

Course format

- 12 + 4 hours
- One practical exercise (20%)
- One course project (80%)
 - We will release a list of suggested projects
 - You may propose others, to be confirmed by us
 - In groups of 2-3, we will assign
 - More information will be on the webpage soon

Contributors

- Fangcheng Zhong (fz261)
- Param Hanji (pmh64)
- Chris Town (cpt23)

Machine Visual Perception

- Our goal is to enable a computer to "see" and "understand" the environment.
- Computer vision
- Machine/ deep learning

Assisted Diagnosis

Machine Learning

"I've narrowed it to two hypotheses: it grew or we shrunk."

- Supervised learning
 - Given a training set of N examples

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

Minimize the discrepancy between the predicted output and the given output (ground truth)

Supervised learning

Given the pixels of a hand-written number, identify the number.

- Un-supervised learning
 - Learning patterns without specific target output values
 - Example: clustering

Un-supervised learning

Un-supervised learning

Semi-supervised

- Learning in the case of sparse labeled (supervised) data
- Use accessible data to improve decision boundaries and better classify unlabeled data

Self-supervised learning

Learn data representations via auxiliary tasks.

- Reinforcement Learning
 - Learning what actions to take in order to maximise some reward

- Reinforcement Learning
 - Learning what
 actions to take in
 order to maximise
 some reward

Input type

- What can a machine "see"?
 - Image: an array of pixels
 - Video: a list of images
 - Point clouds

Input type

- What can a machine "see"?
 - Image: an array of pixels
 - Video: a list of images
 - Point clouds

Output type

Regression

Classification

Practical Exercise

- Two parts: classification & regression
- Details will be on the course web page and Moodle
- Any questions? Please ask Param, Fangcheng, myself.
- Release: 19 October 2022, 12:00 PM
- Deadline: 11 November 2022, 12:00 PM

Course Project

- Main task:
 - implementing a paper or,
 - extending an existing implementation or,
 - applying an implementation to a new task and dataset.
- Project deliverables:
 - A project plan
 - Project presentation
 - Project report
 - Implementation
- Project deadline: 1 December 2022, 12:00 PM

Course Project

- Timeline:
 - This week on Friday we will release project proposals
 - By this week Friday
 - send names and CRSids of group members to aco41
 - only one email per group
 - By next Friday
 - send a short project proposal (<u>template</u>, also on Moodle)
- All announcements are on Moodle!

