
05. Scheduling Algorithms
9th ed: Ch. 6

10th ed: Ch. 5



Objectives

• To understand how to apply several common scheduling 
algorithms
• FCFS, SJF, SRTF
• Priority
• Round Robin
• Multilevel Queues

• To understand use of measurement and prediction for 
unknown scheduling parameters

05. Scheduling Algorithms 2



Outline

• First-Come First-Served (FCFS)
• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Priority scheduling
• Round Robin (RR)

05. Scheduling Algorithms 3



Outline

• First-Come First-Served (FCFS)
• Convoy effect

• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Priority scheduling
• Round Robin (RR)

05. Scheduling Algorithms 4



First-Come First-Served (FCFS)

• Schedule depends purely on the order in which processes arrive
• Simplest possible scheduling algorithm
• Not terribly robust to different arrival processes

• E.g., suppose processes with the following burst times arrive in the 
order P1, P2, P3

Process Burst Time

P1 24

P2 3

P3 3

05. Scheduling Algorithms 5



First-Come First-Served (FCFS)

• Then the Gantt chart is

• The waiting times are

• This gives an average per-process waiting time of !"#$"#%
&

= 17

P P P1 2 3

0 24 3027

Process Burst Time Waiting Time

P1 24 0

P2 3 24

P3 3 27

05. Scheduling Algorithms 6



The Convoy Effect

• Now suppose the same processes arrive in the order P2, P3, P1

• Then the Gantt chart and waiting times are:

• Gives an average per-process waiting time
of ⁄6 + 0 + 3 3 = 3
• First case is an example of the Convoy Effect
• Short-run processes getting stuck behind long-run processes
• Consider one CPU-bound and many IO-bound processes

P1
0 3 6 30

P2 P3

Process Burst Time Waiting Time

P1 24 6

P2 3 0

P3 3 3

05. Scheduling Algorithms 7



Outline

• First-Come First-Served (FCFS)
• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Priority scheduling
• Round Robin (RR)

05. Scheduling Algorithms 8



Shortest Job First (SJF)

• Associate length of next CPU burst with each process
• Schedule the process with the shortest next burst
• Optimality: SJF gives the least possible waiting time for a given set of 

processes
• But how can you know the length of the next CPU burst?
• Ask the user?
• Ask the developer?
• Measure and predict?

05. Scheduling Algorithms 9



Shortest Job First (SJF)

• Consider the following arrivals process and resulting Gantt chart:

• Gives an average per-process waiting time of &"'(")"!
$

= 7

P3
0 3 24

P4 P1
169

P2

Process Burst Time

P1 6

P2 8

P3 7

P4 3

05. Scheduling Algorithms 10



Outline

• First-Come First-Served (FCFS)
• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Predicting the future
• Exponential averaging

• Priority scheduling
• Round Robin (RR)

05. Scheduling Algorithms 11



Shortest Remaining Time First (SRTF)

• Simply a pre-emptive version of SJF
• Pre-empt current process if a new one arrives with a shorter predicted burst 

length than the remaining time of the current process

• Distinguish arrival time and burst length, e.g.,
• Gives Gantt chart

• Average waiting time is now '!*' " '*' " '%*# " +*&
$

= #(
$
= 6 ⁄' #

P4
0 1 26

P1 P2
10

P3P1
5 17

Process Arrival Time Burst Length

P1 0 8

P2 1 4

P3 2 9

P4 3 5

05. Scheduling Algorithms 12



Optimality in the future

• If SJF is optimal given a known set of processes (demand), then surely 
SRTF is optimal in the face of new runnable processes arriving?
• No! Why?
• Context switches are not free, so if short burst processes keep arriving 

the OS will start thrashing the CPU, so no useful work gets done

• More fundamentally, 
how can we know the length of a future burst?

05. Scheduling Algorithms 13



Predicting burst lengths

• Assume the next burst will not be too different from the previous
• Then
• measure burst lengths as processes are scheduled, 
• predict next burst length, and
• choose the process with the shortest predicted burst length

• E.g., exponential averaging on length of previous bursts
• Set 𝑡! to be the measured length of the 𝑛th CPU burst
• Define 𝜏!"#, predicted length of 𝑛 + 1th burst as 𝜏!"# = 𝛼𝑡! + 1 − 𝛼 𝜏!

05. Scheduling Algorithms 14



Examples of exponential averaging

• Expanding this formula gives 
𝜏,"' = 𝛼𝑡, + …+ (1 − 𝛼)-𝛼𝑡,*- + …+ 1 − 𝛼 ,"'𝜏!
where 𝜏! is some constant

• As both 𝛼, 1 − 𝛼 ≤ 1, each term has less weight than its predecessor
• Choose value of 𝛼 according to our belief about the system, e.g,
• If we believe past history irrelevant, choose 𝛼 ≈ 1 and then get 𝜏!"# ≈ 𝑡!
• If we believe recent history irrelevant, choose 𝛼 ≈ 0 and then get 𝜏!"# ≈ 𝜏!

• Exponential averaging is often a good predictor if the variance is small
• NB. Also should consider load, else (counter-intuitively) priorities increase 

with the load

05. Scheduling Algorithms 15



Examples of exponential averaging

05. Scheduling Algorithms 16

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12



Outline

• First-Come First-Served (FCFS)
• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Priority scheduling
• Dynamic priorities
• Computed priorities

• Round Robin (RR)

05. Scheduling Algorithms 17



Priority scheduling

• Associate integer priority with process, and schedule the highest 
priority (~ lowest number) process, e.g.,

• Average waiting time now 
1 + 5 + 0 + 1 + 5 + 10 + 1 + 5 + 10 + 2 + 1

5
=
41
5
= 8 )1 5

• Consider: SJF as priority scheduling using inverse of predicted burst 
length

Process Priority Burst Length

P1 3 10

P2 1 1

P3 4 2

P4 5 1

P5 2 5

05. Scheduling Algorithms 18

6.3 Scheduling Algorithms 271

Using priority scheduling, we would schedule these processes according to the
following Gantt chart:

P1 P4P3P2 P5

19181660 1

The average waiting time is 8.2 milliseconds.
Priorities can be defined either internally or externally. Internally defined

priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/O burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CPU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 A.M. Sunday, when the system is finally
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that when they shut down
the IBM 7094 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes is
aging. Aging involves gradually increasing the priority of processes that wait
in the system for a long time. For example, if priorities range from 127 (low)
to 0 (high), we could increase the priority of a waiting process by 1 every 15
minutes. Eventually, even a process with an initial priority of 127 would have
the highest priority in the system and would be executed. In fact, it would take
no more than 32 hours for a priority-127 process to age to a priority-0 process.

6.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
enable the system to switch between processes. A small unit of time, called a
time quantum or time slice, is defined. A time quantum is generally from 10
to 100 milliseconds in length. The ready queue is treated as a circular queue.



Dynamic priority scheduling

• Starvation can occur if low priority processes never execute
• Urban legend?
• When the IBM 7074 at MIT was shut down in 1973, low-priority processes 

were found that had been submitted in 1967 and had not yet been run... 

• This is the biggest problem with static priority systems!
• A low priority process is not guaranteed to run — ever! 

• Solve by making priorities dynamic
• E.g., aging increases priority starting from a static base as time passes without 

process being scheduled 

05. Scheduling Algorithms 19



Computed Priority

• E.g., traditional UNIX scheduler
• Priorities 0–127; user processes ≥ PUSER = 50
• Round robin within priorities, quantum e.g. 100ms

• Priority of process 𝑗 at start of interval 𝑖 is based on 
• nice level, a user controllable parameter between -20 and 20, and
• 𝑙𝑜𝑎𝑑$ the sampled average length of the run queue for process 𝑗

𝑃$ 𝑖 = Base% +
CPU$ 𝑖 − 1

4
+ 2×nice%

CPU$ 𝑖 =
2×load%

(2×load%) + 1
CPU$ 𝑖 − 1 + nice%

05. Scheduling Algorithms 20



Outline

• First-Come First-Served (FCFS)
• Shortest Job First (SJF)
• Shortest Remaining Time First (SRTF)
• Priority scheduling
• Round Robin (RR)
• Multilevel queues
• Multilevel feedback queues

05. Scheduling Algorithms 21



Round Robin

• A pre-emptive scheduling scheme for time-sharing systems
• Give each process a quantum (or time-slice) of CPU time e.g., 10—100 milliseconds
• Once quantum elapsed, process is pre-empted and appended to the ready queue
• Timer interrupts every quantum to schedule next process

• Can be tricky to choose 𝑞 correctly
• 𝑞 too large degenerates into a 

FIFO queue (~ FCFS)
• 𝑞 too small makes the context switch 

overhead too great

• 𝑞 usually 10ms to 100ms, 
while context switch < 10 𝜇sec

05. Scheduling Algorithms 22

6.3 Scheduling Algorithms 273

process time ! 10 quantum context
switches

12 0

6 1

1 9

0 10

0 10

0 1 2 3 4 5 6 7 8 9 10

6

Figure 6.4 How a smaller time quantum increases context switches.

is the same as the FCFS policy. In contrast, if the time quantum is extremely
small (say, 1 millisecond), the RR approach can result in a large number of
context switches. Assume, for example, that we have only one process of 10
time units. If the quantum is 12 time units, the process finishes in less than 1
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum is
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 6.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CPU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

Turnaround time also depends on the size of the time quantum. As we
can see from Figure 6.5, the average turnaround time of a set of processes
does not necessarily improve as the time-quantum size increases. In general,
the average turnaround time can be improved if most processes finish their
next CPU burst in a single time quantum. For example, given three processes
of 10 time units each and a quantum of 1 time unit, the average turnaround
time is 29. If the time quantum is 10, however, the average turnaround time
drops to 20. If context-switch time is added in, the average turnaround time
increases even more for a smaller time quantum, since more context switches
are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. As we pointed out earlier, if the time
quantum is too large, RR scheduling degenerates to an FCFS policy. A rule of
thumb is that 80 percent of the CPU bursts should be shorter than the time
quantum.

6.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a



Round Robin

• Consider the first example again

• For quantum 𝑞 and 𝑛 processes ready, 
• Fair: each process gets ⁄# ! CPU time in chunks of at most 𝑞 time units, and 
• Live: no process ever waits more than (𝑛 − 1)𝑞 time units

• Typically 
• higher average turnaround time than SRTF, but 
• better average response time

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Process Burst Time

P1 24

P2 3

P3 3

05. Scheduling Algorithms 23



Multilevel Queues

• Partition Ready queue into many queues 
for different types of process, e.g.,
• Foreground/interactive processes
• Background/batch processes

• Each process is permanently assigned a 
given queue
• Each queue runs its own scheduling 

algorithm, e.g.,
• Foreground runs Round Robin
• Background runs First-Come First-Served

05. Scheduling Algorithms 24

6.3 Scheduling Algorithms 275

system processes

highest priority

lowest priority

interactive processes

interactive editing processes

batch processes

student processes

Figure 6.6 Multilevel queue scheduling.

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground–background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, while the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

6.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all



Multilevel Feedback Queues

• Now scheduling must be done between the queues:
• Fixed priority, e.g., serve all from foreground then from background, permits 

starvation
• Time slice, each queue gets a certain amount of CPU time which it can schedule 

amongst its processes, e.g., 80% to foreground in RR, 20% to background in FCFS 
• A process can move between the various queues

• Aging can be implemented this way
• Multilevel-feedback-queue scheduler defined by the following parameters:

• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a process
• method used to determine when to demote a process
• method used to determine which queue a process will enter when that process 

needs service

05. Scheduling Algorithms 25



Multilevel Feedback Queues

• Three queues: 
• Q0 – RR with time quantum 8 milliseconds
• Q1 – RR time quantum 16 milliseconds
• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served FCFS
• When it gains CPU, job receives 8 milliseconds
• If it does not finish in 8 milliseconds, job is moved to queue Q1

• At Q1 job is again served FCFS and receives 16 additional milliseconds
• If it still does not complete, it is pre-empted and moved to queue Q2

05. Scheduling Algorithms 26

276 Chapter 6 CPU Scheduling

quantum ! 8

quantum ! 16

FCFS

Figure 6.7 Multilevel feedback queues.

processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,



Summary

• First-Come First-Served (FCFS)
• Convoy effect

• Shortest Job First (SJF)
• Shortest Remaining Time First 

(SRTF)
• Predicting the future
• Exponential averaging

• Priority scheduling
• Dynamic priorities
• Computed priorities

• Round Robin (RR)
• Multilevel queues
• Multilevel feedback queues

05. Scheduling Algorithms 27


