
04. Scheduling
9th ed: Ch. 6

10th ed: Ch. 5

Objectives

• To introduce CPU scheduling, the basis for multi-programmed
operating systems, and the CPU I/O burst cycle
• To distinguish pre-emptive and non-preemptive scheduling
• To understand some different metrics used to make scheduling

decisions
• Utilisation, Throughput
• Turnaround time, Waiting time, Response time

04. Scheduling 2

Outline

• Queues
• Scheduling
• Multiple processor scheduling

04. Scheduling 3

Outline

• Queues
• CPU I/O burst cycle
• CPU scheduler vs job scheduler
• Idling

• Scheduling
• Multiple processor scheduling

04. Scheduling 4

Queues

• Job Queue: batch processes
awaiting admission
• Ready Queue: processes in

main memory, ready and
waiting to execute
• Wait Queue(s): set of

processes waiting for e.g., I/O
devices or other processes

04. Scheduling 5

admit
CPU

release

timeout or yield

dispatch

Ready Queue

event-waitevent

Wait Queue(s)

Job
Queue

create
(batch) (interactive)
create

Queues

• For example,
• Two processes (7, 2) in the

Ready queue
• No processes waiting for

either magnetic tape unit
• Three processes (3, 14, 6)

waiting for the disk
• One process (5) waiting for

the terminal

• …etc

Ready
queue

Wait
queues

04. Scheduling 6

CPU I/O Burst Cycle

• Process execution interleaves CPU execution with waiting
for I/O
• Maximising CPU utilization means multiprogramming

• Need something to do while waiting for I/O
• CPU burst distribution helps

parameterise scheduling
• Often (hyper-)exponential

• I/O-bound
• Many short CPU bursts

• CPU-bound
• Fewer long CPU bursts

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

04. Scheduling 7

6.1 Basic Concepts 263

fr
eq

ue
nc

y

160

140

120

100

80

60

40

20

0 8 16 24 32 40
burst duration (milliseconds)

Figure 6.2 Histogram of CPU-burst durations.

An I/O-bound program typically has many short CPU bursts. A CPU-bound
program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

6.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried out
by the short-term scheduler, or CPU scheduler. The scheduler selects a process
from the processes in memory that are ready to execute and allocates the CPU
to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

6.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/O request or an invocation of wait() for
the termination of a child process)

Schedulers

• Short-term or CPU scheduler
• Selects which process should be executed next and allocates it to the CPU
• Sometimes the only scheduler in a system
• Invoked frequently (milliseconds) so must be fast

• Long-term or Job scheduler
• Controls the degree of multiprogramming
• Selects which processes should be brought into the ready queue
• Invoked infrequently (seconds, minutes) so may be slow
• Strives for good process mix between CPU- and I/O-bound processes

04. Scheduling 8

Idling

• Will assume there’s always something to do – but what if there isn’t?
• An important question on a modern (interactive) machine

• Three options:
1. Busy wait in the scheduler: short-response times but ugly, inefficient
2. Halt CPU until interrupted: saves energy but increases latency
3. Invent an idle process:

• nice uniform structure and could do some housekeeping
• …but consumes resources and might slow interrupt response

04. Scheduling 9

Outline

• Queues
• Scheduling
• Dispatcher
• Pre-emptive vs non-preemptive
• Criteria

• Multiple processor scheduling

04. Scheduling 10

Dispatcher

• After scheduler, the Dispatcher gives control of the CPU to the
selected process by
• Switching context,
• Switching to user mode,
• Executing the user process from the selected location

• Dispatch latency is the time it takes to complete this stop/start
procedure
• Two important questions:

1. When to make a scheduling decision to select the next process?
2. How to order the queue – which process to select next?

04. Scheduling 11

When to enter the scheduler?

• When can the scheduling decision be made? When
1. ...a running process blocks (running → waiting)
2. ...a running process terminates (running → terminated)
3. ...a timer expires (running → ready)
4. ...a waiting process unblocks (waiting → ready)

• If the scheduler is only invoked
under 1 and 2, it is non-preemptive
• Running process decides if/when

to enter scheduler
• Otherwise, it is pre-emptive

• OS can force scheduler entry

108 Chapter 3 Processes

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8).

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

04. Scheduling 12

Pre-emptive vs Non-preemptive

• Non-preemptive scheduling
• Typically uses an explicit yield system call or similar so running process can enter the

scheduler, alongside implicit yields when, e.g., performing IO
• Simple to implement: no timers required, process holds CPU as long as desired
• Open to denial-of-service: malicious or buggy process can refuse to yield

• Pre-emptive scheduling
• Hardware support for regular timer interrupts required to ensure scheduler entered
• Precludes denial-of-service: the OS simply pre-empts a long-running process
• More complex to implement: Timer management, concurrency issues

• Almost all modern schedulers are pre-emptive

04. Scheduling 13

Scheduling Criteria

• Typically there will be more than one process runnable –
how to decide which one to pick?
• Many different metrics may be used, with different trade-offs and

leading to different operating regimes
• Data structures introduce time and space overheads
• …of measurement and computation for the metric
• …of selecting the “best” next process

04. Scheduling 14

Scheduling Criteria

• Turnaround time, minimising the time for any process to complete
• Aims to minimise total time from process submission to completion across all

states

• Waiting time, minimising the time a process sits in the Ready queue
• Scheduler only controls time in the Ready queue – rest is up to the process
• But may penalise IO heavy processes that spend a long time in the wait queue

• Response time, minimising the time to start responding
• In interactive/time-sharing systems, users may prefer to total efficiency
• But may penalise longer running sessions under heavy load

04. Scheduling 15

Scheduling Criteria

• CPU utilisation, maximising the time the CPU is actively in use
• Aims to keep the (expensive) CPU as busy as possible
• But may penalise I/O heavy processes as they appear to leave the CPU idle

• Throughput, maximising the rate at which processes complete execution
• Aims to get useful work done at the highest possible rate
• But may penalise long-running processes as short-run processes will be preferred

• Typically want to maximise utilisation and throughput, and minimise
turnaround, waiting and response times
• …but what exactly – optimise the average? Minimise the maximum?
• What about the distribution, e.g., variance, confidence intervals?

04. Scheduling 16

Outline

• Queues
• Scheduling
• Multiple processor scheduling
• NUMA
• Load balancing, multicore, virtualisation

04. Scheduling 17

Multiple processor scheduling

• Everything becomes more complex when multiple CPUs are available
• Assume homogeneous processors within a multiprocessor

• Asymmetric multiprocessing
• Only one processor accesses the system data structures
• Alleviates the need for data sharing

• Symmetric multiprocessing (SMP) – currently the most common
• Each processor is self-scheduling
• All processes can be in a single ready queue, or each processor has its own private

ready queue
• Processor affinity when a process has affinity for which processor it runs

• Soft affinity indicates preference
• Hard affinity indicates constraint
• Variations including processor sets

04. Scheduling 18

Non-Uniform Memory Access (NUMA)

• Affects CPU scheduling as it means different CPUs have faster or
slower access to parts of memory
• E.g., because have combined CPU and memory boards

• Memory placement then
affects affinity
• Costs of switching to a

different CPU could be very
much higher than without
NUMA

04. Scheduling 19

6.5 Multiple-Processor Scheduling 281

CPU

fast access

memory

CPU

fast access
slow access

memory

computer

Figure 6.9 NUMA and CPU scheduling.

Otherwise, one or more processors may sit idle while other processors have
high workloads, along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in an
SMP system. It is important to note that load balancing is typically necessary
only on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 6.7.1) and the ULE scheduler
available for FreeBSD systems implement both techniques.

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 6.5.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its data
being in that processor’s cache memory. Either pulling or pushing a process
from one processor to another removes this benefit. As is often the case in
systems engineering, there is no absolute rule concerning what policy is best.
Thus, in some systems, an idle processor always pulls a process from a non-idle
processor. In other systems, processes are moved only if the imbalance exceeds
a certain threshold.

6.5.4 Multicore Processors

Traditionally, SMP systems have allowed several threads to run concurrently by
providing multiple physical processors. However, a recent practice in computer

Load balancing, multicore, virtualisation

• SMP means OS needs to keep all CPUs loaded for efficiency
• Load balancing attempts to keep workload evenly distributed
• Push migration has a periodic task check load on each CPU and push tasks off

overloaded CPUs onto other CPUs
• Pull migration has idle CPUs pull waiting tasks off busy CPUs

• Recent trends include
• Multicore, placing multiple CPU cores on same physical chip, increasing speed

and efficiency
• Hyperthreading, increasing the number of threads per core so that one

thread can make progress while another is stalled on memory read
• Virtualisation challenges OS scheduler as hypervisor and guests are all

scheduling against each other

04. Scheduling 20

Summary

• Queues
• CPU I/O burst cycle
• CPU scheduler vs job scheduler
• Idling

• Scheduling
• Dispatcher
• Pre-emptive vs non-preemptive
• Criteria

• Multiple processor scheduling
• NUMA
• Load balancing, multicore,

virtualisation

04. Scheduling 21

