
09. I/O Systems
9th ed: Ch. 13

10th ed: Ch. 12

Objectives

• To understand the general structure of the I/O subsystem
• To know different ways of performing I/O including polling, interrupts,

and direct memory access
• To know of different types of device
• To be aware of other issues including caching, scheduling, and

performance

09. I/O Systems 2

Outline

• I/O subsystem
• I/O devices
• Kernel data structures

09. I/O Systems 3

Outline

• I/O subsystem
• Polling
• Interrupts
• Interrupt handling
• Direct Memory Access (DMA)

• I/O devices
• Kernel data structures

09. I/O Systems 4

Computers and computation rely on I/O

• Need input data to process, and means to output results
• There is a huge range of I/O devices

• Human readable: graphical displays, keyboard, mouse, printers
• Machine readable: disks, tapes, CD, sensors
• Communications: modems, network interfaces, radios

• All differ significantly from one another in several ways:
• Data rate: orders of magnitude different between keyboard and network
• Control complexity: printers much simpler than disks
• Transfer unit and direction: blocks vs characters vs frame stores
• Data representation
• Error handling

• I/O management is therefore a major component of an OS
• New devices come along frequently
• I/O performance is critical to system performance
• Also wish to present a homogenous API

09. I/O Systems 5

I/O subsystem

• Incredible variety of I/O devices but there are commonalities
• Signals from I/O devices interface with computer
• A device has at least one connection point, or port
• Devices interconnect via a bus, either daisy-chained or shared direct access
• Devices have integrated or separate controllers (host adapters) containing processor,

microcode, private memory, etc that operate the device, handle bus connections, any ports
• Typically device will have registers to hold commands, addresses, data

• E.g., Data-in register, data-out register, status register, control register
• Devices have addresses and are used

by either
• Direct I/O instructions, usually privileged, or
• Memory-mapped I/O, where device registers

are mapped into processor address space,
especially when large (e.g., graphics cards) Device Driver Layer

Device
Driver

Device
Driver

Device
Driver

Common I/O Functions

Keyboard HardDisk Network Device Layer

Virtual Device Layer

H/W

Unpriv

Priv
I/O SchedulingI/O Buffering

Application-I/O Interface

09. I/O Systems 6

Polling

• Consider a simple device
• Three registers: status, data and command
• Host can read and write registers via the bus

• Polled mode operation is as follows, for every byte:
• Host repeatedly reads device-busy until clear
• Host sets read or write bit in command register, and

puts data into data register
• Host sets command-ready bit in status register
• Device sees command-ready and sets device-busy
• Device performs requested operation, executing transfer
• Device clears command-ready and any error bit, and then clears device-busy

• Step 1 is polling – a busy-wait cycle, waiting for some I/O from device
• This is ok if the device is fast but very inefficient if not
• If the CPU switches to another task it risks missing a cycle leading to data being overwritten

or lost

status

command

data (r/w)

device-busy (R/O)

command-ready (W/O)

error (R/O)

read (W/O)

write (W/O)

*

09. I/O Systems 7

Interrupts

• More efficient than polling when device is
relatively infrequently accessed
• Device triggers interrupt-request line

• Checked by the CPU after each instruction
• Aligns interrupts with instruction boundaries

• Interrupt handler receives the interrupt
unless masked
• Interrupt vector dispatches interrupt to

correct handler
• Context switch required before and after
• Priorities applied, and some interrupts may be

non-maskable

592 Chapter 13 I/O Systems

device driver initiates I/O

CPU receiving interrupt,
transfers control to
interrupt handler

CPU resumes
processing of

interrupted task

CPU

1

I/O controller

CPU executing checks for
interrupts between instructions

5

interrupt handler
processes data,

returns from interrupt

initiates I/O

3

2

4

7

input ready, output
complete, or error

generates interrupt signal

6

Figure 13.3 Interrupt-driven I/O cycle.

13.2.2 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a wire
called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, the CPU performs a state save and jumps to the
interrupt-handler routine at a fixed address in memory. The interrupt handler
determines the cause of the interrupt, performs the necessary processing,
performs a state restore, and executes a return from interrupt instruction
to return the CPU to the execution state prior to the interrupt. We say that
the device controller raises an interrupt by asserting a signal on the interrupt
request line, the CPU catches the interrupt and dispatches it to the interrupt
handler, and the handler clears the interrupt by servicing the device. Figure 13.3
summarizes the interrupt-driven I/O cycle. We stress interrupt management
in this chapter because even single-user modern systems manage hundreds of
interrupts per second and servers hundreds of thousands per second.

The basic interrupt mechanism just described enables the CPU to respond
to an asynchronous event, as when a device controller becomes ready for
service. In a modern operating system, however, we need more sophisticated
interrupt-handling features.

09. I/O Systems 8

Intel Pentium interrupt vectors
594 Chapter 13 I/O Systems

descriptionvector number

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19–31
32–255

divide error
debug exception
null interrupt
breakpoint
INTO-detected overflow
bound range exception
invalid opcode
device not available
double fault
coprocessor segment overrun (reserved)
invalid task state segment
segment not present
stack fault
general protection
page fault
(Intel reserved, do not use)
floating-point error
alignment check
machine check
(Intel reserved, do not use)
maskable interrupts

Figure 13.4 Intel Pentium processor event-vector table.

An operating system has other good uses for an efficient hardware and
software mechanism that saves a small amount of processor state and then
calls a privileged routine in the kernel. For example, many operating systems
use the interrupt mechanism for virtual memory paging. A page fault is an
exception that raises an interrupt. The interrupt suspends the current process
and jumps to the page-fault handler in the kernel. This handler saves the state
of the process, moves the process to the wait queue, performs page-cache
management, schedules an I/O operation to fetch the page, schedules another
process to resume execution, and then returns from the interrupt.

Another example is found in the implementation of system calls. Usually,
a program uses library calls to issue system calls. The library routines check
the arguments given by the application, build a data structure to convey
the arguments to the kernel, and then execute a special instruction called a
software interrupt, or trap. This instruction has an operand that identifies
the desired kernel service. When a process executes the trap instruction, the
interrupt hardware saves the state of the user code, switches to kernel mode,
and dispatches to the kernel routine that implements the requested service. The
trap is given a relatively low interrupt priority compared with those assigned
to device interrupts—executing a system call on behalf of an application is less
urgent than servicing a device controller before its FIFO queue overflows and
loses data.

Interrupts can also be used to manage the flow of control within the kernel.
For example, consider one example of the processing required to complete

09. I/O Systems 9

Handling interrupts

• Split the implementation into two parts:
• Bottom half, the interrupt handler
• Top half, interrupt service routines (ISR; per-device)

• Processor-dependent interrupt handler may:
• Save more registers and establish a language environment
• Demultiplex interrupt in software and invoke relevant ISR

• Device- (not processor-) dependent interrupt service routine will:
• For programmed IO device: transfer data and clear interrupt
• For DMA devices: acknowledge transfer; request any more pending; signal

any waiting processes; and finally enter the scheduler or return
• But who is scheduling whom? Consider, e.g., network livelock

09. I/O Systems 10

Direct Memory Access (DMA)

• Used for high-speed I/O devices able to transmit information at close
to memory speeds
• Interrupts good but (e.g.) livelock a problem
• Better if devices can read and write processor memory directly – Direct

Memory Access (DMA)
• Device controller transfers blocks of data from buffer storage directly

to main memory without CPU intervention with generic DMA
“command” include, e.g.,
• Source address plus increment / decrement / do nothing
• Sink address plus increment / decrement / do nothing
• Transfer size

09. I/O Systems 11

Direct Memory Access (DMA)

• Only generate one interrupt per block rather than one per byte
• DMA channels may be provided by dedicated DMA controller, or by devices

themselves
• E.g. disk controller passes disk address,

memory address and size, and read/write
• All that’s required is that a device can

become a bus master
• Requires ability for arbitration as not

just CPU driving the bus
• Involves cycle stealing as taking the

bus away from the CPU
• Scatter/Gather DMA chains multiple

requests, e.g., of disk reads into set of buffers

596 Chapter 13 I/O Systems

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called DMA-request and DMA-acknowledge.
The device controller places a signal on the DMA-request wire when a word
of data is available for transfer. This signal causes the DMA controller to seize
the memory bus, place the desired address on the memory-address wires,
and place a signal on the DMA-acknowledge wire. When the device controller
receives the DMA-acknowledge signal, it transfers the word of data to memory
and removes the DMA-request signal.

When the entire transfer is finished, the DMA controller interrupts the CPU.
This process is depicted in Figure 13.5. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main memory,
although it can still access data items in its primary and secondary caches.
Although this cycle stealing can slow down the CPU computation, offloading
the data-transfer work to a DMA controller generally improves the total system
performance. Some computer architectures use physical memory addresses for
DMA, but others perform direct virtual memory access (DVMA), using virtual
addresses that undergo translation to physical addresses. DVMA can perform
a transfer between two memory-mapped devices without the intervention of
the CPU or the use of main memory.

On protected-mode kernels, the operating system generally prevents
processes from issuing device commands directly. This discipline protects data
from access-control violations and also protects the system from erroneous use
of device controllers that could cause a system crash. Instead, the operating
system exports functions that a sufficiently privileged process can use to
access low-level operations on the underlying hardware. On kernels without
memory protection, processes can access device controllers directly. This direct
access can be used to achieve high performance, since it can avoid kernel
communication, context switches, and layers of kernel software. Unfortunately,

IDE disk
controller

xDMA/bus/
interrupt
controller

buffer
x

memoryCPU memory bus

PCI bus

cache

CPU

5. DMA controller
 transfers bytes to
 buffer X, increasing
 memory address
 and decreasing C
 until C ! 0

1. device driver is told
 to transfer disk data
 to buffer at address X
2. device driver tells
 disk controller to
 transfer C bytes
 from disk to buffer
 at address X

6. when C ! 0, DMA
 interrupts CPU to signal
 transfer completion

3. disk controller initiates
 DMA transfer
4. disk controller sends
 each byte to DMA
 controllerdisk

disk

disk

disk

Figure 13.5 Steps in a DMA transfer.
09. I/O Systems 12

Outline

• I/O subsystem
• I/O devices
• Device characteristics
• Blocking, non-blocking, asynchronous I/O
• I/O structure

• Kernel data structures

09. I/O Systems 13

I/O device characteristics

• Block devices, e.g. disk drives, CD
• Commands include read, write, seek
• Can have raw access or via (e.g.) filesystem

(“cooked”) or memory-mapped
• Character devices, e.g. keyboards, mice, serial

• Commands include get, put
• Layer libraries on top for line editing, etc

• Network Devices
• Vary enough from block and character devices to

get their own interface
• Unix and Windows NT use the Berkeley Socket

interface

• Miscellaneous
• Current time, elapsed time, timers, clocks
• On Unix, ioctl covers other odd aspects of I/O

13.3 Application I/O Interface 599

aspect variation example

terminal
disk

modem
CD-ROM

tape
keyboard

tape
keyboard

CD-ROM
graphics controller
disk

data-transfer mode

access method

transfer schedule

sharing

I/O direction

character
block

sequential
random

synchronous
asynchronous

dedicated
sharable

read only
write only
read–write

latency
seek time
transfer rate
delay between operations

device speed

Figure 13.7 Characteristics of I/O devices.

• Speed of operation. Device speeds range from a few bytes per second to
a few gigabytes per second.

• Read–write, read only, or write only. Some devices perform both input
and output, but others support only one data transfer direction.

For the purpose of application access, many of these differences are hidden
by the operating system, and the devices are grouped into a few conventional
types. The resulting styles of device access have been found to be useful
and broadly applicable. Although the exact system calls may differ across
operating systems, the device categories are fairly standard. The major access
conventions include block I/O, character-stream I/O, memory-mapped file
access, and network sockets. Operating systems also provide special system
calls to access a few additional devices, such as a time-of-day clock and a timer.
Some operating systems provide a set of system calls for graphical display,
video, and audio devices.

Most operating systems also have an escape (or back door) that transpar-
ently passes arbitrary commands from an application to a device driver. In
UNIX, this system call is ioctl() (for “I/O control”). The ioctl() system call
enables an application to access any functionality that can be implemented by
any device driver, without the need to invent a new system call. The ioctl()
system call has three arguments. The first is a file descriptor that connects the
application to the driver by referring to a hardware device managed by that
driver. The second is an integer that selects one of the commands implemented
in the driver. The third is a pointer to an arbitrary data structure in memory
that enables the application and driver to communicate any necessary control
information or data.

09. I/O Systems 14

Blocking, non-blocking, asynchronous I/O

• From programmer perspective, I/O system calls exhibit one of three behaviours
• Blocking

• Process suspended until I/O completed
• Easy to use and understand but

insufficient for some needs
• Nonblocking

• I/O call returns all available data, immediately
• Returns count of bytes read/written, maybe 0
• select following read/write
• Relies on multi-threading

• Asynchronous
• Process continues running while I/O executes with I/O subsystem explicitly signalling I/O

completion
• Most flexible and potentially most efficient, but also most complex to use

13.3 Application I/O Interface 603

requesting process
waiting

hardware
data transfer

hardware
data transfer

device driver device driver

interrupt handler

requesting processkernel user

(a) (b)

time time

user

kernelinterrupt handler

Figure 13.8 Two I/O methods: (a) synchronous and (b) asynchronous.

Asynchronous activities occur throughout modern operating systems.
Frequently, they are not exposed to users or applications but rather are
contained within the operating-system operation. Disk and network I/O are
useful examples. By default, when an application issues a network send
request or a disk write request, the operating system notes the request, buffers
the I/O, and returns to the application. When possible, to optimize overall
system performance, the operating system completes the request. If a system
failure occurs in the interim, the application will lose any “in-flight” requests.
Therefore, operating systems usually put a limit on how long they will buffer
a request. Some versions of UNIX flush their disk buffers every 30 seconds, for
example, or each request is flushed within 30 seconds of its occurrence. Data
consistency within applications is maintained by the kernel, which reads data
from its buffers before issuing I/O requests to devices, assuring that data not
yet written are nevertheless returned to a requesting reader. Note that multiple
threads performing I/O to the same file might not receive consistent data,
depending on how the kernel implements its I/O. In this situation, the threads
may need to use locking protocols. Some I/O requests need to be performed
immediately, so I/O system calls usually have a way to indicate that a given
request, or I/O to a specific device, should be performed synchronously.

A good example of nonblocking behavior is the select() system call for
network sockets. This system call takes an argument that specifies a maximum
waiting time. By setting it to 0, an application can poll for network activity
without blocking. But using select() introduces extra overhead, because
the select() call only checks whether I/O is possible. For a data transfer,
select() must be followed by some kind of read() or write() command.
A variation on this approach, found in Mach, is a blocking multiple-read call.
It specifies desired reads for several devices in one system call and returns as
soon as any one of them completes.

13.3.5 Vectored I/O

Some operating systems provide another major variation of I/O via their
applications interfaces. vectored I/O allows one system call to perform multiple
I/Ooperations involving multiple locations. For example, the UNIXreadv

Synchronous I/O Asynchronous I/O

09. I/O Systems 15

I/O structure

• Synchronous
• After I/O starts, control returns to user program only upon I/O completion
• Wait instruction idles the CPU until the next interrupt
• Wait loop (contention for memory access)
• At most one I/O request is outstanding at a time, no simultaneous I/O processing

• Asynchronous
• After I/O starts, control returns to user program without waiting for I/O completion
• System call allows application to request to the OS to allow user to wait for I/O

completion
• Device-status table contains entry for each I/O device indicating its type, address,

and state
• OS indexes into I/O device table to determine device status and to modify table entry

to include interrupt

09. I/O Systems 16

I/O request lifecycle

• Consider process reading a file from disk:
• Determine device holding file
• Translate name to device representation
• Physically read data from disk into buffer
• Make data available to requesting process
• Return control to process

612 Chapter 13 I/O Systems

send request to device
driver, block process if

appropriate

monitor device,
interrupt when I/O

completed

process request, issue
commands to controller,
configure controller to
block until interrupted

request I/O

system call

no

yes

I/O completed,
input data available, or

output completed

user
process

kernel
I/O subsystem

kernel
I/O subsystem

device
driver

device
controller

time

interrupt
handler

transfer data
(if appropriate) to process,

return completion
or error code

determine which I/O
completed, indicate state
change to I/O subsystem

receive interrupt, store
data in device-driver buffer
if input, signal to unblock

device driver

I/O completed,
generate interrupt

return from system call

interrupt

device-controller commands

can already
satisfy request?

Figure 13.13 The life cycle of an I/O request.

first probes the hardware buses to determine what devices are present. It then
loads in the necessary drivers, either immediately or when first required by an
I/O request.

We next describe the typical life cycle of a blocking read request, as depicted
in Figure 13.13. The figure suggests that an I/O operation requires a great many
steps that together consume a tremendous number of CPU cycles.

1. A process issues a blocking read() system call to a file descriptor of a file
that has been opened previously.

2. The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available in the buffer cache,
the data are returned to the process, and the I/O request is completed.

09. I/O Systems 17

Outline

• I/O subsystem
• I/O devices
• Kernel data structures
• Vectored I/O
• Buffering
• Other issues

09. I/O Systems 18

Kernel data structures

• To manage all this, the OS kernel must maintain state for IO components:
• Open file tables
• Network connections
• Character device states

• Results in many complex and performance critical data structures to track
buffers, memory allocation, “dirty” blocks
• Consider reading a file from disk for a process:

• Determine device holding file
• Translate name to device representation
• Physically read data from disk into buffer
• Make data available to requesting process
• Return control to process

09. I/O Systems 19

Vectored I/O

• Enable one system call to perform multiple I/O operations
• E.g., Unix readve accepts a vector of multiple buffers to read into or write

from

• This scatter-gather method better than multiple individual I/O calls
• Decreases context switching and system call overhead

• Some versions provide atomicity
• Avoids, e.g., worry about multiple threads changing data while I/O occurring

09. I/O Systems 20

Buffering

• So OS can deal with mismatches between devices, e.g., speed, transfer
size), different buffering strategies can be used
• Single buffering: OS assigns a system buffer to the user request
• Double buffering: process consumes from one buffer while system fills the next
• Circular buffering: most useful for bursty IO
• Details often dictated by device type: character devices buffer by line; network

devices are very bursty; block devices often the major user of IO buffer memory
• Can smooth peaks/troughs in data rate but can’t help if on average:

• Process demand > data rate – the process will spend time waiting, or
• Data rate > capability of the system – the buffers will all fill and data will spill

• However, buffering can introduce jitter which is bad for real-time or
multimedia applications

09. I/O Systems 21

Other issues

• Caching: fast memory holding copy of data for both reads and writes; critical to IO performance
• Scheduling: order IO requests in per-device queues; some OSs may even attempt to be fair
• Spooling: queue output for a device, useful if device is "single user" (e.g., printer), i.e. can serve

only one request at a time
• Device reservation: system calls for acquiring or releasing exclusive access to a device (care

required)
• Error handling: generally get some form of error number or code when request fails, logged into

system error log (e.g., transient write failed, disk full, device unavailable, ...)
• Protection: process might attempt to disrupt normal operation via illegal I/O operations so all

such instructions must be privileged and memory-mapped and I/O port memory locations
protected, with I/O performed via system calls

• Performance: I/O really affects performance through demands on CPU to execute device driver,
kernel I/O code, context switches due to interrupts, data copying

09. I/O Systems 22

Summary

• I/O subsystem
• Polling
• Interrupts
• Interrupt handling
• Direct Memory Access (DMA)

• I/O devices
• Device haracteristics
• Blocking, non-blocking,

asynchronous I/O
• I/O structure

• Kernel data structures
• Vectored I/O
• Buffering
• Other issues

09. I/O Systems 23

