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Objectives

• To describe the hardware required for memory protection
• To introduce the concepts of logical and physical addresses
• To discuss the problem of address binding
• To introduce the concept of segmentation
• To understand the problem of fragmentation
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Outline

• Memory protection
• Memory allocation

06. Memory Management 3



Outline

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit (MMU) 
• Linking and loading

• Memory allocation
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Memory management

• Will have many programs in memory simultaneously
• Program code loaded from storage

• The CPU can only access registers and main memory directly
• Register access in a single cycle, but memory access takes many cycles
• Multiple levels of cache attempt to hide main memory latency (L1, L2, L3)

• Memory unit sees only a stream of
• Address plus read request
• Address plus data plus write request

• Need to protect memory accesses to prevent malicious or just buggy 
user programs corrupting other programs, including the kernel
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Hardware address protection

• Base and limit registers define the logical 
address space
• Base is the smallest legal address, e.g., 300040
• Limit is the size of the range, e.g., 120900
• Thus program can access addresses in the range 

[300040, 420940)
• CPU must check every user-mode memory 

access to ensure it is in that range
• Exception raised to OS if not
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Figure 8.1 A base and a limit register define a logical address space.

300040 and the limit register is 120900, then the program can legally access all
addresses from 300040 through 420939 (inclusive).

Protection of memory space is accomplished by having the CPU hardware
compare every address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users’ memory results in a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
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Figure 8.2 Hardware address protection with base and limit registers.
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Address binding

• Programs on disk is brought into memory to create running processes – but where in 
memory to put them?
• Multi-programming means they can’t all be put at 0x0000, the default location

• Program code will refer to memory locations – but how?
• Consider a simple program and the assembly code it might generate
• [Rx] means 

the contents of memory at address Rx

• Address binding happens at three different points
• Compile time: If memory location known a priori, absolute code can be generated; requires 

recompilation if base location changes
• Load time: Need to generate relocatable code if memory location is not known at compile time
• Execution time: Binding delayed until run time if the process can be moved during its execution 

from one memory segment to another
• Bindings map one address space to another – requires hardware support
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int x, y;
x = 5;
y = x + 3;

str #5, [Rx] ; store 5 into x
ldr R1, [Rx] ; load value of x from memory
add R2, R1, #3 ; and add 3 to it
str R2, [Ry] ; and store result in y

#[inline(always)]
pub unsafe fn syscall4(mut n: usize,

a1: usize,
a2: usize,
a3: usize,
a4: usize)
-> usize

{
llvm_asm!("int $$0x80"

: "+{eax}"(n)
: "{ebx}"(a1) "{ecx}"(a2) "{edx}"(a3) "{esi}"(a4)
: "memory" "cc"
: "volatile");

n
}
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Logical vs physical addresses

• The concept of a logical address space that is bound to a separate 
physical address space is central to proper memory management
• Logical (virtual) address – as generated by the CPU
• Physical address – address seen by the memory unit
• Identical in compile-time and load-time address-binding schemes
• Differ in execution-time address-binding schemes

• The logical/physical address space is the set of all logical/physical 
addresses generated by a program
• Need hardware support to perform the mapping from logical to 

physical addresses at run time
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Memory Management Unit (MMU)

• Hardware that maps logical to physical addresses at run time 
• Conceptually simple scheme: replace 

base register with relocation register 
• Add the value in the relocation register to 

every address generated by a user process 
at the time it is sent to memory
• User programs deal with logical addresses, never seeing physical addresses

• Execution-time binding occurs when reference is made to location in 
memory
• Logical address is bound to physical addresses by the MMU
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Figure 8.4 Dynamic relocation using a relocation register.

binding scheme results in differing logical and physical addresses. In this
case, we usually refer to the logical address as a virtual address. We use
logical address and virtual address interchangeably in this text. The set of all
logical addresses generated by a program is a logical address space. The set
of all physical addresses corresponding to these logical addresses is a physical
address space. Thus, in the execution-time address-binding scheme, the logical
and physical address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from many different methods to accomplish such mapping, as we discuss in
Section 8.3 through Section 8.5. For the time being, we illustrate this mapping
with a simple MMU scheme that is a generalization of the base-register scheme
described in Section 8.1.1. The base register is now called a relocation register.
The value in the relocation register is added to every address generated by a
user process at the time the address is sent to memory (see Figure 8.4). For
example, if the base is at 14000, then an attempt by the user to address location
0 is dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346.

The user program never sees the real physical addresses. The program can
create a pointer to location 346, store it in memory, manipulate it, and compare it
with other addresses—all as the number 346. Only when it is used as a memory
address (in an indirect load or store, perhaps) is it relocated relative to the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The final location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logical addresses (in the
range 0 to max) and physical addresses (in the range R + 0 to R + max for a base
value R). The user program generates only logical addresses and thinks that
the process runs in locations 0 to max. However, these logical addresses must
be mapped to physical addresses before they are used. The concept of a logical
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Dynamic linking and loading

• Linking combines different object code modules to create a program’s code
• Static linking – all libraries and program code combined into the binary program image
• Dynamic linking – postpone linking to execution time

• Dynamic linking is particularly useful for libraries
• System or shared libraries
• May need to track versions

• Calls replaced with a stub
• A small piece of code to locate the appropriate in-memory routine

• Stub replaces itself with the address of the routine, and executes the routine
• Operating system checks if routine is in processes’ memory address, adding it if not

• Dynamic loading avoids loading routines until they’re called
• Better memory usage as unused routines are never loaded
• Requires they be compiled with relocatable addresses
• Useful when large amounts of code are needed infrequently

• OS can help by providing libraries to implement dynamic loading
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• Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these various bind-
ings can be implemented effectively in a computer system and to discussing
appropriate hardware support.

8.1.3 Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into
the memory-address register of the memory—is commonly referred to as a
physical address.

The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses. However, the execution-time address-
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Outline

• Memory protection
• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation
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Memory allocation

• Main memory must support both kernel and user processes
• Limited resource, must allocate efficiently
• Contiguous allocation is early method putting each process in one chunk of memory

• How to determine chunks?
• Multiple fixed-sized partitions limits the degree of multiprogramming; prefer variable partitioning

• Main memory usually partitioned into two
• Resident kernel, usually held in low memory 

alongside interrupt vectors
• User processes then held in high memory, 

each in a single contiguous section
• Relocation registers used to protect 

• User processes from each other, and 
• OS code and data from being modified

• Can then allow actions such as kernel code being 
transient and kernel changing size
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the operating system resides in low memory. The development of the other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory. In
contiguous memory allocation, each process is contained in a single section of
memory that is contiguous to the section containing the next process.

8.3.1 Memory Protection

Before discussing memory allocation further, we must discuss the issue of
memory protection. We can prevent a process from accessing memory it does
not own by combining two ideas previously discussed. If we have a system
with a relocation register (Section 8.1.3), together with a limit register (Section
8.1.1), we accomplish our goal. The relocation register contains the value of
the smallest physical address; the limit register contains the range of logical
addresses (for example, relocation = 100040 and limit = 74600). Each logical
address must fall within the range specified by the limit register. The MMU
maps the logical address dynamically by adding the value in the relocation
register. This mapped address is sent to memory (Figure 8.6).

When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by a CPU is checked against
these registers, we can protect both the operating system and the other users’
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to allow the
operating system’s size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
is not commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.
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Figure 8.6 Hardware support for relocation and limit registers.06. Memory Management 12



Swapping

• When physical memory requested exceeds physical 
memory in machine, temporarily swap processes out 
• Move processes from main memory to storage

• Significant performance impact
• Time to transfer process to/from storage directly proportional 

to the amount of memory swapped 
• Context switches can thus become very expensive
• E.g., 100MB process with storage transfer rate of 50MB/s

• Swapping default disabled
• Enabled only while allocated memory exceeds threshold
• Plus consider pending I/O to / from process memory space
• System maintains a ready queue of ready-to-run processes with memory images on disk

• Must swapped out processes be swapped in to the same physical addresses?
• Depends on address binding method
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programs would need to be relinked to gain access to the new library. So that
programs will not accidentally execute new, incompatible versions of libraries,
version information is included in both the program and the library. More than
one version of a library may be loaded into memory, and each program uses its
version information to decide which copy of the library to use. Versions with
minor changes retain the same version number, whereas versions with major
changes increment the number. Thus, only programs that are compiled with
the new library version are affected by any incompatible changes incorporated
in it. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared libraries.

Unlike dynamic loading, dynamic linking and shared libraries generally
require help from the operating system. If the processes in memory are
protected from one another, then the operating system is the only entity that can
check to see whether the needed routine is in another process’s memory space
or that can allow multiple processes to access the same memory addresses. We
elaborate on this concept when we discuss paging in Section 8.5.4.

8.2 Swapping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought back
into memory for continued execution (Figure 8.5). Swapping makes it possible
for the total physical address space of all processes to exceed the real physical
memory of the system, thus increasing the degree of multiprogramming in a
system.

8.2.1 Standard Swapping

Standard swapping involves moving processes between main memory and
a backing store. The backing store is commonly a fast disk. It must be large

operating
system

swap out

swap in

user
space

main memory

backing store

process P2

process P11

2

Figure 8.5 Swapping of two processes using a disk as a backing store.

06. Memory Management 13



Multiple variable-partition allocation

• Holes, blocks of available memory of various size are scattered 
throughout memory
• When a process arrives, it is allocated memory from a hole large enough to 

accommodate it
• Process exiting frees its partition, adjacent free partitions combined

• OS maintains information about: 
• allocated partitions and
• free partitions (holes)
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Dynamic allocation problem

• How to satisfy a request of size 𝑛 from a list of free holes?

• First-fit, allocate the first hole that is big enough
• Best-fit, allocate the smallest hole that is big enough
• Requires searching entire list, unless maintained ordered by size  
• Produces the smallest leftover hole

• Worst-fit, allocate the largest hole
• Also requires searching entire list, producing the largest leftover hole

• First-fit and best-fit better than worst-fit in terms of speed and 
storage utilization
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Fragmentation

• Fragmentation results in memory being unused and unusable
• External Fragmentation

• Occurs when free memory exists to satisfy a request but it is not contiguous
• Can eventually result in blocking as insufficient contiguous memory to swap any 

process in
• Internal Fragmentation

• Occurs when allocated memory is 
slightly larger than requested memory

• Memory internal to a partition, but unused
• Analysis of first-fit indicates that for N

blocks allocated, 0.5 N blocks lost to 
fragmentation
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Compaction

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if 
• relocation is dynamic, and 
• done at execution time

• I/O problem
• Pin job in memory while involved in I/O
• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems
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Segmentation

• Memory-management scheme supporting user view of 
memory 
• View a program as a collection of segments, logical program  units 

such as the program, a procedure, an object, an array, etc

• Accessing memory requires 
user program to specify
• Segment name (number) and 
• Offset within segment
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Figure 8.9 Example of segmentation.

compaction, whereas segmentation does not. It also solves the considerable
problem of fitting memory chunks of varying sizes onto the backing store.
Most memory-management schemes used before the introduction of paging
suffered from this problem. The problem arises because, when code fragments
or data residing in main memory need to be swapped out, space must be found
on the backing store. The backing store has the same fragmentation problems
discussed in connection with main memory, but access is much slower, so
compaction is impossible. Because of its advantages over earlier methods,
paging in its various forms is used in most operating systems, from those for
mainframes through those for smartphones. Paging is implemented through
cooperation between the operating system and the computer hardware.

8.5.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from their source (a file
system or the backing store). The backing store is divided into fixed-sized
blocks that are the same size as the memory frames or clusters of multiple
frames. This rather simple idea has great functionality and wide ramifications.
For example, the logical address space is now totally separate from the physical
address space, so a process can have a logical 64-bit address space even though
the system has less than 264 bytes of physical memory.

The hardware support for paging is illustrated in Figure 8.10. Every address
generated by the CPU is divided into two parts: a page number (p) and a page
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Segmentation hardware

• Logical address is now a pair < segment-number, offset >
• Segment table maps to physical addresses via entries having

• Base, the starting physical address where the segments reside 
• Limit, specifying the length of the segment

• Segment-table base register (STBR) points to the segment 
table’s location in memory

• Segment-table length register (STLR) indicates number of segments 
used by a program;

Segment number 𝑠 is legal if 𝑠 < 𝑆𝑇𝐿𝑅
• Protection provided by associating with each entry in segment table 

• Validation bit indicating legal / illegal segment
• Read/Write/Execute privileges
• Associated with segments so code sharing occurs at segment level

• Segments vary in length so memory allocation is a dynamic storage-allocation problem
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Figure 8.8 Segmentation hardware.

addresses. This mapping is effected by a segment table. Each entry in the
segment table has a segment base and a segment limit. The segment base
contains the starting physical address where the segment resides in memory,
and the segment limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.8. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index to the segment table. The offset d of
the logical address must be between 0 and the segment limit. If it is not, we trap
to the operating system (logical addressing attempt beyond end of segment).
When an offset is legal, it is added to the segment base to produce the address
in physical memory of the desired byte. The segment table is thus essentially
an array of base–limit register pairs.

As an example, consider the situation shown in Figure 8.9. We have five
segments numbered from 0 through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, a reference to byte 53 of segment 2 is mapped
onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

8.5 Paging

Segmentation permits the physical address space of a process to be non-
contiguous. Paging is another memory-management scheme that offers this
advantage. However, paging avoids external fragmentation and the need for
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Sharing segments is subtle

• Consider jumps within shared code
• Specified as a condition and a transfer address < segment-number, offset > 
• segment-number is (of course) this one

• So all programs sharing this segment must use the same number to refer to it
• The difficulty of finding a common shared segment number grows as the number of users sharing a segment 
• Thus, specify branches as PC-relative or relative to a register containing the current segment number
• Read only segments containing no pointers may be shared 

with different segment numbers

• Wasteful to store common information on shared 
segment in each process segment table
• Also dangerous as can get out of sync between processes

• Assign each segment a unique System Segment
Number (SSN)
• Process Segment Table then maps 

from a Process Segment Number (PSN) to SSN 
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Summary

• Memory protection
• Address binding
• Logical and physical addresses
• Memory Management Unit 

(MMU) 
• Linking and loading

• Memory allocation
• Swapping
• Dynamic allocation
• Fragmentation
• Compaction
• Segmentation
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