of read/write requests from 
the OS that it must schedule
• How best to order reads and writes to achieve policy aim?
• Analogous to CPU scheduling but with very different mechanisms, constraints, 

and policy aims
• Many algorithms exist

• Simplest: First-come First-served (FCFS)
• Intrinsically fair but inefficient
• E.g., requests for blocks on cylinders are

98, 183, 37, 122, 14, 124, 65, 67 
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Figure 10.4 FCFS disk scheduling.

in that order. If the disk head is initially at cylinder 53, it will first move from
53 to 98, then to 183, 37, 122, 14, 124, 65, and finally to 67, for a total head
movement of 640 cylinders. This schedule is diagrammed in Figure 10.4.

The wild swing from 122 to 14 and then back to 124 illustrates the problem
with this schedule. If the requests for cylinders 37 and 14 could be serviced
together, before or after the requests for 122 and 124, the total head movement
could be decreased substantially, and performance could be thereby improved.

10.4.2 SSTF Scheduling

It seems reasonable to service all the requests close to the current head position
before moving the head far away to service other requests. This assumption is
the basis for the shortest-seek-time-first (SSTF) algorithm. The SSTF algorithm
selects the request with the least seek time from the current head position.
In other words, SSTF chooses the pending request closest to the current head
position.

For our example request queue, the closest request to the initial head
position (53) is at cylinder 65. Once we are at cylinder 65, the next closest
request is at cylinder 67. From there, the request at cylinder 37 is closer than the
one at 98, so 37 is served next. Continuing, we service the request at cylinder 14,
then 98, 122, 124, and finally 183 (Figure 10.5). This scheduling method results
in a total head movement of only 236 cylinders—little more than one-third
of the distance needed for FCFS scheduling of this request queue. Clearly, this
algorithm gives a substantial improvement in performance.

SSTF scheduling is essentially a form of shortest-job-first (SJF) scheduling;
and like SJF scheduling, it may cause starvation of some requests. Remember
that requests may arrive at any time. Suppose that we have two requests in
the queue, for cylinders 14 and 186, and while the request from 14 is being
serviced, a new request near 14 arrives. This new request will be serviced
next, making the request at 186 wait. While this request is being serviced,
another request close to 14 could arrive. In theory, a continual stream of requests
near one another could cause the request for cylinder 186 to wait indefinitely.



Shortest Seek-Time First (SSTF)

• Service requests based on distance to current head position
• Next request in queue is that with the shortest seek time

• For this example, involves movement of just 236 cylinders
• ⁄! " of that required by FCFS

• Somewhat analogous to SJF
• A big improvement but allows starvation
• Not optimal: from 53 move to 37 then 14

and then 65 etc – gives movement of
208 cylinders
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Figure 10.5 SSTF disk scheduling.

This scenario becomes increasingly likely as the pending-request queue grows
longer.

Although the SSTF algorithm is a substantial improvement over the FCFS
algorithm, it is not optimal. In the example, we can do better by moving the
head from 53 to 37, even though the latter is not closest, and then to 14, before
turning around to service 65, 67, 98, 122, 124, and 183. This strategy reduces
the total head movement to 208 cylinders.

10.4.3 SCAN Scheduling

In the SCAN algorithm, the disk arm starts at one end of the disk and moves
toward the other end, servicing requests as it reaches each cylinder, until it gets
to the other end of the disk. At the other end, the direction of head movement
is reversed, and servicing continues. The head continuously scans back and
forth across the disk. The SCAN algorithm is sometimes called the elevator
algorithm, since the disk arm behaves just like an elevator in a building, first
servicing all the requests going up and then reversing to service requests the
other way.

Let’s return to our example to illustrate. Before applying SCAN to schedule
the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to know
the direction of head movement in addition to the head’s current position.
Assuming that the disk arm is moving toward 0 and that the initial head
position is again 53, the head will next service 37 and then 14. At cylinder 0,
the arm will reverse and will move toward the other end of the disk, servicing
the requests at 65, 67, 98, 122, 124, and 183 (Figure 10.6). If a request arrives in
the queue just in front of the head, it will be serviced almost immediately; a
request arriving just behind the head will have to wait until the arm moves to
the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests



SCAN and C-SCAN

• SCAN or elevator algorithm
• Start at one end of the disk and move to the other 

end
• Service everything on the way

• Consider density of requests when changing 
direction
• Have just serviced (almost) everything in that vicinity
• Those furthest away have waited longest so…

• Circular-SCAN
• Return back to the start when reaching the end
• Cylinders treated as a circular list, wrapping when 

reaching the end
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Figure 10.6 SCAN disk scheduling.

is at the other end of the disk. These requests have also waited the longest, so
why not go there first? That is the idea of the next algorithm.

10.4.4 C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide
a more uniform wait time. Like SCAN, C-SCAN moves the head from one end
of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately returns to the beginning of
the disk without servicing any requests on the return trip (Figure 10.7). The
C-SCAN scheduling algorithm essentially treats the cylinders as a circular list
that wraps around from the final cylinder to the first one.

0 14 37 53 65 67 98 122124 183199

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

Figure 10.7 C-SCAN disk scheduling.
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• Mass storage
• Disk scheduling
• Disk management
• Booting from disk

• Files
• Directories
• Other issues
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Disk management

• Low-level or physical formatting 
• Divides a disk into sectors that the disk controller can read and write
• Each sector can hold header information, plus data, plus error correction code (ECC)
• Usually 512 bytes of data but can be selectable

• Logical formatting to make a file system required before disk can hold files
• OS needs to record its own data structures on the disk so it can find files
• Partition the disk into one or more groups of cylinders, each treated as a logical disk
• To increase efficiency most file systems group blocks into clusters

• Disk I/O done in blocks
• File I/O done in clusters

• Some applications, e.g., databases, will prefer “raw” block access

10. Storage & File Management 13



Booting from disk

• OS needs to know where to start looking
• BIOS (or similar) is “firm-coded” to e.g., read first block of first disk

• First block contains bootloader program, which is executed
• Bootloader knows enough to start 

reading in the right blocks to read 
the filesystem starting with 
the partition table
• Sometimes need to chain-load to 

get enough code to parse more 
complex filesystems

• Allows for handling of bad blocks
• E.g., by sector sparing where spare good 

blocks logically substitute for bad ones
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Figure 10.9 Booting from disk in Windows.

restored from backup media to the new disk. More frequently, one or more
sectors become defective. Most disks even come from the factory with bad
blocks. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On simple disks, such as some disks with IDE controllers, bad blocks are
handled manually. One strategy is to scan the disk to find bad blocks while
the disk is being formatted. Any bad blocks that are discovered are flagged as
unusable so that the file system does not allocate them. If blocks go bad during
normal operation, a special program (such as the Linux badblocks command)
must be run manually to search for the bad blocks and to lock them away. Data
that resided on the bad blocks usually are lost.

More sophisticated disks are smarter about bad-block recovery. The con-
troller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as sector sparing or forwarding.

A typical bad-sector transaction might be as follows:

• The operating system tries to read logical block 87.

• The controller calculates the ECC and finds that the sector is bad. It reports
this finding to the operating system.

• The next time the system is rebooted, a special command is run to tell the
controller to replace the bad sector with a spare.

• After that, whenever the system requests logical block 87, the request is
translated into the replacement sector’s address by the controller.

Note that such a redirection by the controller could invalidate any opti-
mization by the operating system’s disk-scheduling algorithm! For this reason,
most disks are formatted to provide a few spare sectors in each cylinder and
a spare cylinder as well. When a bad block is remapped, the controller uses a
spare sector from the same cylinder, if possible.

As an alternative to sector sparing, some controllers can be instructed to
replace a bad block by sector slipping. Here is an example: Suppose that

10. Storage & File Management 14
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• Mass storage
• Disk scheduling
• Disk management
• Files
• File systems
• File metadata
• File and directory operations

• Directories
• Other issues
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Files

• The basic abstraction for non-volatile storage: 
• Can be a user or an OS abstraction (convenience vs flexibility)
• Typically comprises a single contiguous logical address space 

• Many different types
• Data: numeric, character, binary (text vs binary split quite common)
• Program: source, object, executable
• “Documents”

• Can have varied internal structure: 
• None: a simple sequence of words or bytes
• Simple record structures: lines, fixed length, variable length
• Complex internal structure: formatted document, relocatable object file 
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File system

• Consider only simple file systems
• Directory service maps names to file 

identifiers and metadata, handles access and 
existence control

• Storage service stores data on disk, including 
storing directories

• Each partition formatted with a filesystem 
• Logically, a directory and some files
• Directory maps human name (hello.java) to 

System File ID (typically an integer)
• Different filesystems implement using 

different structures

Directory 
Service

Storage Service

Disk Handler

text name user file-id information requested
from file

user space

I/O subsystem

filing system

Name SFID

hello.java

23812Makefile

12353

README 9742
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File metadata

• The mapping from SFID to File Control Block (FCB)
is filesystem specific 
• Files typically have a number of other attributes or 

metadata stored in directory
• Type – file or directory
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing, executing
• Time, date, and user identification – data for protection, security, and usage monitoring

• OS must also track open files in an open-file table containing
• File pointer or cursor: last read/written location per process with the file open
• File-open count: how often is each file open, so as to remove it from open-file table when 

last process closes it
• On-disk location: a cache of data access information
• Access rights: per-process access mode information

Type (file or directory)

Location on Disk
Size in bytes

Time of creation

Access permissions

File Control Block

Metadata Table
(on disk)

f(SFID)

SFID
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File and directory operations

• A file as an abstract data type (ADT) over some (possibly structured) bytes 
• Directory operations to manage lifetime of a file

• Create allocates blocks to back the file
• Open/Close handle to the file, typically including OS maintained current position (cursor)
• Delete returns allocated blocks to the free list
• Stat retrieves file status including existence ~ reads and returns file metadata

• File operations to interact with file
• Write provided data at cursor location
• Read data at cursor location into provided 

memory
• Truncate clips length of file to end at current cursor value

• Access pattern:
• Random access permits seek to move cursor without reading or writing
• Sequential access permits only rewind to move cursor back to beginning

11.2 Access Methods 513

beginning end
current position

rewind
read or write

Figure 11.4 Sequential-access file.

functions operate in terms of blocks. The conversion from logical records to
physical blocks is a relatively simple software problem.

Because disk space is always allocated in blocks, some portion of the last
block of each file is generally wasted. If each block were 512 bytes, for example,
then a file of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is internal fragmentation. All file systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

11.2 Access Methods

Files store information. When it is used, this information must be accessed
and read into computer memory. The information in the file can be accessed
in several ways. Some systems provide only one access method for files.
while others support many access methods, and choosing the right one for
a particular application is a major design problem.

11.2.1 Sequential Access

The simplest access method is sequential access. Information in the file is
processed in order, one record after the other. This mode of access is by far the
most common; for example, editors and compilers usually access files in this
fashion.

Reads and writes make up the bulk of the operations on a file. A read
operation—read next()—reads the next portion of the file and automatically
advances a file pointer, which tracks the I/O location. Similarly, the write
operation—write next()—appends to the end of the file and advances to the
end of the newly written material (the new end of file). Such a file can be reset
to the beginning, and on some systems, a program may be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 11.4, is based on a tape model of a file and
works as well on sequential-access devices as it does on random-access ones.

11.2.2 Direct Access

Another method is direct access (or relative access). Here, a file is made up
of fixed-length logical records that allow programs to read and write records
rapidly in no particular order. The direct-access method is based on a disk
model of a file, since disks allow random access to any file block. For direct
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Opening a file

• In-memory directory structure previously read from disk resolves file 
name to a file control block

548 Chapter 12 File-System Implementation

directory structure
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(b)
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Figure 12.3 In-memory file-system structures. (a) File open. (b) File read.

file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers to it as a
file handle.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 12.3.
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file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers to it as a
file handle.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 12.3.

Reading a file

• Using per-process open-file table, index (file handle or file descriptor) resolves to 
system-wide open-file table containing file-control block which resolves to actual 
data blocks on disk
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Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Tree-structured
• Acyclic-graph structured
• File system mounting

• Other issues
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Directories

• Implementations must provide
• Grouping, to enable related files to be kept together
• Naming, for user convenience so different files can have the same name and 

one file can have many names
• Efficiency, to find files quickly

• Single-level directory is simplest
• Naming and grouping problems though

• Two-level directory is next (FAT)
• Same names for different users via paths
• Efficient searching but no grouping
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Figure 11.9 Single-level directory.

their data file test.txt, then the unique-name rule is violated. For example,
in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most file
systems support file names of up to 255 characters, so it is relatively easy to
select unique file names.

Even a single user on a single-level directory may find it difficult to
remember the names of all the files as the number of files increases. It is not
uncommon for a user to have hundreds of files on one computer system and an
equal number of additional files on another system. Keeping track of so many
files is a daunting task.

11.3.4 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of file names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own user file
directory (UFD). The UFDs have similar structures, but each lists only the
files of a single user. When a user job starts or a user logs in, the system’s
master file directory (MFD) is searched. The MFD is indexed by user name or
account number, and each entry points to the UFD for that user (Figure 11.10).

When a user refers to a particular file, only his own UFD is searched. Thus,
different users may have files with the same name, as long as all the file names
within each UFD are unique. To create a file for a user, the operating system
searches only that user’s UFD to ascertain whether another file of that name
exists. To delete a file, the operating system confines its search to the local UFD;
thus, it cannot accidentally delete another user’s file that has the same name.

cat bo a test x data aa

user 1 user 2 user 3 user 4

data a testuser file
directory

master file
directory

Figure 11.10 Two-level directory structure.
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Tree-structured directories

• Provide naming convenience, efficient search, and grouping
• Introduce notion of current working directory (CWD)

cd /spell/mail/prog
type list

• Gives rise to absolute or relative 
path names
• Name is resolved with respect to the 

CWD
• Other operations also typically 

carried out relative to CWD
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The standard solution is to complicate the search procedure slightly. A
special user directory is defined to contain the system files (for example, user
0). Whenever a file name is given to be loaded, the operating system first
searches the local UFD. If the file is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system files.
The sequence of directories searched when a file is named is called the search
path. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and Windows. Systems can also be designed so that each user has his
own search path.

11.3.5 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 11.11). This generalization allows users to create their
own subdirectories and to organize their files accordingly. A tree is the most
common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

A directory (or subdirectory) contains a set of files or subdirectories. A
directory is simply another file, but it is treated in a special way. All directories
have the same internal format. One bit in each directory entry defines the entry
as a file (0) or as a subdirectory (1). Special system calls are used to create and
delete directories.

In normal use, each process has a current directory. The current directory
should contain most of the files that are of current interest to the process.
When reference is made to a file, the current directory is searched. If a file
is needed that is not in the current directory, then the user usually must
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Figure 11.11 Tree-structured directory structure.10. Storage & File Management 24



Acyclic-graph structured directories

• Generalise to a DAG so can share subdirectories and files
• Allows files to have two different absolute names (aliasing)

• Need to know when to actually delete a file
• Use back-references or reference counting
• Compare soft- and hard-links in Unix

• Need to know how to account storage
• Which user “owns” the storage backing the file
• For deletion and generally for permissions

• Need to avoid creating cycles
• Forbid links to subdirectories
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11.3.6 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and files of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in their
own directories. In this situation, the common subdirectory should be shared.
A shared directory or file exists in the file system in two (or more) places at
once.

A tree structure prohibits the sharing of files or directories. An acyclic graph
—that is, a graph with no cycles—allows directories to share subdirectories
and files (Figure 11.12). The same file or subdirectory may be in two different
directories. The acyclic graph is a natural generalization of the tree-structured
directory scheme.

It is important to note that a shared file (or directory) is not the same as two
copies of the file. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the file, the changes will not
appear in the other’s copy. With a shared file, only one actual file exists, so any
changes made by one person are immediately visible to the other. Sharing is
particularly important for subdirectories; a new file created by one person will
automatically appear in all the shared subdirectories.

When people are working as a team, all the files they want to share can be
put into one directory. The UFD of each team member will contain this directory
of shared files as a subdirectory. Even in the case of a single user, the user’s file
organization may require that some file be placed in different subdirectories.
For example, a program written for a particular project should be both in the
directory of all programs and in the directory for that project.

Shared files and subdirectories can be implemented in several ways. A
common way, exemplified by many of the UNIX systems, is to create a new
directory entry called a link. A link is effectively a pointer to another file

list all w count words list

list rade w7

count

root dict spell

Figure 11.12 Acyclic-graph directory structure.
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File-system mounting

• Filesystems must be mounted at a mount-point before access
• E.g., a pre-existing file-system

…an unmounted filesystem in 
another partition

…is mounted, overlaying
the users subdirectory
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Figure 11.14 File system. (a) Existing system. (b) Unmounted volume.

To illustrate file mounting, consider the file system depicted in Figure
11.14, where the triangles represent subtrees of directories that are of interest.
Figure 11.14(a) shows an existing file system, while Figure 11.14(b) shows an
unmounted volume residing on /device/dsk. At this point, only the files
on the existing file system can be accessed. Figure 11.15 shows the effects of
mounting the volume residing on /device/dsk over /users. If the volume is
unmounted, the file system is restored to the situation depicted in Figure 11.14.

Systems impose semantics to clarify functionality. For example, a system
may disallow a mount over a directory that contains files; or it may make the
mounted file system available at that directory and obscure the directory’s
existing files until the file system is unmounted, terminating the use of the file
system and allowing access to the original files in that directory. As another
example, a system may allow the same file system to be mounted repeatedly,
at different mount points; or it may only allow one mount per file system.
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Figure 11.15 Mount point.
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Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Other issues
• Consistency
• Efficiency
• Buffer cache
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Consistency issues

• Arise without multiple threads!
• E.g., Deleting a file uses the unlink system call

• Invoked from the shell as rm <filename>
• Implementation must

• Check if user has sufficient permissions on the file (write access)
• Check if user has sufficient permissions on the directory (write access)
• If ok, remove entry from directory
• Decrement reference count on inode
• If reference count is now zero, free data blocks and inode

• If the system crashes, must check the entire filesystem (fsck)
• Check if any block is unreferenced, and mark free
• Check if any block double referenced, and update reference counts
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Efficiency and performance

• Efficiency depends on, e.g, 
• Disk allocation and directory algorithms

• Similar challenges to memory of allocation, fragmentation, compaction
• Types of metadata in directory entries

• E.g., file creation time vs last written time vs last accessed time
• Pre-allocation or as-needed allocation of metadata structures

• Fixed-size or varying-size data structures

• Performance measures include
• Keep data and metadata close together
• Create a buffer cache, a separate part of memory for often used blocks

• Synchronous writes sometimes requested by apps or needed by OS
• Require no buffering / caching – writes must hit the disk before acknowledgement
• Asynchronous writes more common, can be buffered, are faster
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Buffer caches

• Not unified 
• Page cache caches pages not disk blocks, using virtual 

memory techniques and addresses
• Memory-mapped I/O uses a page cache while routine 

I/O through the file system uses the buffer (disk) cache

• Unified
• A single buffer cache uses a single 

page cache for both memory-mapped 
I/O and normal disk I/O
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Figure 12.11 I/O without a unified buffer cache.

Some versions of UNIX and Linux provide a unified buffer cache. To
illustrate the benefits of the unified buffer cache, consider the two alternatives
for opening and accessing a file. One approach is to use memory mapping
(Section 9.7); the second is to use the standard system calls read() and
write(). Without a unified buffer cache, we have a situation similar to Figure
12.11. Here, the read() and write() system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches—the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the file system and storing them in the buffer cache. Because the
virtual memory system does not interface with the buffer cache, the contents
of the file in the buffer cache must be copied into the page cache. This situation,
known as double caching, requires caching file-system data twice. Not only
does it waste memory but it also wastes significant CPU and I/O cycles due to
the extra data movement within system memory. In addition, inconsistencies
between the two caches can result in corrupt files. In contrast, when a unified
buffer cache is provided, both memory mapping and the read() and write()
system calls use the same page cache. This has the benefit of avoiding double
caching, and it allows the virtual memory system to manage file-system data.
The unified buffer cache is shown in Figure 12.12.

Regardless of whether we are caching disk blocks or pages (or both), LRU
(Section 9.4.4) seems a reasonable general-purpose algorithm for block or page
replacement. However, the evolution of the Solaris page-caching algorithms
reveals the difficulty in choosing an algorithm. Solaris allows processes and the
page cache to share unused memory. Versions earlier than Solaris 2.5.1 made
no distinction between allocating pages to a process and allocating them to
the page cache. As a result, a system performing many I/O operations used
most of the available memory for caching pages. Because of the high rates of
I/O, the page scanner (Section 9.10.2) reclaimed pages from processes—rather
than from the page cache—when free memory ran low. Solaris 2.6 and Solaris
7 optionally implemented priority paging, in which the page scanner gives
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Figure 12.12 I/O using a unified buffer cache.

priority to process pages over the page cache. Solaris 8 applied a fixed limit to
process pages and the file-system page cache, preventing either from forcing
the other out of memory. Solaris 9 and 10 again changed the algorithms to
maximize memory use and minimize thrashing.

Another issue that can affect the performance of I/O is whether writes to
the file system occur synchronously or asynchronously. Synchronous writes
occur in the order in which the disk subsystem receives them, and the writes are
not buffered. Thus, the calling routine must wait for the data to reach the disk
drive before it can proceed. In an asynchronous write, the data are stored in
the cache, and control returns to the caller. Most writes are asynchronous.
However, metadata writes, among others, can be synchronous. Operating
systems frequently include a flag in the open system call to allow a process to
request that writes be performed synchronously. For example, databases use
this feature for atomic transactions, to assure that data reach stable storage in
the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the file. A file being read or
written sequentially should not have its pages replaced in LRU order, because
the most recently used page will be used last, or perhaps never again. Instead,
sequential access can be optimized by techniques known as free-behind and
read-ahead. Free-behind removes a page from the buffer as soon as the next
page is requested. The previous pages are not likely to be used again and
waste buffer space. With read-ahead, a requested page and several subsequent
pages are read and cached. These pages are likely to be requested after the
current page is processed. Retrieving these data from the disk in one transfer
and caching them saves a considerable amount of time. One might think that
a track cache on the controller would eliminate the need for read-ahead on a
multiprogrammed system. However, because of the high latency and overhead
involved in making many small transfers from the track cache to main memory,
performing a read-ahead remains beneficial.

The page cache, the file system, and the disk drivers have some interesting
interactions. When data are written to a disk file, the pages are buffered in the
cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk-head seeks and to
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Summary

• Mass storage
• Hard disks
• Solid state disks

• Disk scheduling
• First-Come First-Served
• Shortest Seek Time First
• SCAN, C-SCAN

• Disk management
• Booting from disk

• Files
• File systems
• File metadata
• File and directory operations

• Directories
• Tree-structured
• Acyclic-graph structured
• File system mounting

• Other issues
• Consistency
• Efficiency
• Buffer cache
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