
03. Processes
Ch. 1.6, 3

Objectives

• To understand the concept of a process vs a program, and the need
for context switching
• To distinguish the states in a process’ lifecycle
• To know some of the state required for process management

03. Processes 2

Outline

• What is a process?
• Process lifecycle
• Inter-Process Communication (IPC)

03. Processes 3

Outline

• What is a process?
• Process Control Block (PCB)
• Threads of execution
• Context switching

• Process lifecycle
• Inter-Process Communication (IPC)

03. Processes 4

What is a process?

• The computer is there to execute programs, not the OS!
• Process ≠ Program
• A program is static, on-disk
• A process is dynamic, a program in execution
• On a batch system, might refer to jobs instead of processes – nowadays

generally used interchangeably

• Process is the unit of protection and resource allocation
• So you may have multiple processes running created from a single program

03. Processes 5

What is a process?

• Each process executed on a virtual processor has
• Text containing the program code
• Data containing global variables
• Heap containing memory allocating during runtime
• …plus one or more threads of execution

• Each thread has
• Program counter indicating current instruction
• Stack for temporary variables, parameters, return

addresses, etc.

03. Processes 6

106 Chapter 3 Processes

system has user programs, or tasks. Even on a single-user system, a user may
be able to run several programs at one time: a word processor, a Web browser,
and an e-mail package. And even if a user can execute only one program at a
time, such as on an embedded device that does not support multitasking, the
operating system may need to support its own internal programmed activities,
such as memory management. In many respects, all these activities are similar,
so we call all of them processes.

The terms job and process are used almost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job.

3.1.1 The Process

Informally, as mentioned earlier, a process is a program in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor’s registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
that is dynamically allocated during process run time. The structure of a process
in memory is shown in Figure 3.1.

We emphasize that a program by itself is not a process. A program is a
passive entity, such as a file containing a list of instructions stored on disk
(often called an executable file). In contrast, a process is an active entity,
with a program counter specifying the next instruction to execute and a set
of associated resources. A program becomes a process when an executable file
is loaded into memory. Two common techniques for loading executable files

text

0

max

data

heap

stack

Figure 3.1 Process in memory.

Process Number (or Process ID)

Current Process State

Other CPU Registers

Memory Mangement Information

CPU Scheduling Information

Program Counter

Other Information
(e.g. list of open files, name of

executable, identity of owner, CPU
time used so far, devices owned)

Refs to previous and next PCBs

Process Control Block (PCB)

• Data structure representing a process, containing
• Process ID or number – uniquely identifies the process
• Current process state – running, waiting, etc
• CPU scheduling information – priorities, scheduling queue

pointers
• Memory-management information – memory allocated to the

process
• Accounting information – CPU used, clock time elapsed since

start, time limits
• I/O status information – I/O devices allocated to process, list

of open files
• Highlighted process context is the machine

environment while the process is running
• Program counter, location of instruction to next execute
• CPU registers, contents of all process-centric registers

03. Processes 7

Threads of execution

• A thread represents an individual execution context
• One process may have many threads
• OS visible threads are kernel threads, whether executing in kernel or user

space

• Each thread has an associated Thread Control Block (TCB)
• Contains thread metadata: saved context (registers, including stack pointer),

scheduler info, program counter, etc.

• A scheduler determines which thread to run
• Changing the running thread involves a context switch
• If between threads in different processes, the process state also switches

03. Processes 8

Context switching

• Switching between processes means
• Saving the context of the currently

executing process (if any), and
• Restoring the context of that being

resumed
• Wasted time! No useful work is

carried out while switching
• How much time depends on

hardware support
• From nothing, to
• Save/load multiple registers to/from

memory, to
• Complete hardware “task switch”

03. Processes 9

3.1 Process Concept 109

process P0 process P1

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

operating system

idle

idle

executingidle

executing

executing

interrupt or system call

interrupt or system call

•
•
•

•
•
•

Figure 3.4 Diagram showing CPU switch from process to process.

• Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

• I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program that
performs a single thread of execution. For example, when a process is running
a word-processor program, a single thread of instructions is being executed.
This single thread of control allows the process to perform only one task at
a time. The user cannot simultaneously type in characters and run the spell
checker within the same process, for example. Most modern operating systems
have extended the process concept to allow a process to have multiple threads
of execution and thus to perform more than one task at a time. This feature
is especially beneficial on multicore systems, where multiple threads can run
in parallel. On a system that supports threads, the PCB is expanded to include
information for each thread. Other changes throughout the system are also
needed to support threads. Chapter 4 explores threads in detail.

Outline

• What is a process?
• Process lifecycle
• Process states
• Process creation
• Process termination

• Inter-Process Communication (IPC)

03. Processes 10

Process states

• New: process is being created
• Running: process instructions are

being executed on the CPU
• Ready: process is ready to run,

and is waiting for the CPU
• Waiting (Blocked): process has

stopped executing, and is waiting
for an event to occur
• Terminated (Exit): process has

finished executing

108 Chapter 3 Processes

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8).

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

03. Processes 11

Process creation

• Most systems are
hierarchical
• Parent processes create

child processes
• Forms a tree

• E.g., a possible Linux
process tree

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

03. Processes 12

Process creation

• How are resources shared?
1. Parent and children share all resources
2. Children share subset of parent’s resources
3. Parent and child share no resources

• How is the child’s memory initialised?
1. Child starts with a duplicate of the parent and then modifies it
2. Child explicitly has a program loaded into it

• How is execution of parent and children handled?
1. Parent and children execute concurrently
2. Parent waits until children terminate

03. Processes 13

Process creation

• E.g., on Unix
• fork clones a child process from parent,
• then execve replaces child’s memory space

with a new program,
• meanwhile parent waits until child exits

• Alternative approach in NT/2K/XP
• CreateProcess explicitly includes name of

program to be executed

118 Chapter 3 Processes

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}

return 0;
}

Figure 3.9 Creating a separate process using the UNIX fork() system call.

call to exec() overlays the process’s address space with a new program, the
call to exec() does not return control unless an error occurs.

The C program shown in Figure 3.9 illustrates the UNIX system calls
previously described. We now have two different processes running copies
of the same program. The only difference is that the value of pid (the process
identifier) for the child process is zero, while that for the parent is an integer
value greater than zero (in fact, it is the actual pid of the child process). The
child process inherits privileges and scheduling attributes from the parent,
as well certain resources, such as open files. The child process then overlays
its address space with the UNIX command /bin/ls (used to get a directory
listing) using the execlp() system call (execlp() is a version of the exec()
system call). The parent waits for the child process to complete with the wait()
system call. When the child process completes (by either implicitly or explicitly
invoking exit()), the parent process resumes from the call to wait(), where it
completes using the exit() system call. This is also illustrated in Figure 3.10.

Of course, there is nothing to prevent the child from not invoking exec()
and instead continuing to execute as a copy of the parent process. In this
scenario, the parent and child are concurrent processes running the same code

3.3 Operations on Processes 119

pid = fork()

exec()

parent

parent (pid > 0)

child (pid = 0)

wait()

exit()

parent resumes

Figure 3.10 Process creation using the fork() system call.

instructions. Because the child is a copy of the parent, each process has its own
copy of any data.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Windows API using the CreateProcess() func-
tion, which is similar to fork() in that a parent creates a new child process.
However, whereas fork() has the child process inheriting the address space
of its parent, CreateProcess() requires loading a specified program into the
address space of the child process at process creation. Furthermore, whereas
fork() is passed no parameters, CreateProcess() expects no fewer than ten
parameters.

The C program shown in Figure 3.11 illustrates the CreateProcess()
function, which creates a child process that loads the application mspaint.exe.
We opt for many of the default values of the ten parameters passed to
CreateProcess(). Readers interested in pursuing the details of process
creation and management in the Windows API are encouraged to consult the
bibliographical notes at the end of this chapter.

The two parameters passed to the CreateProcess() function are instances
of the STARTUPINFO and PROCESS INFORMATION structures. STARTUPINFO
specifies many properties of the new process, such as window size and
appearance and handles to standard input and output files. The PRO-
CESS INFORMATION structure contains a handle and the identifiers to the
newly created process and its thread. We invoke the ZeroMemory() func-
tion to allocate memory for each of these structures before proceeding with
CreateProcess().

The first two parameters passed to CreateProcess() are the application
name and command-line parameters. If the application name is NULL (as it is
in this case), the command-line parameter specifies the application to load. In
this instance, we are loading the Microsoft Windows mspaint.exe application.
Beyond these two initial parameters, we use the default parameters for
inheriting process and thread handles as well as specifying that there will be no
creation flags. We also use the parent’s existing environment block and starting
directory. Last, we provide two pointers to the STARTUPINFO and PROCESS -
INFORMATION structures created at the beginning of the program. In Figure
3.9, the parent process waits for the child to complete by invoking the wait()
system call. The equivalent of this in Windows is WaitForSingleObject(),
which is passed a handle of the child process—pi.hProcess—and waits for
this process to complete. Once the child process exits, control returns from the
WaitForSingleObject() function in the parent process.

03. Processes 14

Process termination

1. Process performs an illegal operation, e.g.,
• Makes an attempt to access memory without authorisation
• Attempts to execute a privileged instruction

2. Parent terminates child (abort, kill), e.g. because
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• Cascading termination – parent is exiting and OS requires children must also exit

3. Process executes last statement and asks the OS to delete it (exit)
• Parent waits and obtains status data from child
• If parent didn’t wait, process is a zombie
• If parent terminated without waiting, process is an orphan

03. Processes 15

Outline

• What is a process?
• Process lifecycle
• Inter-Process Communication (IPC)
• Message passing vs shared memory
• Signals
• Pipes
• Shared memory segments

03. Processes 16

Inter-Process Communication (IPC)

• All communications require some protocol, with data transfer
• …in a commonly-understood format (syntax)
• …having mutually-agreed meaning (semantics)
• …taking place according to agree rules (synchronisation)
• (Ignore problems of discovery, identification, errors, etc. for now)

• Communication between hosts is IB Computer Networking
• Separate hosts means handling reliability and asynchrony

• Communication between threads is IB Concurrent & Distributed
Systems
• Shared data structures allows corruption, deadlock, etc.

• IPC basic requirement: access to shared memory on same host

03. Processes 17

Message passing vs Shared memory

• Two fundamental models for IPC
• Shared memory
• Communicating processes establish some part of memory both can access
• Requires removing usual restriction that processes have memory protection

• Message passing
• Processes send messages to each other mediated by the kernel
• Requires support for processes to

• name each other or a shared mailbox (direct vs indirect communication)
• send and receive synchronously or asynchronously (blocking vs non-blocking)
• buffer messages to match rates if non-blocking (zero, finite, unbounded buffers)

03. Processes 18

Message passing vs Shared memory

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

03. Processes 19

Signals

• Simple message passing: asynchronous notifications on another process
• kill system call sends a signal to a specified process/es
• sigaction examines or changes a signal handler disposition (terminate, ignore, etc)
• pause suspends process until signal is caught

• Each signal mapped to an integer, different between architectures
• https://www.man7.org/linux/man-pages/man7/signal.7.html

• Among the more commonly encountered:
• SIGHUP: hangup detected on terminal / death of controlling process (1)
• SIGINT: terminal interrupt (2)
• SIGILL: illegal instruction (4)
• SIGKILL: terminate the process [cannot be caught or ignored] (9)
• SIGTERM: politely terminate process (15)
• SIGSEGV: segmentation fault — process made an invalid memory reference
• SIGUSR1/2: two user defined signals [system defined numbers]

03. Processes 20

https://www.man7.org/linux/man-pages/man7/signal.7.html

Pipes

• Simple form of shared memory
IPC
• pipe returns a pair of file

descriptors, (fd[0], fd[1])
• fork creates child process

• Parent and child can now
communicate
• read/write on the pair of

(read, write) fds
• Named pipes (FIFOs) extend

beyond parent/child relation
• Appear as files in the filesystem

3.6 Communication in Client–Server Systems 143

parent
fd(0) fd(1)

child
fd(0) fd(1)

pipe

Figure 3.24 File descriptors for an ordinary pipe.

UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using
ordinary read() and write() system calls.

An ordinary pipe cannot be accessed from outside the process that created
it. Typically, a parent process creates a pipe and uses it to communicate with
a child process that it creates via fork(). Recall from Section 3.3.1 that a child
process inherits open files from its parent. Since a pipe is a special type of file,
the child inherits the pipe from its parent process. Figure 3.24 illustrates the
relationship of the file descriptor fd to the parent and child processes.

In the UNIX program shown in Figure 3.25, the parent process creates a
pipe and then sends a fork() call creating the child process. What occurs after
the fork() call depends on how the data are to flow through the pipe. In
this instance, the parent writes to the pipe, and the child reads from it. It is
important to notice that both the parent process and the child process initially
close their unused ends of the pipe. Although the program shown in Figure
3.25 does not require this action, it is an important step to ensure that a process
reading from the pipe can detect end-of-file (read() returns 0) when the writer
has closed its end of the pipe.

Ordinary pipes on Windows systems are termed anonymous pipes, and
they behave similarly to their UNIX counterparts: they are unidirectional and

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define BUFFER SIZE 25
#define READ END 0
#define WRITE END 1

int main(void)
{
char write msg[BUFFER SIZE] = "Greetings";
char read msg[BUFFER SIZE];
int fd[2];
pid t pid;

/* Program continues in Figure 3.26 */

Figure 3.25 Ordinary pipe in UNIX.

03. Processes 21

Process BProcess A

read(fd, buf, n)write(fd, buf, n)

old data

new data

free space

Shared memory segments

• Obtain a segment of memory shared between two (or more)
processes
• shmget to get a segment
• shmat to attach to it

• Simply read and write via pointers into the shared memory segment
• Need to impose controls to avoid collisions when simultaneously reading and

writing

• When finished,
• shmdt to detach and
• shmctl to destroy once you know no-one still using it

03. Processes 22

Summary

• What is a process?
• Process Control Block (PCB)
• Threads of execution
• Context switching

• Process lifecycle
• Process states
• Process creation
• Process termination

• Inter-Process Communication
(IPC)
• Message passing vs shared

memory
• Signals
• Pipes
• Shared memory segments

03. Processes 23

