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Objectives

• To describe the evolution of the operating system
• To understand how the OS protects itself from user programs
• To understand how the OS protects user programs from each other
• To know some different ways the OS can be structured
• To be aware of some security considerations
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Outline

• OS evolution
• Kernels
• Security
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Outline

• OS evolution
• Single-tasking
• Dual-mode operation

• Kernels
• Security

02. Protection 4



Operating system evolution

• Open shop: One machine, one CPU, one user, one program – the user is the 
programmer is the operator, all programming is in machine code
• E.g., EDSAC, 1947—1955

• Batch systems: tape drives collate and run a 
set of programs in a batch, increasing efficiency
• Spooling allowed overlap of I/O with computation

• Multiprogramming: one machine, one CPU, 
one running program but many loaded programs
• Job scheduling: select jobs to load and then which

resident job to run
• Timesharing: switching jobs so frequently that users have the illusion many jobs 

are running simultaneously
• CPU scheduling: select which job to run from many that are ready
• Enables interactive computing
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Single-tasking OS: MS-DOS

• Command interpreter receives 
input from user
• Program is loaded, overwriting much 

of the command interpreter
• Instruction pointer set to start of 

program

• Once finished, termination causes 
command interpreter stub to 
reload command interpreter
• Exit error code available to user
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Figure 2.9 MS-DOS execution. (a) At system startup. (b) Running a program.

give the program as much memory as possible (Figure 2.9(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest
of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user’s choice
is run. This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.10). To start a new process, the shell

free memory

interpreter

kernel

process D

process C

process B

Figure 2.10 FreeBSD running multiple programs.
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Dual-mode operation

• Allows OS to stop malicious or 
buggy code from doing bad things
• Use hardware – a mode bit – to 

distinguish (at least) two modes of operation
• User mode when executing on behalf of a user (i.e. application programs)
• Kernel mode when executing on behalf of the OS
• Some instructions designated as privileged, only executable in kernel mode

• Increasingly CPUs support multi-mode operations
• i.e. virtual machine manager (VMM) mode for guest VMs

• Often “nested” e.g., x86 rings 0—3; further inside can do strictly more
• Not ideal, but disjoint/overlapping permissions is complex
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Outline

• OS evolution
• Kernels
• System calls
• Microkernels
• Virtualisation

• Security
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Kernels

• Protection prevents applications doing IO – kernel 
does it for them
• Thus we need an unprivileged instruction to transition 

from user to kernel mode 
• Generally called a trap or a software interrupt since 

operates similarly to (hardware) interrupt
• OS services are accessible via system calls 

• Invoked by a trap with OS having vectors to handle
• Vector enforces code run when mode switch occurs
• Prevents application from switching to kernel mode and 

then just doing whatever it likes
• Alternative is for OS to emulate for application, 

and check every instruction before execution as 
used in some virtualisation systems, e.g., QEMU 
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int x, y;
x = 5;
y = x + 3;

str #5, [Rx] ; store 5 into x
ldr R1, [Rx] ; load value of x from memory
add R2, R1, #3 ; and add 3 to it
str R2, [Ry] ; and store result in y

#[inline(always)]
pub unsafe fn syscall4(mut n: usize,

a1: usize,
a2: usize,
a3: usize,
a4: usize)
-> usize

{
llvm_asm!("int $$0x80"

: "+{eax}"(n)
: "{ebx}"(a1) "{ecx}"(a2) "{edx}"(a3) "{esi}"(a4)
: "memory" "cc"
: "volatile");

n
}

1

System calls

• Provide a (language agnostic) standard 
interface to the OS services
• Accessed via a high-level (language 

specific) Application Programming 
Interface (API) rather than called directly
• E.g., glibc

Raw system calls in Rust
https://github.com/strake/system-call.rs/
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Figure 1.10 Transition from user to kernel mode.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, system mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer
to indicate the current mode: kernel (0) or user (1). With the mode bit, we can
distinguish between a task that is executed on behalf of the operating system
and one that is executed on behalf of the user. When the computer system is
executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill
the request. This is shown in Figure 1.10. As we shall see, this architectural
enhancement is useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
system is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating
system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructions that
may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it as illegal and traps it to the operating system.

The instruction to switch to kernel mode is an example of a privileged
instruction. Some other examples include I/O control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

The concept of modes can be extended beyond two modes (in which case
the CPU uses more than one bit to set and test the mode). CPUs that support
virtualization (Section 16.1) frequently have a separate mode to indicate when
the virtual machine manager (VMM)—and the virtualization management
software—is in control of the system. In this mode, the VMM has more
privileges than user processes but fewer than the kernel. It needs that level
of privilege so it can create and manage virtual machines, changing the CPU
state to do so. Sometimes, too, different modes are used by various kernel

https://github.com/strake/system-call.rs/


System call invocation

• Typically each system call is 
associated by a number that 
indexes a system call table
• Invoked by putting the relevant 

number and any required parameters 
in the right places and trapping

• Return status and any values made 
available to application in user space

• Usually managed by run-time 
support library, a set of functions 
built into libraries automatically 
linked by your compiler
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Figure 2.6 The handling of a user application invoking the open() system call.

then invokes the intended system call in the operating-system kernel and
returns the status of the system call and any return values.

The caller need know nothing about how the system call is implemented
or what it does during execution. Rather, the caller need only obey the API and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the API and are managed by the run-time
support library. The relationship between an API, the system-call interface,
and the operating system is shown in Figure 2.6, which illustrates how the
operating system handles a user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and
length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parameters to the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in a block, or table, in memory, and the
address of the block is passed as a parameter in a register (Figure 2.7). This
is the approach taken by Linux and Solaris. Parameters also can be placed,
or pushed, onto the stack by the program and popped off the stack by the
operating system. Some operating systems prefer the block or stack method
because those approaches do not limit the number or length of parameters
being passed.
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System call parameters

• Three main ways to pass 
parameters:

1. Load into registers
2. Place onto stack for the kernel to 

pop off
3. Place into a block of memory and 

put the block’s address into a 
register

• One of the latter two usually 
preferred
• Registers limited in number and 

size
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Figure 2.7 Passing of parameters as a table.

2.4 Types of System Calls

System calls can be grouped roughly into six major categories: process
control, file manipulation, device manipulation, information maintenance,
communications, and protection. In Sections 2.4.1 through 2.4.6, we briefly
discuss the types of system calls that may be provided by an operating system.
Most of these system calls support, or are supported by, concepts and functions
that are discussed in later chapters. Figure 2.8 summarizes the types of system
calls normally provided by an operating system. As mentioned, in this text,
we normally refer to the system calls by generic names. Throughout the text,
however, we provide examples of the actual counterparts to the system calls
for Windows, UNIX, and Linux systems.

2.4.1 Process Control

A running program needs to be able to halt its execution either normally
(end()) or abnormally (abort()). If a system call is made to terminate the
currently running program abnormally, or if the program runs into a problem
and causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by
a debugger—a system program designed to aid the programmer in finding
and correcting errors, or bugs—to determine the cause of the problem. Under
either normal or abnormal circumstances, the operating system must transfer
control to the invoking command interpreter. The command interpreter then
reads the next command. In an interactive system, the command interpreter
simply continues with the next command; it is assumed that the user will
issue an appropriate command to respond to any error. In a GUI system, a
pop-up window might alert the user to the error and ask for guidance. In a
batch system, the command interpreter usually terminates the entire job and
continues with the next job. Some systems may allow for special recovery
actions in case an error occurs. If the program discovers an error in its input
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. It is then

int
open(const char *path, int oflag, ...);

ssize_t
read(int fildes, void *buf, size_t nbyte);
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Microkernels

• OS interfaces must be extremely stable
• Makes them difficult to extend with new calls
• Even more difficult to remove calls

• Alternative is microkernels
• Move OS services into local, sometimes privileged, 

servers
• Increases modularity and extensibility 

• Message passing used to access servers
• Replaces trapping so must be extremely efficient 

• Many common OSs blur the distinction 
between kernel and microkernel, e.g.,
• Linux has kernel modules and some servers
• Windows NT 3.5 originally a microkernel but 

performance concerns caused NT 4.0 to move 
services back into the kernel
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Virtualisation

• More recently, trend towards 
encapsulating applications differently
• Make the system appear to be supporting just 

one application
• Particularly relevant when building systems 

using microservices
• Protection, or isolation at a different level 

• Virtualisation: allows operating systems 
to be run alongside each other above a hypervisor
• Type 1 runs directly on the host hardware, possibly using hardware extensions (VT-x)
• Type 2 runs above a full OS kernel
• Can support cross-architecture using emulation (slow) or interpretation (if not 

natively compiled)
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Virtual machines, containers

• Virtual Machines encapsulate an entire running system, including the OS, 
and then boot the VM over a hypervisor 
• E.g., Xen, VMWareESX, Hyper-V 

• Containers expose functionality in the OS so that each container acts as a 
separate entity even though they all share the same underlying OS 
functionality 
• E.g., Linux Containers, FreeBSD Jails, Solaris Zones 

• Use cases include
• Laptops and desktops running multiple OSes for exploration or compatibility
• Developing apps for multiple OSes without having multiple systems
• QA testing applications without having multiple systems
• Executing and managing compute environments within datacenters
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Outline

• OS evolution
• Kernels
• Security
• Principle of least privilege
• Domain of protection
• Access matrix
• Access Control Lists (ACLs)
• Capabilities
• Authentication
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Security

• Defence of the system against internal and external attacks
• Huge range of attacks, including denial-of-service, worms, viruses, identity theft, 

theft of service
• Systems generally first distinguish among users, to determine who can do 

what
• User identities (user IDs, security IDs) include name and associated number, one per 

user
• User ID then associated with all files, processes of that user to determine access 

control
• Group identifier (group ID) allows set of users to be defined and controls managed, 

then also associated with each process, file
• Privilege escalation allows user to change to effective ID with more rights
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Principle of least privilege

• Objects should be given just enough privileges to perform their tasks
• Hardware objects (e.g., devices) and software objects (e.g., files, programs, semaphores)

• Properly set permissions can limit damage if object has a bug and gets abused
• Can be static (during life of system, during life of process) 
• Or dynamic (changed by process as needed) by domain switching, privilege escalation

• Compartmentalization a derivative concept regarding access to data 
• Process of protecting each individual system component through the use of specific 

permissions and access restrictions
• More granular, more complex, more protective

• Covert channels leak information using side-effects
• Hardware include wire tapping or receiving electromagnetic radiation from devices 
• Software include page fault statistics or input-dependent timing
• E.g., lowest layer of recent OCaml TLS library had to be written in C to avoid the garbage 

collector becoming a covert channel
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Domain of protection

• Domain limits access to (and operations on) objects
• access-right = < object-name, rights-set > where rights-set is a subset of all 

valid operations that can be performed on object-name
• A domain is then a set of access-rights
• In UNIX a domain is a user id

628 Chapter 14 Protection

For example, when process p invokes procedure A(), the procedure should be
allowed to access only its own variables and the formal parameters passed to it;
it should not be able to access all the variables of process p. Similarly, consider
the case in which process p invokes a compiler to compile a particular file. The
compiler should not be able to access files arbitrarily but should have access
only to a well-defined subset of files (such as the source file, listing file, and
so on) related to the file to be compiled. Conversely, the compiler may have
private files used for accounting or optimization purposes that process p should
not be able to access. The need-to-know principle is similar to the principle of
least privilege discussed in Section 14.2 in that the goals of protection are to
minimize the risks of possible security violations.

14.3.1 Domain Structure

To facilitate the scheme just described, a process operates within a protection
domain, which specifies the resources that the process may access. Each
domain defines a set of objects and the types of operations that may be invoked
on each object. The ability to execute an operation on an object is an access
right. A domain is a collection of access rights, each of which is an ordered
pair <object-name, rights-set>. For example, if domain D has the access
right <file F, {read,write}>, then a process executing in domain D can both
read and write file F. It cannot, however, perform any other operation on that
object.

Domains may share access rights. For example, in Figure 14.1, we have
three domains: D1, D2, and D3. The access right <O4, {print}> is shared by D2
and D3, implying that a process executing in either of these two domains can
print object O4. Note that a process must be executing in domain D1 to read
and write object O1, while only processes in domain D3 may execute object O1.

The association between a process and a domain may be either static, if
the set of resources available to the process is fixed throughout the process’s
lifetime, or dynamic. As might be expected, establishing dynamic protection
domains is more complicated than establishing static protection domains.

If the association between processes and domains is fixed, and we want to
adhere to the need-to-know principle, then a mechanism must be available to
change the content of a domain. The reason stems from the fact that a process
may execute in two different phases and may, for example, need read access
in one phase and write access in another. If a domain is static, we must define
the domain to include both read and write access. However, this arrangement
provides more rights than are needed in each of the two phases, since we have
read access in the phase where we need only write access, and vice versa.

D1

! O3, {read, write} "
! O1, {read, write} "
! O2, {execute} "

! O1, {execute} "
! O3, {read} "

! O2, {write} " ! O4, {print} "

D2 D3

Figure 14.1 System with three protection domains.02. Protection 19



Access matrix

• A matrix of domains (subjects, principals) against objects
• Rows represent domains, columns represent objects
• 𝑀!,# = operations a process in domain 𝑖 can invoke on object 𝑗
• Operations can include adding/deleting entries in matrix

• Example of separation 
of policy from 
mechanism
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Figure 14.7 Modified access matrix of Figure 14.4.

access-matrix model. However, we have shown only that the basic mechanism
exists. System designers and users must make the policy decisions concerning
which domains are to have access to which objects in which ways.

14.5 Implementation of the Access Matrix

How can the access matrix be implemented effectively? In general, the matrix
will be sparse; that is, most of the entries will be empty. Although data-
structure techniques are available for representing sparse matrices, they are
not particularly useful for this application, because of the way in which
the protection facility is used. Here, we first describe several methods of
implementing the access matrix and then compare the methods.

14.5.1 Global Table

The simplest implementation of the access matrix is a global table consisting
of a set of ordered triples <domain, object, rights-set>. Whenever an
operation M is executed on an object Oj within domain Di , the global table
is searched for a triple <Di , Oj , Rk>, with M ∈ Rk . If this triple is found, the
operation is allowed to continue; otherwise, an exception (or error) condition
is raised.

This implementation suffers from several drawbacks. The table is usually
large and thus cannot be kept in main memory, so additional I/O is needed.
Virtual memory techniques are often used for managing this table. In addition,
it is difficult to take advantage of special groupings of objects or domains.
For example, if everyone can read a particular object, this object must have a
separate entry in every domain.

14.5.2 Access Lists for Objects

Each column in the access matrix can be implemented as an access list for
one object, as described in Section 11.6.2. Obviously, the empty entries can be
discarded. The resulting list for each object consists of ordered pairs <domain,
rights-set>, which define all domains with a nonempty set of access rights
for that object.

This approach can be extended easily to define a list plus a default set of
access rights. When an operation M on an object Oj is attempted in domain
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Implementing the access matrix

• The access matrix is a table of triples < domain, object, rights-set >
• For a domain to invoke an operation on an object involves searching to see if 

that operation is in any rights-set for the pair < domain, object >

• Table is large so may not fit in memory – but sparse
• Two common representations

1. By object, storing list of subjects and rights with each object – Access 
Control List (ACL)

2. By subject, storing list of objects and rights with each subject – Capabilities
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Access Control Lists (ACLs)

• Each column is an access list for one object
• Results in a per-object ordered list of < domain, rights-set >

• Often used in storage systems 
• System naming scheme provides for ACL to be inserted in naming path, e.g., 

files

• If ACLs stored on disk, check is in software so use only on low duty 
cycle – for higher duty cycle must cache results of check
• E.g., ACL checked when file opened for read or write, or when code file is to 

be executed 

• In (e.g.) UNIX, access control is by program, allowing arbitrary policies 
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Capabilities

• Each row is a capability for one domain
• Indicates operations permitted on a set of objects

• To execute operation 𝑀 on object 𝑂!, process requests operation and 
passes capability as parameter
• Possession of capability means access is allowed
• Capability is a protected object, maintained by the OS and unmodifiable by the 

application – like a “secure pointer”
• Hardware capabilities, e.g., CHERI

• Have special machine instructions to modify (restrict) capabilities 
• Support passing of capabilities on procedure (program) call 

• Software capabilities
• Protected by encryption
• Nice for distributed systems 
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Authentication

• User to system: required as protection systems depend on user ID
• Typically established through use of password (or passphrase or key)
• Need to be managed, kept secure
• Hashed with a salt (easy to compute, hard to invert)
• Multi-factor authentication adds a second (or more) component
• Failed access attempts usually logged

• System to user: avoid user talking to the wrong computer / program
• In the old days with directly wired terminals, make login character same as 

terminal attention, or always do a terminal attention before trying login
• E.g., Windows NT’s Ctrl-Alt-Del to login — no-one else can trap it 
• (When your bank phones, how do you know it’s them?) 
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Summary

• OS evolution
• Single-tasking
• Dual-mode operation

• Kernels
• System calls
• Microkernels
• Virtualisation

• Security
• Principle of least privilege
• Domain of protection
• Access matrix
• Access Control Lists (ACLs)
• Capabilities
• Authentication
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