
08. Virtual Memory
9th ed: Ch. 8, 9

10th ed: Ch. 9, 10

Objectives

• To describe the benefits of a virtual memory system
• To explain the concepts of demand paging and the working set model
• To understand some page-replacement and allocation algorithms
• To be aware of problems of thrashing and Belady’s anomaly

08. Virtual Memory 2

Outline

• Virtual memory
• Page faults
• Page replacement
• Frame allocation

08. Virtual Memory 3

Outline

• Virtual memory
• Virtual memory benefits
• Virtual address space

• Page faults
• Page replacement
• Frame allocation

08. Virtual Memory 4

Virtual memory

• Virtual addressing allows us to introduce the idea of virtual memory
• Already have valid or invalid page translations; introduce “non-

resident” designation and put such pages on a non-volatile backing
store
• Processes access non-resident memory just as if it were “the real

thing”
• Separates program logical memory from physical memory, allowing

logical address space to be much larger than physical address space
• Implemented via demand paging and demand segmentation

08. Virtual Memory 5

Virtual memory benefits

• Portability
Programs work regardless of how much physical
memory, can be larger than physical memory, and can
start executing before fully loaded

• Convenience
• Less of the program needs to be in memory at

once, thus potentially more efficient multi-
programming, less IO loading/swapping program
into memory, large sparse data-structures easily
supported

• Efficiency
• No need to waste (real) memory on code or data

which isn't used (e.g., error handling or infrequently
called routines)

402 Chapter 9 Virtual Memory

9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those pages into memory. Thus, it avoids reading
into memory pages that will not be used anyway, decreasing the swap time
and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk.
The valid–invalid bit scheme described in Section 8.5.3 can be used for this
purpose. This time, however, when this bit is set to “valid,” the associated page
is both legal and in memory. If the bit is set to “invalid,” the page either is not
valid (that is, not in the logical address space of the process) or is valid but
is currently on the disk. The page-table entry for a page that is brought into
memory is set as usual, but the page-table entry for a page that is not currently
in memory is either simply marked invalid or contains the address of the page
on disk. This situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all pages
that are actually needed and only those pages, the process will run exactly as
though we had brought in all pages. While the process executes and accesses
pages that are memory resident, execution proceeds normally.

B

D

D E
F

H

logical
memory

valid–invalid
bitframe

page table

1
0 4

62
3
4
5 9
6
7

1

0

2

3

4

5

6

7

i
v

v
i
i
v
i
i

physical memory

A

A BC

C

F G HF

1

0

2

3

4

5

6

7

9

8

10

11

12

13

14

15

A

C

E

G

Figure 9.5 Page table when some pages are not in main memory.
08. Virtual Memory 6

Virtual address space

• Virtual address space gives the logical view of how process is stored in memory
• Usually start at address 0, contiguous addresses until end of space

• Physical memory organized in page frames
• MMU must map logical to physical

• Usually stack starts at maximum logical address and grows “down” while heap grows “up”
• Maximizes address space use
• Unused address space between stack and heap is the hole

• No physical memory needed until heap or stack
grows to a new page
• Enables sparse address spaces with holes left for growth,

dynamically linked libraries, etc
• System libraries shared via mapping into virtual

address space
• Shared memory by mapping pages read-write into virtual

address space
• Pages can be shared during fork(), speeding process creation

106 Chapter 3 Processes

system has user programs, or tasks. Even on a single-user system, a user may
be able to run several programs at one time: a word processor, a Web browser,
and an e-mail package. And even if a user can execute only one program at a
time, such as on an embedded device that does not support multitasking, the
operating system may need to support its own internal programmed activities,
such as memory management. In many respects, all these activities are similar,
so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
that is dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process. A program is a
passive entity, such as a file containing a list of instructions stored on disk
(often called an executable file). In contrast, a process is an active entity,
with a program counter specifying the next instruction to execute and a set
of associated resources. A program becomes a process when an executable file
is loaded into memory. Two common techniques for loading executable files

text

0

max

data

heap

stack

Figure 3.1 Process in memory.

400 Chapter 9 Virtual Memory

shared library

stack

shared
pages

code

data

heap

code

data

heap

shared library

stack

Figure 9.3 Shared library using virtual memory.

grow downward in memory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address
space but will require actual physical pages only if the heap or stack grows.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficial because the holes can be filled as the
stack or heap segments grow or if we wish to dynamically link libraries (or
possibly other shared objects) during program execution.

In addition to separating logical memory from physical memory, virtual
memory allows files and memory to be shared by two or more processes
through page sharing (Section 8.5.4). This leads to the following benefits:

• System libraries can be shared by several processes through mapping of the
shared object into a virtual address space. Although each process considers
the libraries to be part of its virtual address space, the actual pages where
the libraries reside in physical memory are shared by all the processes
(Figure 9.3). Typically, a library is mapped read-only into the space of each
process that is linked with it.

• Similarly, processes can share memory. Recall from Chapter 3 that two
or more processes can communicate through the use of shared memory.
Virtual memory allows one process to create a region of memory that it can
share with another process. Processes sharing this region consider it part
of their virtual address space, yet the actual physical pages of memory are
shared, much as is illustrated in Figure 9.3.

• Pages can be shared during process creation with the fork() system call,
thus speeding up process creation.

We further explore these—and other—benefits of virtual memory later in
this chapter. First, though, we discuss implementing virtual memory through
demand paging.

08. Virtual Memory 7

Outline

• Virtual memory
• Page faults
• Instruction restart
• Locality of reference
• Demand paging
• Optimisations

• Page replacement
• Frame allocation

08. Virtual Memory 8

Page faults

• When an invalid page is referenced, it causes a
trap to the OS – a page fault
• E.g., when referenced for the first time

• OS handles the trap by examining another
table
• If invalid memory reference, then abort
• If valid but not resident, find a free frame and

swap the page in
• Entry is now marked valid as page is in memory

• After handing the fault, restart the instruction
that caused the fault

9.2 Demand Paging 403

load M

reference trap

i

page is on
backing store

operating
system

restart
instruction

reset page
table

page table

physical
memory

bring in
missing page

free frame

1

2

3

6

5 4

Figure 9.6 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page fault. The paging
hardware, in translating the address through the page table, will notice that
the invalid bit is set, causing a trap to the operating system. This trap is the
result of the operating system’s failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first

08. Virtual Memory 9

Instruction restart

• E.g., fetch and add two numbers from memory, and store the result back
• Fetch and decode instruction (add), then fetch operands A and B, perform the

addition, and store result to C
• If store to C faults, need to handle the fault and then restart from the beginning

(fetch and decode instruction, etc)
• Locality of reference helps: unlikely to have multiple faults per instruction

• More complex: an instruction that could access several different locations
• E.g., move a block of memory where source and destination can overlap, and either

source or destination (or both) straddle a page boundary
• As the instruction executes, the source might be modified – so it can’t be restarted

from scratch
• Handle by, e.g., microcode for instruction strides across block, touching every page

to ensure valid so no fault can occur
• Double fault: if the page fault handler itself triggers a fault – just give up…

08. Virtual Memory 10

Locality of reference

• In a short time interval, the locations
referenced by a process tend to group
into a few regions of its address space
• E.g.,
• Procedure being executed
• Sub-procedures
• Data access
• Stack variables

428 Chapter 9 Virtual Memory

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

Figure 9.19 Locality in a memory-reference pattern.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSi , for each process in the system, we can
then consider that

D =
∑

WSSi ,

where D is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSi frames. If the total demand is
greater than the total number of available frames (D > m), thrashing will occur,
because some processes will not have enough frames.

Once ! has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to

08. Virtual Memory 11

Demand paging

• Could bring entire process into memory at load
time, or bring pages into memory as needed
• Reduces I/O and memory needed and response time
• Supports more running processes
• Pure demand paging starts with every page marked

invalid
• Hardware support required

• Page table with valid / invalid bit
• Secondary memory (swap device with swap space)
• Ability to restart instructions

• Lazy swapper (or pager) never swaps a page
into memory unless page will be needed
• But what to swap in and out?

9.2 Demand Paging 401

9.2 Demand Paging

Consider how an executable program might be loaded from disk into memory.
One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach is that we may not
initially need the entire program in memory. Suppose a program starts with
a list of available options from which the user is to select. Loading the entire
program into memory results in loading the executable code for all options,
regardless of whether or not an option is ultimately selected by the user. An
alternative strategy is to load pages only as they are needed. This technique is
known as demand paging and is commonly used in virtual memory systems.
With demand-paged virtual memory, pages are loaded only when they are
demanded during program execution. Pages that are never accessed are thus
never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, though, we use a lazy swapper.
A lazy swapper never swaps a page into memory unless that page will be
needed. In the context of a demand-paging system, use of the term “swapper”
is technically incorrect. A swapper manipulates entire processes, whereas a
pager is concerned with the individual pages of a process. We thus use “pager,”
rather than “swapper,” in connection with demand paging.

program
A

swap out 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

swap in
program

B

main
memory

Figure 9.4 Transfer of a paged memory to contiguous disk space.
08. Virtual Memory 12

Demand paging performance – worst case

1. Trap to the OS
2. Save the user registers and process

state
3. Determine that the interrupt was a

page fault
4. Check the page reference was legal and

find the page on disk
5. Issue a read from the disk into a free

frame
1. Wait in a queue for this device until the

read request is serviced
2. Wait for the device seek and/or latency

time
3. Begin the transfer of the page to a free

frame

6. Reallocate CPU to another program
7. Receive an interrupt when disk I/O

completes
8. Save the registers and process state for

the other program
9. Determine that the interrupt was from

the disk
10. Correct page table and other tables to

show page is now in memory
11. Wait for the CPU to be allocated to this

process again
12. Restore the user registers, process

state, and new page table, and then
resume the interrupted instruction

08. Virtual Memory 13

Demand paging performance

• Assume memory access time is 200ns, average page-fault service time 8ms, and
page fault rate 𝑝
• 0 ≤ 𝑝 ≤ 1: if 𝑝 = 0, no page faults; if 𝑝 = 1, every reference causes a fault

• Effective Access Time (EAT)
= 1 – 𝑝 × 200ns + 𝑝 × 8 ms
= 1 – 𝑝 × 200 + 𝑝 × 8,000,000 = 200 + 7,999,800 𝑝

• If one access in 1,000 causes a page fault, EAT = 8.2𝜇secs — a 40x slowdown!
• For performance degradation below 10% require

220 ≥ EAT = 200 + 7,999,800 𝑝
• Solving for 𝑝 gives 𝑝 < 0.0000025, i.e., less than one page fault per 400,000

accesses

08. Virtual Memory 14

Demand paging optimisations

• Swap space I/O can be faster than file system I/O even on the same device
• Allocate swap in larger chunks requiring less management than file system
• Copy entire process image to swap space at process load time and then page in/out of swap space

• Demand page program from binary on disk – discard when freeing unmodified frame
• Copy-on-Write (COW)

• Both parent and child processes initially share the same pages in memory
• Only when a process actually modifies a shared page is the page copied
• COW allows more efficient process creation as only modified pages are copied

• Allocate free pages from a pool of zero-fill-on-demand pages
• Pool should always have free frames for fast demand page execution
• Don’t want to have to free a frame as well as other processing on page fault

• vfork variation of fork has child created as copy-on-write address space of parent
• Very efficient when the child just calls exec

08. Virtual Memory 15

Outline

• Virtual memory
• Page faults
• Page replacement
• Algorithms
• OPT, LRU
• Counting algorithms
• Page buffering algorithms
• Performance

• Frame allocation

08. Virtual Memory 16

Page replacement

• Paging in from disk requires a free frame — but physical memory is limited
• Either discard unused pages if total demand for pages exceeds physical memory size
• Or swap out an entire process to free some frames

• Page fault handler must
1. Locate the desired replacement page on disk
2. Select a free frame for the incoming page:

1. If there is a free frame use it, else select a victim
page to free

2. Write the victim page back to disk
3. Mark it as invalid in its process’ page tables

3. Read desired page into the now free frame
4. Restart the faulting process

• No free frames ~ doubles page fault service time

9.4 Page Replacement 411

valid–invalid bitframe

f

page table

victim

change
to invalid

page out
victim
page

page in
desired

page

reset page
table for

new page

physical
memory

2

4

1

3

f
0 i

v

Figure 9.10 Page replacement.

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select
a victim frame.

c. Write the victim frame to the disk; change the page and frame tables
accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame tables.

4. Continue the user process from where the page fault occurred.

Notice that, if no frames are free, two page transfers (one out and one in)
are required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). When
this scheme is used, each page or frame has a modify bit associated with it in
the hardware. The modify bit for a page is set by the hardware whenever any
byte in the page is written into, indicating that the page has been modified.
When we select a page for replacement, we examine its modify bit. If the bit
is set, we know that the page has been modified since it was read in from the
disk. In this case, we must write the page to the disk. If the modify bit is not set,
however, the page has not been modified since it was read into memory. In this
case, we need not write the memory page to the disk: it is already there. This
technique also applies to read-only pages (for example, pages of binary code).

08. Virtual Memory 17

Page replacement algorithms

• Want the lowest page fault on both first and subsequent accesses
• Evaluate using a sequence of page numbers, noting repeated access to same

page does not trigger a fault
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• Assume three frames available

• Will look at three algorithms
• First-In First-Out (FIFO)
• Optimal (OPT)
• Least Recently Used (LRU)

9.4 Page Replacement 413

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6

Figure 9.11 Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults—
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 9.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

9.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when
a page is brought in. We can create a FIFO queue to hold all pages in memory.
We replace the page at the head of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since
it is now first in line. Because of this replacement, the next reference, to 0, will

08. Virtual Memory 18

Page replacement algorithm: FIFO

• Simple FIFO queue for replacement gives 15 page faults

• Note that FIFO exhibits Belady’s Anomaly
• As the number of frames increases

so can the number of page faults!

9.4 Page Replacement 415

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

414 Chapter 9 Virtual Memory

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 9.12 FIFO page-replacement algorithm.

fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new
one, a fault occurs almost immediately to retrieve the active page. Some other
page must be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady’s anomaly: for some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady’s anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal
page-replacement algorithm—the algorithm that has the lowest page-fault
rate of all algorithms and will never suffer from Belady’s anomaly. Such an
algorithm does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

08. Virtual Memory 19

Page replacement algorithm: OPT

• Obvious: replace page that will not be used for the longest time

• In this case, 9 is the best we can do

• Not obvious: how to build the oracle that knows the future
• Useful as a benchmark to measure how well your algorithm performs

9.4 Page Replacement 415

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

08. Virtual Memory 20

Page replacement algorithm: LRU

• Approximate OPT
• Assume that the (recent) past is a good predictor of the future
• Replace the page not used for the longest time

• Gives 12 faults – better than FIFO but worse than OPT
• Generally good, frequently used – but how to implement?
• Note both LRU and OPT are stack algorithms so don’t have Belady’s Anomaly

416 Chapter 9 Virtual Memory

9.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the
optimal algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into memory, whereas
the OPT algorithm uses the time when a page is to be used. If we use the recent
past as an approximation of the near future, then we can replace the page that
has not been used for the longest period of time. This approach is the least
recently used (LRU) algorithm.

LRU replacement associates with each page the time of that page’s last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let SR be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on S is the same as the page-fault rate for the OPT
algorithm on SR. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 9.15. The LRU algorithm produces twelve faults. Notice that
the first five faults are the same as those for optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the three
frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be used. When it then faults
for page 2, the LRU algorithm replaces page 3, since it is now the least recently
used of the three pages in memory. Despite these problems, LRU replacement
with twelve faults is much better than FIFO replacement with fifteen.

The LRU policy is often used as a page-replacement algorithm and
is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:

• Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
field in the page-table entry for that page. In this way, we always have

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.15 LRU page-replacement algorithm.

08. Virtual Memory 21

LRU implementation

• Counter implementation
• Each PTE holds clock value, updated when page referenced through this PTE
• Replace page with smallest counter value
• Requires search through table, as well as memory write on every access

• Stack implementation
• Maintain doubly-linked stack of page numbers
• When page is referenced, move it to the top
• Requires up to six pointers to be changed
• Tail always points at the replacement

9.4 Page Replacement 417

the “time” of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to find
the LRU page and a write to memory (to the time-of-use field in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Overflow of the clock
must be considered.

• Stack. Another approach to implementing LRU replacement is to keep
a stack of page numbers. Whenever a page is referenced, it is removed
from the stack and put on the top. In this way, the most recently used
page is always at the top of the stack and the least recently used page is
always at the bottom (Figure 9.16). Because entries must be removed from
the middle of the stack, it is best to implement this approach by using a
doubly linked list with a head pointer and a tail pointer. Removing a page
and putting it on the top of the stack then requires changing six pointers
at worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRU replacement does not suffer from Belady’s
anomaly. Both belong to a class of page-replacement algorithms, called stack
algorithms, that can never exhibit Belady’s anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n
+ 1 frames. For LRU replacement, the set of pages in memory would be the n
most recently referenced pages. If the number of frames is increased, these n
pages will still be the most recently referenced and so will still be in memory.

Note that neither implementation of LRU would be conceivable without
hardware assistance beyond the standard TLB registers. The updating of the
clock fields or stack must be done for every memory reference. If we were
to use an interrupt for every reference to allow software to update such data
structures, it would slow every memory reference by a factor of at least ten,

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

Figure 9.16 Use of a stack to record the most recent page references.08. Virtual Memory 22

Approximating LRU

• Use a reference bit in the PTE, initially 0 and set to 1 when page touched
• Not Recently Used replacement

• Periodically (every 20ms) clear reference bits
• Victimise pages according to reference (and dirty) bits
• Better: use an 8 bit value, shift bit in from the left
• Maintains history for last 8 clock sweeps

• Second-chance (Clock) algorithm
• Store pages in queue as per FIFO, often with a circular queue and a current pointer
• Discard current if reference bit is 0 else reset reference bit (second chance) and increment current
• Guaranteed to terminate after at most one cycle; devolves into a FIFO if all pages are referenced

• Can emulate reference bit (and dirty bit) if no hardware support
• Mark page no access to clear reference bit
• Reference causes a trap – update PTE, and resume
• Check permissions to check if referenced

Referenced? Dirty? Comment

no no best type of page to evict

no yes next best (needs writeback)

yes no probably code in use

yes yes bad choice of victim

08. Virtual Memory 23

Counting algorithms

• Keep a count of the number of references to each page
• Least Frequently Used (LFU)
• Replace page with smallest count
• Takes no time information into account
• Page can stick in memory from initialisation
• Need to periodically decrement counts

• Most Frequently Used (MFU)
• Replace highest count page
• Low count indicates recently brought in

• Neither is common: expensive and don’t emulate OPT well

08. Virtual Memory 24

Page buffering algorithms

• Keep a minimum sized pool of free frames, always available
• Read page into free frame before selecting victim and adding to free pool
• When convenient, evict victim

• Possibly, keep list of modified pages
• When backing store otherwise idle, write pages there and set to non-dirty

• Possibly, keep free frame contents intact and note what is in them
• If referenced again before reused, no need to load contents again from disk
• Generally useful to reduce penalty if wrong victim frame selected

• Alternatively, stop having the OS guess about future page access
• Applications may have better knowledge, e.g., databases
• OS can give raw access to the disk, getting out of the way of the applications

08. Virtual Memory 25

Page replacement performance comparison

• Compare page-fault rate against
number of physical frames
• Pseudo-local reference string
• Note offset 𝑥 origin

• Seek to minimise area under
curve
• Getting the frame allocation right

has major impact
• Much more than which page

replacement algorithm you use!

FIFO

CLOCK

LRU

OPT

P
a

g
e

 F
a

u
lts

 p
e

r
1

0
0

0
 R

e
fe

re
n

ce
s

5

10

15

20

25

30

35

40

45

0

5 6 7 8 9 10

Number of Page Frames Available

11 12 13 14 15

08. Virtual Memory 26

Outline

• Virtual memory
• Page faults
• Page replacement
• Frame allocation
• Global vs local
• Thrashing
• Working set

08. Virtual Memory 27

Frame allocation

• Need an allocation policy to determine how to distribute frames
• After reserving a fraction of physical memory per-process and for OS

code/data

• Objective: Fairness (or proportional fairness)?
• E.g. divide 𝑚 frames between 𝑛 processes as 𝑚/𝑛, remainder in free pool
• E.g. divide frames in proportion to size of process (i.e. number of pages used)

• Objective: Minimize system-wide page-fault rate?
• E.g. allocate all memory to few processes

• Objective: Maximize level of multiprogramming?
• E.g. allocate minimum memory to many processes

08. Virtual Memory 28

Global / Local allocation

• Most replacement schemes are global: any page could be a victim
• Process execution time can vary greatly but greater throughput so more common
• Allocation policy implicitly enforced during page-in: allocation only succeeds if policy

agrees
• Process cannot control its own page fault rate: performance can depend entirely on

what other processes do
• E.g., given 64 frames and 5 processes, each gets 12 with four left over

• When a process next faults after another process has died, it will allocate a frame
• Eventually all will be allocated and a newly arriving process will need to steal some

pages back from the existing allocations
• Alternatively, local replacement

• Each process selects from only its own set of allocated frames
• More consistent per-process performance but possibly underutilised memory

08. Virtual Memory 29

Thrashing

• A process without “enough” pages has high page-fault rate
• Page fault to get page, replacing existing frame
• But quickly need replaced frame back

• Cascading failure
• Time wasted handling page faults leads to low CPU utilisation
• Low CPU utilisation triggers OS think to increase degree of

multiprogramming
• This adds another process added to the system, increasing

memory pressure
• Collapse

• Why does demand paging work? Locality
• Process migrates from one locality to another
• Localities may overlap

• Thrashing occurs when size of locality > total memory
• Limit effects by using local or priority page replacement

426 Chapter 9 Virtual Memory

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

9.6.1 Cause of Thrashing

Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low,
we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These
faulting processes must use the paging device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree of multiprogramming as a result. The new process tries to get started by
taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously. As a result, the effective memory-access
time increases. No work is getting done, because the processes are spending
all their time paging.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in, and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

thrashing

degree of multiprogramming

C
P

U
 u

til
iz

at
io

n

Figure 9.18 Thrashing.

08. Virtual Memory 30

Working set

• Avoid thrashing by considering the working set
• Those pages required at the same time for a process to make progress
• Varies between processes and during execution
• Assume process shifts phases but gets (spatial) locality of reference in each phase

• E.g., consider a window ∆ of a fixed number of page references, say 10,000 instructions
• Working set of process 𝑃! is 𝑊𝑆𝑆! , total number of pages referenced in the most recent window
• ∆ too small will not encompass entire locality
• ∆ too large will encompass several localities (entire program)

• Demand, 𝐷 = ∑!𝑊𝑆𝑆!, approximation of locality
• Thrashing occurs if 𝐷 > 𝑚, number of frames, in which case suspend/swap out a process
• Approximate with interval timer and a reference bit: page in working set if one reference bit is set
• Pre-paging: bring in working set pages when (re-)starting a process

9.6 Thrashing 429

page reference table
. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

∆

t1
WS(t1) = {1,2,5,6,7}

∆

t2
WS(t2) = {3,4}

Figure 9.20 Working-set model.

that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization. The
difficulty with the working-set model is keeping track of the working set. The
working-set window is a moving window. At each memory reference, a new
reference appears at one end, and the oldest reference drops off the other end.
A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that ! equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for
each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Pages with at least one bit on
will be considered to be in the working set.

Note that this arrangement is not entirely accurate, because we cannot
tell where, within an interval of 5,000, a reference occurred. We can reduce the
uncertainty by increasing the number of history bits and the frequency of inter-
rupts (for example, 10 bits and interrupts every 1,000 references). However, the
cost to service these more frequent interrupts will be correspondingly higher.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another

08. Virtual Memory 31

Summary

• Virtual memory
• Virtual memory benefits
• Virtual address space

• Page faults
• Instruction restart
• Locality of reference
• Demand paging
• Optimisations

• Page replacement
• Algorithms
• OPT, LRU
• Counting algorithms
• Page buffering algorithms
• Performance

• Frame allocation
• Global vs local
• Thrashing
• Working set

08. Virtual Memory 32

