
07. Paging
9th ed: Ch. 8, 9

10th ed: Ch. 9, 10

Objectives

• To discuss the purpose of paging
• To understand how paging is implemented
• To know some different ways that page tables are structured
• To be aware of the performance impact of the translation lookaside

buffer
• To discuss how paging interacts with segmentation

07. Paging 2

Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure

07. Paging 3

Outline

• Non-contiguous allocation
• Address translation
• Paging model

• Paging implementation
• Page table structure

07. Paging 4

Non-contiguous allocation

• How can we enable the physical address space of a process to be non-
contiguous?
• Allows physical memory to be allocated whenever available
• Avoids external fragmentation and the problem of varying sized memory chunks
• Still have internal fragmentation though

• Paging
• Divide physical memory into frames, fixed-size (power of two) blocks from 512 bytes to 1GB
• Divide logical memory into pages, blocks of the same fixed size
• Build a page table to map between pages and frames

• Running a program that needs N pages then requires
• Find N free frames,
• Create entries in page table to map each page to a frame,
• Load the program

07. Paging 5

• Divide each logical address generated by the CPU into:
• Page number (p) used as an index into a page table which contains base

address of each page in physical memory
• Page offset (d) is combined with base address to define the physical memory

address that is sent to the memory unit

• For given logical address space 2! and page size 2"

Address translation

p d
m-n bits n bits

page number page offset

07. Paging 6

Paging model

• Page Table stores Page Table
Entries (PTEs) that map between
logical and physical addresses

• For example,

n=2 and m=4
32 byte memory and 4 byte pages

368 Chapter 8 Main Memory

physical
memory

f

logical
address

page table

physical
address

CPU p

p

f

d df

f0000 … 0000

f1111 … 1111

Figure 8.10 Paging hardware.

offset (d). The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address
is combined with the page offset to define the physical memory address that
is sent to the memory unit. The paging model of memory is shown in Figure
8.11.

page 0

page 1

page 2

page 3

logical
memory

page 1

page 3

page 0

page 2

physical
memory

page table

frame
number

1
4
3
7

0
1
2
3

0

1

2

3

4

5

6

7

Figure 8.11 Paging model of logical and physical memory.

368 Chapter 8 Main Memory

physical
memory

f

logical
address

page table

physical
address

CPU p

p

f

d df

f0000 … 0000

f1111 … 1111

Figure 8.10 Paging hardware.

offset (d). The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address
is combined with the page offset to define the physical memory address that
is sent to the memory unit. The paging model of memory is shown in Figure
8.11.

page 0

page 1

page 2

page 3

logical
memory

page 1

page 3

page 0

page 2

physical
memory

page table

frame
number

1
4
3
7

0
1
2
3

0

1

2

3

4

5

6

7

Figure 8.11 Paging model of logical and physical memory.

368 Chapter 8 Main Memory

physical
memory

f

logical
address

page table

physical
address

CPU p

p

f

d df

f0000 … 0000

f1111 … 1111

Figure 8.10 Paging hardware.

offset (d). The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address
is combined with the page offset to define the physical memory address that
is sent to the memory unit. The paging model of memory is shown in Figure
8.11.

page 0

page 1

page 2

page 3

logical
memory

page 1

page 3

page 0

page 2

physical
memory

page table

frame
number

1
4
3
7

0
1
2
3

0

1

2

3

4

5

6

7

Figure 8.11 Paging model of logical and physical memory.

8.5 Paging 369

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page, depending
on the computer architecture. The selection of a power of 2 as a page size
makes the translation of a logical address into a page number and page offset
particularly easy. If the size of the logical address space is 2m, and a page size is
2n bytes, then the high-order m− n bits of a logical address designate the page
number, and the n low-order bits designate the page offset. Thus, the logical
address is as follows:

p d

page number page offset

m – n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1
2
3

5
6
1
2

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.

8.5 Paging 369

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page, depending
on the computer architecture. The selection of a power of 2 as a page size
makes the translation of a logical address into a page number and page offset
particularly easy. If the size of the logical address space is 2m, and a page size is
2n bytes, then the high-order m− n bits of a logical address designate the page
number, and the n low-order bits designate the page offset. Thus, the logical
address is as follows:

p d

page number page offset

m – n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1
2
3

5
6
1
2

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.

8.5 Paging 369

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page, depending
on the computer architecture. The selection of a power of 2 as a page size
makes the translation of a logical address into a page number and page offset
particularly easy. If the size of the logical address space is 2m, and a page size is
2n bytes, then the high-order m− n bits of a logical address designate the page
number, and the n low-order bits designate the page offset. Thus, the logical
address is as follows:

p d

page number page offset

m – n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1
2
3

5
6
1
2

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.
07. Paging 7

Pros and cons

• No external fragmentation but still have internal fragmentation, e.g.,
• Page size 2048 bytes, process size 72,766 bytes, so process requires 35 pages

plus 1086 bytes, so internal fragmentation is 2048 − 1086 = 962 bytes

• On average, fragmentation is ½ frame per process
• So small frame sizes desirable to waste less
• But each page table entry takes memory to track so page table grows

• Process view and physical memory now very different
• OS controls the mapping so user process can only access its own memory
• OS must track the free frames
• OS must remap the page table on every context switch – adds overhead

07. Paging 8

Free frames

• Before allocation, OS has several
frames on the free frame list

• After allocation, page table
entries created and frames no
longer in free frame list8.5 Paging 371

(a)

free-frame list
14
13
18
20
15

13

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

(b)

free-frame list
15 13 page 1

page 0

page 2

page 3

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

new-process page table

140
1
2
3

13
18
20

Figure 8.13 Free frames (a) before allocation and (b) after allocation.

of bits available to address page frames. Thus, a system with 32-bit page-table
entries may address less physical memory than the possible maximum. A 32-bit
CPU uses 32-bit addresses, meaning that a given process space can only be 232

bytes (4 TB). Therefore, paging lets us use physical memory that is larger than
what can be addressed by the CPU’s address pointer length.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, its frame number is put into the page table, and so on (Figure 8.13).

An important aspect of paging is the clear separation between the program-
mer’s view of memory and the actual physical memory. The programmer views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which also holds other
programs. The difference between the programmer’s view of memory and
the actual physical memory is reconciled by the address-translation hardware.
The logical addresses are translated into physical addresses. This mapping is
hidden from the programmer and is controlled by the operating system. Notice
that the user process by definition is unable to access memory it does not own.
It has no way of addressing memory outside of its page table, and the table
includes only those pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory—which frames are allocated,
which frames are available, how many total frames there are, and so on. This
information is generally kept in a data structure called a frame table. The frame
table has one entry for each physical page frame, indicating whether the latter

8.5 Paging 371

(a)

free-frame list
14
13
18
20
15

13

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

(b)

free-frame list
15 13 page 1

page 0

page 2

page 3

14

15

16

17

18

19

20

21

page 0
page 1
page 2
page 3

new process

new-process page table

140
1
2
3

13
18
20

Figure 8.13 Free frames (a) before allocation and (b) after allocation.

of bits available to address page frames. Thus, a system with 32-bit page-table
entries may address less physical memory than the possible maximum. A 32-bit
CPU uses 32-bit addresses, meaning that a given process space can only be 232

bytes (4 TB). Therefore, paging lets us use physical memory that is larger than
what can be addressed by the CPU’s address pointer length.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the process is loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, its frame number is put into the page table, and so on (Figure 8.13).

An important aspect of paging is the clear separation between the program-
mer’s view of memory and the actual physical memory. The programmer views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which also holds other
programs. The difference between the programmer’s view of memory and
the actual physical memory is reconciled by the address-translation hardware.
The logical addresses are translated into physical addresses. This mapping is
hidden from the programmer and is controlled by the operating system. Notice
that the user process by definition is unable to access memory it does not own.
It has no way of addressing memory outside of its page table, and the table
includes only those pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the allocation details of physical memory—which frames are allocated,
which frames are available, how many total frames there are, and so on. This
information is generally kept in a data structure called a frame table. The frame
table has one entry for each physical page frame, indicating whether the latter

07. Paging 9

Outline

• Non-contiguous allocation
• Paging implementation
• Free frames
• Translation Lookaside Buffer
• Protection
• Sharing

• Page table structure

07. Paging 10

Page table implementation

• Hardware support required for performance
• Translates (logical) page number into (physical) frame number
• Offset within a page is then the offset within the frame

• Page table sits in main memory
• Page-table base register (PTBR)

points to the page table
• Page-table length register (PTLR)

indicates size of the page table
• Means every data/instruction access

now requires two memory accesses
• One for the page table plus one for the

data/instruction
• Dramatically reduces performance

368 Chapter 8 Main Memory

physical
memory

f

logical
address

page table

physical
address

CPU p

p

f

d df

f0000 … 0000

f1111 … 1111

Figure 8.10 Paging hardware.

offset (d). The page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This base address
is combined with the page offset to define the physical memory address that
is sent to the memory unit. The paging model of memory is shown in Figure
8.11.

page 0

page 1

page 2

page 3

logical
memory

page 1

page 3

page 0

page 2

physical
memory

page table

frame
number

1
4
3
7

0
1
2
3

0

1

2

3

4

5

6

7

Figure 8.11 Paging model of logical and physical memory.

07. Paging 11

Translation Lookaside Buffer (TLB)

• Resolves the performance issue of two memory
accesses
• Effectively a special hardware cache using

associative memory
• Typically fairly small, 64—1024 entries

• Operation
• If translation is in the TLB, use it
• Else we have a TLB miss so do the slow two-

memory-access lookup in the page table
• Also add entry to the TLB for faster access next time

subject to replacement policies – typically Least
Recently Used (LRU)

• Can sometimes pin entries for permanent fast
access

8.5 Paging 373

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; a TLB lookup in
modern hardware is part of the instruction pipeline, essentially adding no
performance penalty. To be able to execute the search within a pipeline step,
however, the TLB must be kept small. It is typically between 32 and 1,024 entries
in size. Some CPUs implement separate instruction and data address TLBs. That
can double the number of TLB entries available, because those lookups occur
in different pipeline steps. We can see in this development an example of the
evolution of CPU technology: systems have evolved from having no TLBs to
having multiple levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by the
CPU, its page number is presented to the TLB. If the page number is found, its
frame number is immediately available and is used to access memory. As just
mentioned, these steps are executed as part of the instruction pipeline within
the CPU, adding no performance penalty compared with a system that does
not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. Depending on the CPU, this may be
done automatically in hardware or via an interrupt to the operating system.
When the frame number is obtained, we can use it to access memory (Figure
8.14). In addition, we add the page number and frame number to the TLB, so

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 8.14 Paging hardware with TLB.

07. Paging 12

TLB performance

• Performance is measured in terms of hit ratio, the proportion of time a PTE
is found in TLB, e.g., assume
• TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%

• If one memory reference is required for lookup, what is the effective
memory access time?
• 0.8×120ns + 0.2×220ns = 140ns

• If the hit ratio increases to 98%, what is the new effective access time?
• 0.98×120ns + 0.2×220ns = 122ns
• That is, it only gives a 13% improvement
• (Intel 80486 had 32 registers and claimed a 98% hit ratio)

• TLB also adds context switch overhead as need to flush the TLB each time
• Can store address-space identifiers (ASIDs) in each entry to avoid this

07. Paging 13

Protection

• Associate protection bits with each page, in the Page Table Entry (PTE),
e.g.,
• Accessible in kernel mode only, or user mode
• Read/Write/Execute to page permitted
• Valid/Invalid

• As the address goes through the page hardware, protection bits are
checked
• Note this only gives page granularity protection, not byte granularity protection

• Attempts to violate protection cause a hardware trap to the OS
• TLB entry has the valid/invalid bit indicating whether the page is mapped
• If invalid, trap to the OS handler to map the page

• Can do lots of interesting things here, particularly with regard to sharing
and virtualization

Frame Number VXWRK

07. Paging 14

Sharing pages

• Shared code
• Keep just one copy of read-only

(reentrant) code shared among processes
• Similar to multiple threads sharing the

same process space
• Can also be useful for IPC if read-write

pages can be shared

• Private code and data
• Each process keeps its own copy of

private code and data
• Pages for which can appear anywhere in

the logical address space

376 Chapter 8 Main Memory

page 0

page 0

page 1

page 2

page 3

page 4

page 5

page n

•
•
•

00000

0

1

2

3

4

5

6

7

8

9

frame number

0
1
2
3
4
5
6
7

2
3
4
7
8
9
0
0

v
v
v
v
v
v
i
i

page table

valid–invalid bit

10,468

12,287

page 1

page 2

page 3

page 4

page 5

Figure 8.15 Valid (v) or invalid (i) bit in a page table.

problem is a result of the 2-KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use all its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

8.5.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This con-
sideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text
editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to
support the 40 users. If the code is reentrant code (or pure code), however, it
can be shared, as shown in Figure 8.16. Here, we see three processes sharing
a three-page editor—each page 50 KB in size (the large page size is used to
simplify the figure). Each process has its own data page.

Reentrant code is non-self-modifying code: it never changes during execu-
tion. Thus, two or more processes can execute the same code at the same time.

07. Paging 15

Outline

• Non-contiguous allocation
• Paging implementation
• Page table structure
• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM

07. Paging 16

Page table structure

• Page tables can get huge using straight-
forward methods
• E.g., for a 32-bit logical address space and

page size of 4 KB (212), page table would
have 1 million entries (⁄2!" 2#" = 2"$)
• If each entry is 4 bytes that means 4 MB of

physical memory for page table – don’t
want to contiguously allocate that

• Instead, split the page table into multiple
levels and page out all but the outermost
level

378 Chapter 8 Main Memory

8.6 Structure of the Page Table

In this section, we explore some of the most common techniques for structuring
the page table, including hierarchical paging, hashed page tables, and inverted
page tables.

8.6.1 Hierarchical Paging

Most modern computer systems support a large logical address space
(232 to 264). In such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit logical address space. If
the page size in such a system is 4 KB (212), then a page table may consist of
up to 1 million entries (232/212). Assuming that each entry consists of 4 bytes,
each process may need up to 4 MB of physical address space for the page table
alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itself is also paged (Figure 8.17). For example, consider again the system with
a 32-bit logical address space and a page size of 4 KB. A logical address is
divided into a page number consisting of 20 bits and a page offset consisting
of 12 bits. Because we page the page table, the page number is further divided

•
•
•

•
•
•

outer page
table

page of
page table

page table
memory

929

900

929

900

708

500

100

1

0

•
•
•

100

708

•
•
•

•
•
•

•
•
•

•••

•••

•••

•
•
•

•
•
•

•
•
•

1

500

Figure 8.17 A two-level page-table scheme.07. Paging 17

Two-level paging

• For example, given a 20 bit page number and a 12
bit page offset, split the page number into two
equal sized parts of 10 bits each
• NB. A 12 bit offset implies 2!" = 4096 byte pages
• There is no requirement that the two (or more) parts

be equal sized
• The PTBR then points to the address of the

outermost L1 page table and lookup proceeds by
• The 10 bit 𝑝! value indexes into the L1 page table to

obtain the address of the relevant page of the L2 page
table

• The 10 bit 𝑝" value then indexes into the L2 page
table to obtain the address of the mapped frame

• Finally the page offset 𝑑 then indexes into the frame
to obtain the intended byte

• This is a forward mapped page table

P1 Offset

Virtual Address

L2 Address

L1 Page Table
0

n

N

P2 L1 Address

Base Register

L2 Page Table
0

n

N

Leaf PTE

8.6 Structure of the Page Table 379

logical address

outer page
table

p1 p2

p1

page of
page table

p2

d

d

Figure 8.18 Address translation for a two-level 32-bit paging architecture.

into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

p1 p2 d

page number page offset

10 10 12

where p1 is an index into the outer page table and p2 is the displacement
within the page of the inner page table. The address-translation method for this
architecture is shown in Figure 8.18. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

Consider the memory management of one of the classic systems, the VAX
minicomputer from Digital Equipment Corporation (DEC). The VAX was the
most popular minicomputer of its time and was sold from 1977 through 2000.
The VAX architecture supported a variation of two-level paging. The VAX is a 32-
bit machine with a page size of 512 bytes. The logical address space of a process
is divided into four equal sections, each of which consists of 230 bytes. Each
section represents a different part of the logical address space of a process. The
first 2 high-order bits of the logical address designate the appropriate section.
The next 21 bits represent the logical page number of that section, and the final
9 bits represent an offset in the desired page. By partitioning the page table in
this manner, the operating system can leave partitions unused until a process
needs them. Entire sections of virtual address space are frequently unused, and
multilevel page tables have no entries for these spaces, greatly decreasing the
amount of memory needed to store virtual memory data structures.

An address on the VAX architecture is as follows:

s p d

section page offset

2 21 9

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 221 bits ∗ 4

07. Paging 18

Larger address spaces

• For large address spaces – e.g., 64 bit –
simple hierarchy is impractical
• Either one or more layers remains too large,
• Or the number of accesses to get to the target

address becomes too large
• Non-examinable alternatives include

• Hashed page tables, where the page number is
hashed into a table and the chain followed until
the specific entry is found

• Inverted page tables, with an entry for each
frame and a hash-table used to limit the search
to one or a few entries, trading size for lookup
latency

• Three non-examinable practical examples
follow: Intel IA-32, Intel x86-64, and ARM

8.6 Structure of the Page Table 381

hash table

q s

logical address
physical
address

physical
memory

p d r d

p rhash
function • • •

Figure 8.19 Hashed page table.

hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

8.6.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter’s validity). This table representation is a natural
one, since processes reference pages through the pages’ virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is
located and to use that value directly. One of the drawbacks of this method
is that each page table may consist of millions of entries. These tables may
consume large amounts of physical memory just to keep track of how other
physical memory is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.20 shows the operation of an inverted page table. Compare
it with Figure 8.10, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.5.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

382 Chapter 8 Main Memory

page table

CPU

logical
address physical

address physical
memory

i

pid p

pid

search

p

d i d

Figure 8.20 Inverted page table.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. IBM was the first major company to use inverted
page tables, starting with the IBM System 38 and continuing through the
RS/6000 and the current IBM Power CPUs. For the IBM RT, each virtual address
in the system consists of a triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say, at entry i—then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need
to be searched before a match is found. This search would take far too long.
To alleviate this problem, we use a hash table, as described in Section 8.6.2,
to limit the search to one—or at most a few—page-table entries. Of course,
each access to the hash table adds a memory reference to the procedure, so one
virtual memory reference requires at least two real memory reads—one for the
hash-table entry and one for the page table. (Recall that the TLB is searched first,
before the hash table is consulted, offering some performance improvement.)

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one

Hashed page table

Inverted page table

07. Paging 19

Example: Intel IA-32 architecture

• Hybrid using segmentation with paging
• Each segment up to 4GB, and up to 16,384 segments per process split into

two equal partitions
• First partition’s segments are private to the process, kept in the Local

Descriptor Table (LDT)
• Second partition’s segments are shared among all processes, kept in the

Global Descriptor Table (GDT)
• LDT and GDT entries are 8 bytes with info about a given segment including its

base location and limit
• CPU generates a logical address which the segmentation unit

translates to a linear address which the paging unit translates to a
physical address

384 Chapter 8 Main Memory

CPU

logical
address segmentation

unit

linear
address paging

unit

physical
address physical

memory

Figure 8.21 Logical to physical address translation in IA-32.

In this section, we examine address translation for both IA-32 and x86-64
architectures. Before we proceed, however, it is important to note that because
Intel has released several versions—as well as variations—of its architectures
over the years, we cannot provide a complete description of the memory-
management structure of all its chips. Nor can we provide all of the CPU details,
as that information is best left to books on computer architecture. Rather, we
present the major memory-management concepts of these Intel CPUs.

8.7.1 IA-32 Architecture

Memory management in IA-32 systems is divided into two components—
segmentation and paging—and works as follows: The CPU generates logical
addresses, which are given to the segmentation unit. The segmentation unit
produces a linear address for each logical address. The linear address is then
given to the paging unit, which in turn generates the physical address in main
memory. Thus, the segmentation and paging units form the equivalent of the
memory-management unit (MMU). This scheme is shown in Figure 8.21.

8.7.1.1 IA-32 Segmentation

The IA-32 architecture allows a segment to be as large as 4 GB, and the maximum
number of segments per process is 16 K. The logical address space of a process is
divided into two partitions. The first partition consists of up to 8 Ksegments that
are private to that process. The second partition consists of up to 8 K segments
that are shared among all the processes. Information about the first partition is
kept in the local descriptor table (LDT); information about the second partition
is kept in the global descriptor table (GDT). Each entry in the LDT and GDT
consists of an 8-byte segment descriptor with detailed information about a
particular segment, including the base location and limit of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

p

2

g

1

s

13

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

07. Paging 20

Example: Intel IA-32 architecture

• Logical address is a pair < selector, offset >
where
• the selector is a 16 bit number indicating segment

number s, global/local indicator g, and protection
bits p, and

• the offset is a 32 bit number indicating the byte in
the selected segment

• Generate linear address by
• Six segment registers so can address six segments

at any given time, and further six 8 bit
microprogram registers hold the LDT/GDT
descriptors

• Segment register points to entry in LDT/GDT
• Limit information validates the offset
• If valid, offset is added to base giving linear address

384 Chapter 8 Main Memory

CPU

logical
address segmentation

unit

linear
address paging

unit

physical
address physical

memory

Figure 8.21 Logical to physical address translation in IA-32.

In this section, we examine address translation for both IA-32 and x86-64
architectures. Before we proceed, however, it is important to note that because
Intel has released several versions—as well as variations—of its architectures
over the years, we cannot provide a complete description of the memory-
management structure of all its chips. Nor can we provide all of the CPU details,
as that information is best left to books on computer architecture. Rather, we
present the major memory-management concepts of these Intel CPUs.

8.7.1 IA-32 Architecture

Memory management in IA-32 systems is divided into two components—
segmentation and paging—and works as follows: The CPU generates logical
addresses, which are given to the segmentation unit. The segmentation unit
produces a linear address for each logical address. The linear address is then
given to the paging unit, which in turn generates the physical address in main
memory. Thus, the segmentation and paging units form the equivalent of the
memory-management unit (MMU). This scheme is shown in Figure 8.21.

8.7.1.1 IA-32 Segmentation

The IA-32 architecture allows a segment to be as large as 4 GB, and the maximum
number of segments per process is 16 K. The logical address space of a process is
divided into two partitions. The first partition consists of up to 8 Ksegments that
are private to that process. The second partition consists of up to 8 K segments
that are shared among all the processes. Information about the first partition is
kept in the local descriptor table (LDT); information about the second partition
is kept in the global descriptor table (GDT). Each entry in the LDT and GDT
consists of an 8-byte segment descriptor with detailed information about a
particular segment, including the base location and limit of that segment.

The logical address is a pair (selector, offset), where the selector is a 16-bit
number:

p

2

g

1

s

13

in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

8.7 Example: Intel 32 and 64-bit Architectures 385

logical address selector

descriptor table

segment descriptor +

32-bit linear address

offset

Figure 8.22 IA-32 segmentation.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.18. The IA-32 address translation is shown in more detail in
Figure 8.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

8.7 Example: Intel 32 and 64-bit Architectures 385

logical address selector

descriptor table

segment descriptor +

32-bit linear address

offset

Figure 8.22 IA-32 segmentation.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.18. The IA-32 address translation is shown in more detail in
Figure 8.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

07. Paging 21

Example: Intel IA-32 architecture

• Linear address is then resolved
• If the page_size flag is not set, then standard 4kB

pages are used with a two level lookup, with Intel
referring to the (outermost) L1 table as the page
directory and the L2 table as the page table

• Otherwise 4MB pages and frames are used with the
page directory pointing directly to the 4MB frame,
bypassing the inner page table completely

• In the former case, a valid/invalid bit in the page
directory entry indicates whether the inner page
table is itself swapped out or not
• If it is, the other 31 bits indicate the disk address from

which to swap it in

386 Chapter 8 Main Memory

page directory

page directory

CR3
register

page
directory

page
table

4-KB
page

4-MB
page

page table

offset

offset

(linear address)

31 22 21 12 11 0

2131 22 0

Figure 8.23 Paging in the IA-32 architecture.

To improve the efficiency of physical memory use, IA-32 page tables can
be swapped to disk. In this case, an invalid bit is used in the page directory
entry to indicate whether the table to which the entry is pointing is in memory
or on disk. If the table is on disk, the operating system can use the other 31
bits to specify the disk location of the table. The table can then be brought into
memory on demand.

As software developers began to discover the 4-GB memory limitations
of 32-bit architectures, Intel adopted a page address extension (PAE), which
allows 32-bit processors to access a physical address space larger than 4 GB. The
fundamental difference introduced by PAE support was that paging went from
a two-level scheme (as shown in Figure 8.23) to a three-level scheme, where
the top two bits refer to a page directory pointer table. Figure 8.24 illustrates
a PAE system with 4-KB pages. (PAE also supports 2-MB pages.)

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

Figure 8.24 Page address extensions.

8.7 Example: Intel 32 and 64-bit Architectures 385

logical address selector

descriptor table

segment descriptor +

32-bit linear address

offset

Figure 8.22 IA-32 segmentation.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.18. The IA-32 address translation is shown in more detail in
Figure 8.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

07. Paging 22

Example: Intel Page Address Extensions (PAE)

• 32 bit address limits led Intel to create Page Address Extension (PAE)
allowing 36 bit addresses ~ access to 64GB physical memory
• Paging went to a 3-level scheme
• Top two bits refer to a page directory pointer table
• Page-directory and page-table entries moved to 64-bits in size

386 Chapter 8 Main Memory

page directory

page directory

CR3
register

page
directory

page
table

4-KB
page

4-MB
page

page table

offset

offset

(linear address)

31 22 21 12 11 0

2131 22 0

Figure 8.23 Paging in the IA-32 architecture.

To improve the efficiency of physical memory use, IA-32 page tables can
be swapped to disk. In this case, an invalid bit is used in the page directory
entry to indicate whether the table to which the entry is pointing is in memory
or on disk. If the table is on disk, the operating system can use the other 31
bits to specify the disk location of the table. The table can then be brought into
memory on demand.

As software developers began to discover the 4-GB memory limitations
of 32-bit architectures, Intel adopted a page address extension (PAE), which
allows 32-bit processors to access a physical address space larger than 4 GB. The
fundamental difference introduced by PAE support was that paging went from
a two-level scheme (as shown in Figure 8.23) to a three-level scheme, where
the top two bits refer to a page directory pointer table. Figure 8.24 illustrates
a PAE system with 4-KB pages. (PAE also supports 2-MB pages.)

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

Figure 8.24 Page address extensions.07. Paging 23

Example: Intel x86-64

• Current generation Intel x86 architecture
• Developed by AMD, adopted by Intel
• 64 bits is enormous – more than 16 exabytes

• In practice only implement 48 bit addressing
• Page sizes of 4kB, 2MB, 1GB
• Four levels of paging hierarchy

• Can also use PAE so virtual addresses are 48 bits but physical
addresses are 52 bits 8.7 Example: Intel 32 and 64-bit Architectures 387

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

Figure 8.25 x86-64 linear address.

PAE also increased the page-directory and page-table entries from 32 to 64
bits in size, which allowed the base address of page tables and page frames to
extend from 20 to 24 bits. Combined with the 12-bit offset, adding PAE support
to IA-32 increased the address space to 36 bits, which supports up to 64 GB
of physical memory. It is important to note that operating system support is
required to use PAE. Both Linux and Intel Mac OS X support PAE. However,
32-bit versions of Windows desktop operating systems still provide support
for only 4 GB of physical memory, even if PAE is enabled.

8.7.2 x86-64

Intel has had an interesting history of developing 64-bit architectures. Its initial
entry was the IA-64 (later named Itanium) architecture, but that architecture
was not widely adopted. Meanwhile, another chip manufacturer— AMD —
began developing a 64-bit architecture known as x86-64 that was based on
extending the existing IA-32 instruction set. The x86-64 supported much larger
logical and physical address spaces, as well as several other architectural
advances. Historically, AMD had often developed chips based on Intel’s
architecture, but now the roles were reversed as Intel adopted AMD’s x86-64
architecture. In discussing this architecture, rather than using the commercial
names AMD64 and Intel 64, we will use the more general term x86-64.

Support for a 64-bit address space yields an astonishing 264 bytes of
addressable memory—a number greater than 16 quintillion (or 16 exabytes).
However, even though 64-bit systems can potentially address this much
memory, in practice far fewer than 64 bits are used for address representation
in current designs. The x86-64 architecture currently provides a 48-bit virtual
address with support for page sizes of 4 KB, 2 MB, or 1 GB using four levels of
paging hierarchy. The representation of the linear address appears in Figure
8.25. Because this addressing scheme can use PAE, virtual addresses are 48 bits
in size but support 52-bit physical addresses (4096 terabytes).

64-BIT COMPUTING

History has taught us that even though memory capacities, CPU speeds,
and similar computer capabilities seem large enough to satisfy demand for
the foreseeable future, the growth of technology ultimately absorbs available
capacities, and we find ourselves in need of additional memory or processing
power, often sooner than we think. What might the future of technology bring
that would make a 64-bit address space seem too small?

07. Paging 24

Example: ARM
• Modern, energy efficient, 32-bit CPU

• Dominant mobile platform chip
• E.g., Apple iOS and Google Android devices

• Paging structures
• 4 kB and 16 kB pages
• 1 MB and 16 MB pages called sections
• One-level paging for sections, two-level for smaller pages

• TLB support in two levels
• Outer level has two micro TLBs: one for data, one for

instructions
• Micro TLBs support ASIDs
• Inner is single main TLB

• Lookup proceeds by
• First check inner TLB
• On miss, check outers
• On miss, CPU performs page table walk

07. Paging 25

388 Chapter 8 Main Memory

8.8 Example: ARM Architecture

Although Intel chips have dominated the personal computer market for over 30
years, chips for mobile devices such as smartphones and tablet computers often
instead run on 32-bit ARM processors. Interestingly, whereas Intel both designs
and manufactures chips, ARM only designs them. It then licenses its designs to
chip manufacturers. Apple has licensed the ARM design for its iPhone and iPad
mobile devices, and several Android-based smartphones use ARM processors
as well.

The 32-bit ARM architecture supports the following page sizes:

1. 4-KB and 16-KB pages

2. 1-MB and 16-MB pages (termed sections)

The paging system in use depends on whether a page or a section is being
referenced. One-level paging is used for 1-MB and 16-MB sections; two-level
paging is used for 4-KB and 16-KB pages. Address translation with the ARM
MMU is shown in Figure 8.26.

The ARM architecture also supports two levels of TLBs. At the outer level
are two micro TLBs—a separate TLB for data and another for instructions.
The micro TLB supports ASIDs as well. At the inner level is a single main TLB.
Address translation begins at the micro TLB level. In the case of a miss, the
main TLB is then checked. If both TLBs yield misses, a page table walk must be
performed in hardware.

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

Figure 8.26 Logical address translation in ARM.

Summary

• Non-contiguous allocation
• Address translation
• Paging model

• Paging implementation
• Free frames
• Translation Lookaside Buffer
• Protection
• Sharing

• Page table structure
• Two-level page table
• Larger address spaces
• Examples: IA-32, x86-64, ARM

07. Paging 26

