09. 1/O Systems

9th ed: Ch. 13
10t ed: Ch. 12

Objectives

* To understand the general structure of the I/0 subsystem

* To know different ways of performing 1/0O including polling, interrupts,
and direct memory access

* To know of different types of device

* To be aware of other issues including caching, scheduling, and
performance

Outline

* |/O subsystem
* |/O devices
* Kernel data structures

Outline

* |/O subsystem
* Polling
* Interrupts
* Interrupt handling
e Direct Memory Access (DMA)

Computers and computation rely on /O

* Need input data to process, and means to output results

There is a huge range of |/O devices
 Human readable: graphical displays, keyboard, mouse, printers
* Machine readable: disks, tapes, CD, sensors
 Communications: modems, network interfaces, radios

All differ significantly from one another in several ways:
* Data rate: orders of magnitude different between keyboard and network
Control complexity: printers much simpler than disks
Transfer unit and direction: blocks vs characters vs frame stores
Data representation
Error handling

/0 management is therefore a major component of an OS
* New devices come along frequently
* |/O performance is critical to system performance
* Also wish to present a homogenous API

/O subsystem

* Incredible variety of I/O devices but there are commonalities

* Signals from 1/O devices interface with computer

* A device has at least one connection point, or port

* Devices interconnect via a bus, either daisy-chained or shared direct access

* Devices have integrated or separate controllers (host adapters) containing processor,

microcode, private memory, etc that operate the device, handle bus connections, any ports

Typically device will have registers to hold commands, addresses, data

* E.g., Data-in register, data-out register, status register, control register

* Devices have addresses and are used Ny |
by EIther Unp 'r{‘-/ai-- Application-I/O Interface - Virtual Device Layer
* Direct I/O instructions, usually privileged, or

. . o I/O Buffering I/O Scheduling Common I/O Functions
* Memory-mapped I/O, where device registers Priv -
are mapr)ed into processor address space, [Devico) [Devoe \ [Devoe) L pip)oer
especially when large (e.g., graphics cards) i Driver 1 Driver, Driver)t

5SSO SUSOUS A -

HW Keyboard| |HardDisk| + « « «| Network Device Layer

Polling

error (R/0)

* Consider a simple device ‘/ ——1 command-ready (#/0)
* Three registers: status, data and command T device-busy (R/0)
* Host can read and write registers via the bus status
* Polled mode operation is as follows, for every byte:
* Host repeatedly reads device-busy until clear data (r/w)
* Host sets read or write bit in command register, and __{— read (W/0)
puts data into data register write (W/0)
* Host sets command-ready bit in status register command

* Device sees command-ready and sets device-busy
* Device performs requested operation, executing transfer
* Device clears command-ready and any error bit, and then clears device-busy

» Step 1is polling — a busy-wait cycle, waiting for some 1I/0 from device
* This is ok if the device is fast but very inefficient if not

e If tlhe CPU switches to another task it risks missing a cycle leading to data being overwritten
or lost

Interrupts

More efficient than polling when device is
relatively infrequently accessed

Device triggers interrupt-request line
e Checked by the CPU after each instruction
* Aligns interrupts with instruction boundaries

Interrupt handler receives the interrupt
unless masked

Interrupt vector dispatches interrupt to
correct handler
e Context switch required before and after

* Priorities applied, and some interrupts may be
non-maskable

CPU
1

> device driver initiates 1/0

I/O controller

CPU executing checks for
interrupts between instructions
1

'
¥

initiates 1/0

CPU receiving interrupt,

3

transfers control to
interrupt handler

5

input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task

Intel Pentium interrupt vectors

09. 1/0 Systems

vector number

description

0 NO o0k~ WN =2 O

e e L S e ¢
o NOoO ok WD = O ©

19-31
32-255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

Handling interrupts

* Split the implementation into two parts:
* Bottom half, the interrupt handler
* Top half, interrupt service routines (ISR; per-device)

* Processor-dependent interrupt handler may:
* Save more registers and establish a language environment
* Demultiplex interrupt in software and invoke relevant ISR

* Device- (not processor-) dependent interrupt service routine will:
* For programmed IO device: transfer data and clear interrupt

* For DMA devices: acknowledge transfer; request any more pending; signal
any waiting processes; and finally enter the scheduler or return

* But who is scheduling whom? Consider, e.g., network livelock

Direct Memory Access (DMA)

* Used for high-speed |/O devices able to transmit information at close
to memory speeds
* Interrupts good but (e.g.) livelock a problem

» Better if devices can read and write processor memory directly — Direct
Memory Access (DMA)

* Device controller transfers blocks of data from buffer storage directly
to main memory without CPU intervention with generic DMA
“command” include, e.g.,

 Source address plus increment / decrement / do nothing
* Sink address plus increment / decrement / do nothing
* Transfer size

Direct Memory Access (DMA)

* Only generate one interrupt per block rather than one per byte

* DMA channels may be provided by dedicated DMA controller, or by devices
themselves

* E.g. disk controller passes disk address, Rtied el B
memory address and size, and read/write to buffer at address X
5. DMA controller 2. device driver tells
V4 . . H transfers bytes to disk controller t
e All that’s required is that a device can i xneasng wansier G bytes
memory address from disk to buffer e
become a bus master anddecressiig . at address X
* Requires ability for arbitration as not 6. when C = 0, DMA_ nterrupt [-CPUmemory bus—] memory| puffer
. « . interrupts CPU tp signal ntroller
just CPU driving the bus transer completion contro
* Involves cycle stealing as taking the { PCI bus
bus away rom the CPU 3. disk controller initiates

IDE disk DMA transfer

 Scatter/Gather DMA chains multiple controller | 4. isk controller sends

each byte to DMA

requests, e.g., of disk reads into set of buffers controllr
(@s4) (@

Outline

* |/O devices
* Device characteristics
 Blocking, non-blocking, asynchronous I/O
* |/O structure

|/O device characteristics

Block devices, e.g. disk drives, CD
* Commands include read, write, seek
e Can have raw access or via (e.g.) filesystem
(“cooked”) or memory-mapped
Character devices, e.g. keyboards, mice, serial
 Commands include get, put
* Layer libraries on top for line editing, etc

Network Devices

* Vary enough from block and character devices to
get their own interface

* Unix and Windows NT use the Berkeley Socket
interface
Miscellaneous
e Current time, elapsed time, timers, clocks
* On Unix, ioctl covers other odd aspects of I/0

aspect variation example

data-transfer mode character terminal
block disk
sequential modem

access method = lor CD-ROM
synchronous tape

el Sereelite asynchronous keyboard

: dedicated tape

Slie sharable keyboard

device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM

I/O direction write only graphics controller
read—write disk

Blocking, non-blocking, asynchronous /0

From programmer perspective, 1/0 system calls exhibit one of three behaviours

Blocking
* Process suspended until I/0 completed

* Easy to use and understand but
insufficient for some needs

Nonblocking
* |/O call returns all available data, immediately
 Returns count of bytes read/written, maybe 0]

 select following read/write
* Relies on multi-threading

Asynchronous

kernel user {

~

~

* Process continues running while 1/0 executes with 1/O subsystem explicitly signalling 1/0

completion

Synchronous 1/0

Asynchronous I/0

requesting process
waiting

A

A

A

requesting process
A

3

device driver

device driver

I
|
\

interrupt handler

I

|

\
\

/

\
linterrupt handler
1

hardware

L data transfer

hardware

--data transfer —

time ———

time ———

* Most flexible and potentially most efficient, but also most complex to use

user

J\. J

~ kernel

|/O structure

* Synchronous
 After /O starts, control returns to user program only upon 1/0O completion

Wait instruction idles the CPU until the next interrupt
Wait loop (contention for memory access)
At most one |/O request is outstanding at a time, no simultaneous I/O processing

e Asynchronous

After 1/O starts, control returns to user program without waiting for I/0 completion

System call allows application to request to the OS to allow user to wait for 1/0
completion

Device-status table contains entry for each I/O device indicating its type, address,
and state

OS indexes into |/O device table to determine device status and to modify table entry
to include interrupt

/O request lifecycle

e Consider process reading a file from disk:

Determine device holding file

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

request I/O

system call

can already

user
process

kernel
1/0 subsystem

1/0 completed,
input data available, or
output completed

!

return from system call

satisfy request?

yes

send request to device
driver, block process if
appropriate

|

process request, issue
commands to controller,

kernel
1/0 subsystem

transfer data
(if appropriate) to process,
return completion
or error code

determine which 1/0

b device completed, indicate state
conflgure. cpntroller to driver chanpge - ‘I/O subsystem
block until interrupted

interruot receive interrupt, store

device-controller commands handlepr data in device-driver buffer
if input, signal to unblock
device driver
interrupt
I
device
monitor device, controller 1/0 completed
interrupt when I/O ; ;
completed generate interrupt
time >

Outline

* Kernel data structures
* Vectored I/O
* Buffering
* Otherissues

Kernel data structures

* To manage all this, the OS kernel must maintain state for IO components:
* Open file tables
* Network connections
e Character device states

e Results in many complex and performance critical data structures to track
buffers, memory allocation, “dirty” blocks

* Consider reading a file from disk for a process:
* Determine device holding file

Translate name to device representation

Physically read data from disk into buffer

Make data available to requesting process

Return control to process

Vectored |/O

* Enable one system call to perform multiple I/O operations

* E.g., Unix readve accepts a vector of multiple buffers to read into or write
from

* This scatter-gather method better than multiple individual 1/0O calls
* Decreases context switching and system call overhead

* Some versions provide atomicity
 Avoids, e.g., worry about multiple threads changing data while |/O occurring

Buffering

* So OS can deal with mismatches between devices, e.g., speed, transfer
size), different buffering strategies can be used

 Single buffering: OS assigns a system buffer to the user request

* Double buffering: process consumes from one buffer while system fills the next

 Circular buffering: most useful for bursty 10

e Details often dictated by device type: character devices buffer by line; network

devices are very bursty; block devices often the major user of IO buffer memory

* Can smooth peaks/troughs in data rate but can’t help if on average:

* Process demand > data rate — the process will spend time waiting, or

e Data rate > capability of the system — the buffers will all fill and data will spill

 However, buffering can introduce jitter which is bad for real-time or
multimedia applications

Other issues

* Caching: fast memory holding copy of data for both reads and writes; critical to 10 performance
* Scheduling: order 10 requests in per-device queues; some OSs may even attempt to be fair

* Spooling: queue output for a device, useful if device is "single user" (e.g., printer), i.e. can serve
only one request at a time

* Device (rj()eservation: system calls for acquiring or releasing exclusive access to a device (care
require

* Error handling: generally get some form of error number or code when request fails, logged into
system error log (e.g., transient write failed, disk full, device unavailable, ...)

* Protection: process might attempt to disrupt normal operation via illegal I/O operations so all
such instructions must be privileged and memory-mapped and I/O port memory locations
protected, with I/O performed via system calls

* Performance: I/0O really affects performance through demands on CPU to execute device driver,
kernel 1/O code, context switches due to interrupts, data copying

Summary

* |/O subsystem * Kernel data structures
* Polling * Vectored I/O
* Interrupts * Buffering
* Interrupt handling * Other issues
e Direct Memory Access (DMA)
* 1/0 devices

* Device haracteristics

* Blocking, non-blocking,
asynchronous 1/0

* |/O structure

