02. Protection

9th ed: Ch. 2.7+, 14, 15, 16
10t" ed: Ch. 2.7+, 16, 17, 19

Objectives

* To describe the evolution of the operating system

* To understand how the OS protects itself from user programs

* To understand how the OS protects user programs from each other
* To know some different ways the OS can be structured

* To be aware of some security considerations

Outline

e OS evolution
e Kernels
* Security

Outline

* OS evolution
 Single-tasking
* Dual-mode operation

Operating system evolution

Open shop: One machine, one CPU, one user, one program — the user is the

programmer is the operator all programming is in machine code

* E.g., EDSAC, 1947—1955

Batch systems: tape drives collate and run a
set of programs in a batch, increasing efficiency

* Spooling allowed overlap of I/O with computation

Multiprogramming: one machine, one CPU,
one running program but many loaded programs

* Job scheduling: select jobs to load and then which
resident job to run

Job 4 Job 4 Job 4
Job 3 Job 3 Job 3
Job 2 Job 2 Job 2
Job 1 Job 1 Job 1
Operating Operating Operating
System System System

Timesharing: switching jobs so frequently that users have the illusion many jobs

are running simultaneously

* CPU scheduling: select which job to run from many that are ready

* Enables interactive computing

Single-tasking OS: MS-DOS

* Command interpreter receives
input from user

* Program is loaded, overwriting much
of the command interpreter free memory

* |Instruction pointer set to start of
program

* Once finished, termination causes

free memory

command mterprgter stub to SN
reload command interpreter interpreter

* Exit error code available to user

process

kernel

command
interpreter

kernel

Dual-mode operation

interrupt or fault

* Allows OS to stop malicious or oot
buggy code from doing bad things /‘
* Use hardware —a mode bit — to sot usor mode
distinguish (at least) two modes of operation
* User mode when executing on behalf of a user (i.e. application programs)

* Kernel mode when executing on behalf of the OS
* Some instructions designated as privileged, only executable in kernel mode

* Increasingly CPUs support multi-mode operations
* j.e.virtual machine manager (VMM) mode for guest VMs

e Often “nested” e.g., x86 rings 0—3; further inside can do strictly more
* Not ideal, but disjoint/overlapping permissions is complex

Outline

e Kernels
e System calls
* Microkernels
* Virtualisation

Kernels

* Protection prevents applications doing 10 — kernel
does it for them

* Thus we need an unprivileged instruction to transition
from user to kernel mode

* Generally called a trap or a software interrupt since
operates similarly to ﬁ\ardware) interrupt

* OS services are accessible via system calls
* Invoked by a trap with OS having vectors to handle
* Vector enforces code run when mode switch occurs
* Prevents application from switching to kernel mode and
then just doing whatever it likes

* Alternative is for OS to emulate for application,
and check every instruction before execution as
used in some virtualisation systems, e.g., QEMU

‘ App.l‘ App.\‘ App.\! App.\
Unpriv

T

System calls

* Provide a (language agnostic) standard
interface to the OS services

* Accessed via a high-level (language
specific) Application Programming
Interface (API) rather than called directly

* E.g., glibc

Raw system calls in Rust
https://github.com/strake/system-call.rs/

user process
user mode
. (mode bit = 1)
user process executing calls system call return from system call
\ /
\ /
\ =
k | trap return
erme mode bit =0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

02. Protection 10

https://github.com/strake/system-call.rs/

System call invocation

* Typically each system call is
associated by a number that
indexes a system call table

* Invoked by putting the relevant
number and any required parameters
in the right places and trapping

e Return status and any values made
available to application in user space

e Usually managed by run-time
support library, a set of functions
built into libraries automatically

linked by your compiler

user application

open ()
user

)

mode

kernel

system call interface

mode

>

open ()

Implementation
of open ()
system call

return

System call parameters

* Three main ways to pass int
parameterS' open(const char *path, int oflag, ...);
1. Load into registers ssize_t
2. Place onto stack for the kernel to ~ "e@d(int fildes, void *buf, size t nbyte);
pop off
. — x|
3. Place into a block of memory and register
put the block’s address into a : parameters
regiSter eredt > use parameters code for
load address X rom table system
* One of the latter two usually S e }cyautw
preferred
* Registers limited in number and Lser program

size

operating system

Microkernels

OS interfaces must be extremely stable
* Makes them difficult to extend with new calls
* Even more difficult to remove calls

Alternative is microkernels
* Move OS services into local, sometimes privileged,

Server Server

servers
* Increases modularity and extensibility
* Message passing used to access servers Upriv § v N VY ¥ YV
* Replaces trapping so must be extremely efficient Priv Server | |Device || |Device
. e . Driver Driver
* Many common OSs blur the distinction

between kernel and microkernel, e.g.,
e Linux has kernel modules and some servers

* Windows NT 3.5 originally a microkernel but
performance concerns caused NT 4.0 to move
services back into the kernel

02. Protection 13

Virtualisation

* More recently, trend towards
encapsulating applications differently i
* Make the system appear to be supporting just i
One applicathn processes processes
* Particularly relevant when building systems | | |
using microservices I | progamming™ | et | kemel | kemel
* Protection, or isolation at a different level ernel A L_ME | W
. ardware manager
* Virtualisation: allows operating systems o hardware

to be run alongside each other above a hypervisor

* Type 1 runs directly on the host hardware, possibly using hardware extensions (VT-x)
* Type 2 runs above a full OS kernel

e Can support cross-architecture using emulation (slow) or interpretation (if not
natively compiled)

Virtual machines, containers

* Virtual Machines encapsulate an entire running system, including the OS,
and then boot the VM over a hypervisor

* E.g., Xen, VMWarekSX, Hyper-V

* Containers expose functionality in the OS so that each container acts as a
separate entity even though they all share the same underlying OS
functionality

e E.g., Linux Containers, FreeBSD lJails, Solaris Zones

e Use cases include
e Laptops and desktops running multiple OSes for exploration or compatibility
* Developing apps for multiple OSes without having multiple systems
* QA testing applications without having multiple systems
* Executing and managing compute environments within datacenters

Outline

* Security
* Principle of least privilege
 Domain of protection
* Access matrix
e Access Control Lists (ACLs)
e Capabilities
e Authentication

Security

* Defence of the system against internal and external attacks

* Huge range of attacks, including denial-of-service, worms, viruses, identity theft,
theft of service

* Systems generally first distinguish among users, to determine who can do

what
» User identities (user IDs, security IDs) include name and associated number, one per
user
e User ID then associated with all files, processes of that user to determine access
control
* Group identifier (group ID) allows set of users to be defined and controls managed,
then also associated with each process, file

* Privilege escalation allows user to change to effective ID with more rights

Principle of least privilege

Objects should be given just enough privileges to perform their tasks
* Hardware objects (e.g., devices) and software objects (e.g., files, programs, semaphores)

Properly set permissions can limit damage if object has a bug and gets abused
* Can be static (during life of system, during life of process)
* Or dynamic (changed by process as needed) by domain switching, privilege escalation

Compartmentalization a derivative concept regarding access to data

* Process of protecting each individual system component through the use of specific
permissions and access restrictions

* More granular, more complex, more protective

Covert channels leak information using side-effects
* Hardware include wire tapping or receiving electromagnetic radiation from devices
» Software include page fault statistics or input-dependent timing

. .%., lowest layer of recent OCaml TLS library had to be written in C to avoid the garbage
collector becoming a covert channel

Domain of protection

* Domain limits access to (and operations on) objects

* access-right = < object-name, rights-set > where rights-set is a subset of all
valid operations that can be performed on object-name

* A domain is then a set of access-rights
* In UNIX a domain is a user id

D, D, Dy

< O, {read, write} >
< Oy, {read, write} >
< 0,, {execute} >

< Oy, {execute} >
< O, {read} >

< Q,, {print} >

Access matrix

* A matrix of domains (subjects, principals) against objects

* Rows represent domains, columns represent objects

* M; ; = operations a process in domain i can invoke on object j
e Operations can include adding/deleting entries in matrix

* Example of separation
of policy from
mechanism

object

laser

F. F. F. D D. D. D
domain 1 2 3 printer 1 2 3 4
D, read read switch
D, print switch SHiicl
control
D, read |execute
D, write write switch

Implementing the access matrix

* The access matrix is a table of triples < domain, object, rights-set >

* For a domain to invoke an operation on an object involves searching to see if
that operation is in any rights-set for the pair < domain, object >

e Table is large so may not fit in memory — but sparse

* Two common representations

1. By object, storing list of subjects and rights with each object — Access
Control List (ACL)

2. By subject, storing list of objects and rights with each subject — Capabilities

Access Control Lists (ACLs)

* Each column is an access list for one object
* Results in a per-object ordered list of < domain, rights-set >

e Often used in storage systems
e System naming scheme provides for ACL to be inserted in naming path, e.g.,
files

* If ACLs stored on disk, check is in software so use only on low duty
cycle — for higher duty cycle must cache results of check

* E.g., ACL checked when file opened for read or write, or when code file is to
be executed

* In (e.g.) UNIX, access control is by program, allowing arbitrary policies

Capabilities

e Each row is a capability for one domain
* Indicates operations permitted on a set of objects

* To execute operation M on object 0;, process requests operation and
passes capability as parameter

* Possession of capability means access is allowed

* Capability is a protected object, maintained by the OS and unmodifiable by the
application — like a “secure pointer”

 Hardware capabilities, e.g., CHERI
* Have special machine instructions to modify (restrict) capabilities
» Support passing of capabilities on procedure (program) call

e Software capabilities

* Protected by encryption
* Nice for distributed systems

Authentication

e User to system: required as protection systems depend on user ID
» Typically established through use of password (or passphrase or key)
* Need to be managed, kept secure
* Hashed with a salt (easy to compute, hard to invert)
* Multi-factor authentication adds a second (or more) component
* Failed access attempts usually logged

 System to user: avoid user talking to the wrong computer / program

* In the old days with directly wired terminals, make login character same as
terminal attention, or always do a terminal attention before trying login

* E.g., Windows NT’s Ctrl-Alt-Del to login — no-one else can trap it
* (When your bank phones, how do you know it’s them?)

Summary

* OS evolution * Security
 Single-tasking * Principle of least privilege
* Dual-mode operation Domain of protection

e Kernels * Access matrix
« System calls e Access Control Lists (ACLs)
* Microkernels * Capabilities

e Virtualisation * Authentication

