8: Hidden Markov Models
Machine Learning and Real-world Data

Andreas Vlachos
(slides adapted from Simone Teufel and Helen Yannakoudakis)

Department of Computer Science and Technology
University of Cambridge
So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . .
So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . . the weather!
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

\[
P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy},
\]
\[
w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy})
\]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?

- We can use a history of weather observations:

 \[
P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, \\
 w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy})
 \]

- **Markov Assumption (first order):**

 \[
P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1})
 \]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?

- We can use a history of weather observations:
 \[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]

- **Markov Assumption** (first order):
 \[P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1}) \]

- The joint probability of a sequence of observations / events can then be approximated as:
 \[P(w_1, w_2, \ldots, w_t) \approx \prod_{t=1}^{n} P(w_t \mid w_{t-1}) \]
Markov Chains

<table>
<thead>
<tr>
<th></th>
<th>Rainy</th>
<th>Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Cloudy</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Transition probability matrix
Markov Chains

Transition probability matrix

<table>
<thead>
<tr>
<th></th>
<th>Rainy</th>
<th>Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Cloudy</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Two states: rainy and cloudy
Markov Chains

Transition probability matrix

<table>
<thead>
<tr>
<th></th>
<th>Rainy</th>
<th>Cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Cloudy</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption
- Can be viewed as a probabilistic finite-state automaton
- States are fully observable, finite and discrete; transitions are labelled with transition probabilities
- Models **sequential** problems – your current situation depends on what happened in the past
Markov Chains

- Useful for modeling the probability of a sequence of events
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting

- What if we are interested in events that are not unambiguously observed?
Markov Model
Markov Model: A Time-elapsed view
Hidden Markov Model: A Time-elapsed view

- Underlying Markov Chain over hidden states
- We only have access to the observations at each time step
- There is no 1:1 mapping between observations and hidden states
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by probabilities
- We now have to infer the sequence of hidden states that corresponds to the sequence of observations
Hidden Markov Model: A Time-elapsed view

Transition probabilities $P(w_t|w_{t-1})$

Emission probabilities $P(o_t|w_t)$ (Observation likelihoods)
Hidden Markov Model: A Time-elapsed view – start and end states

- Could use initial probability distribution over hidden states
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state
- Similarly, we will add a special end state to explicitly model the end of the sequence
- Special start and end states not associated with “real” observations
More formal definition of Hidden Markov Models; States and Observations

\[S_e = \{s_1, \ldots, s_N\} \] a set of \(N \) emitting hidden states,
\[s_0 \] a special start state,
\[s_f \] a special end state.

\[K = \{k_1, \ldots k_M\} \] an output alphabet of \(M \) observations ("vocabulary").
\[k_0 \] a special start symbol,
\[k_f \] a special end symbol.

\[O = O_1 \ldots O_T \] a sequence of \(T \) observations, each one drawn from \(K \).

\[X = X_1 \ldots X_T \] a sequence of \(T \) states, each one drawn from \(S_e \).
More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1. **Markov Assumption (Limited Horizon):** Transitions depend only on the current state:

 \[P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1}) \]

2. **Output Independence:** Probability of an output observation depends only on the current state and not on any other states or any other observations:

 \[P(O_t|X_1...X_t, ..., X_T, O_1, ..., O_t, ..., O_T) \approx P(O_t|X_t) \]
More formal definition of Hidden Markov Models; State Transition Probabilities

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall \; i \sum_{j=0}^{N+1} a_{ij} = 1
\]

Special start state \(s_0 \) and end state \(s_f \):

- Not associated with “real” observations
- \(a_{0i} \) describe transition probabilities out of the start state into state \(s_i \)
- \(a_{if} \) describe transition probabilities into the end state
- Transitions into start state (\(a_{i0} \)) and out of end state (\(a_{fi} \)) undefined
More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

\[
A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \ldots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \ldots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \ldots & a_{2N} & a_{2f} \\
- & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
- & a_{N1} & a_{N2} & a_{N3} & \ldots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & -
\end{bmatrix}
\]

\(a_{ij}\) is the probability of moving from state \(s_i\) to state \(s_j\):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[\forall i \sum_{j=0}^{N+1} a_{ij} = 1\]
More formal definition of Hidden Markov Models; State Transition Probabilities

\(A \): a state transition probability matrix of size \((N+2) \times (N+2)\).

\[
A = \begin{bmatrix}
-a_01 & a_{02} & a_{03} & \cdots & a_{0N} & - \\
-a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
-a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\end{bmatrix}
\]

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall i \sum_{j=0}^{N+1} a_{ij} = 1
\]
More formal definition of Hidden Markov Models; State Transition Probabilities

\[A: \text{ a state transition probability matrix of size } (N+2) \times (N+2). \]

\[A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & - \\
\end{bmatrix} \]

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[a_{ij} = P(X_t = s_j | X_{t-1} = s_i) \]

\[\forall i \sum_{j=0}^{N+1} a_{ij} = 1 \]
More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
- & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
\end{bmatrix}$$

a_{ij} is the probability of moving from state s_i to state s_j:

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall i \sum_{j=0}^{N+1} a_{ij} = 1$$
More formal definition of Hidden Markov Models; Emission Probabilities

\[B: \text{ an emission probability matrix of size } (M + 2) \times (N + 2). \]

\[B = \begin{bmatrix}
 b_0(k_0) & - & - & - & - & - & - & - & - & - \\
 - & b_1(k_1) & b_2(k_1) & b_3(k_1) & . & . & . & b_N(k_1) & - \\
 - & b_1(k_2) & b_2(k_2) & b_3(k_2) & . & . & . & b_N(k_2) & - \\
 - & b_1(k_M) & b_2(k_M) & b_3(k_M) & . & . & . & b_N(k_M) & - \\
 - & . & . & . & . & . & . & . & . & b_f(k_f)
\end{bmatrix} \]

\(b_i(k_j) \) is the probability of emitting vocabulary item \(k_j \) from state \(s_i \):

\[b_i(k_j) = P(O_t = k_j | X_t = s_i) \]

Our HMM is defined by its parameters \(\mu = (A, B) \).
More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size \((M + 2) \times (N + 2)\).

\[
B = \begin{bmatrix}
 b_0(k_0) & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ \\
 _ & b_1(k_1) & b_2(k_1) & b_3(k_1) & _ & _ & b_N(k_1) & _ \\
 _ & b_1(k_2) & b_2(k_2) & b_3(k_2) & _ & _ & b_N(k_2) & _ \\
 _ & _ & _ & _ & _ & _ & b_N(k_2) & _ \\
 _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ \\
 _ & b_1(k_M) & b_2(k_M) & b_3(k_M) & _ & _ & b_N(k_M) & _ \\
 _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & _ & b_f(k_f)
\end{bmatrix}
\]

\(b_i(k_j)\) is the probability of emitting vocabulary item \(k_j\) from state \(s_i\):

\[
b_i(k_j) = P(O_t = k_j | X_t = s_i)
\]

Our HMM is defined by its parameters \(\mu = (A, B)\).
Examples where states are hidden

- Speech recognition
 - Observations: audio signal
 - States: phonemes
- Part-of-speech tagging (assigning tags like Noun and Verb to words)
 - Observations: words
 - States: part-of-speech tags
- Machine translation
 - Observations: target words
 - States: source words
Today’s task: the dice HMM

- Imagine a fraudulent croupier in a casino where customers bet on dice outcomes.
- She has two dice – a fair one and a loaded one.
- The fair one has the standard distribution of outcomes – $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don’t know which dice is currently in use. You can only observe the numbers that are thrown.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.

- $O_0 = k_0$
- $O_1 = 5$
- $O_2 = 2$
- $O_3 = 4$
- $O_4 = 6$
- $O_f = k_f$
Today’s task: the dice HMM

States: fair and loaded, plus special states s_0 and s_f.

Distribution of observations differs between the states.

- $O_0 = k_0$
- $O_1 = 5$
- $O_2 = 2$
- $O_3 = 4$
- $O_4 = 6$
- $O_f = k_f$
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Fundamental tasks with HMMs

- **Problem 1** (Labelled Learning)
 - Given a parallel observation and state sequence O and X, learn the HMM parameters A and $B \rightarrow \text{today}$

- **Problem 2** (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B

- **Problem 3** (Likelihood)
 - Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$

- **Problem 4** (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence $X \rightarrow \text{Task 8}$
Your Task today

Task 7:

- Your implementation performs labelled HMM learning, i.e. it has
 - Input: dual tape of state and observation (dice outcome) sequences X and O

<table>
<thead>
<tr>
<th>(s_0)</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>F</th>
<th>F</th>
<th>(s_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_0)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>(k_f)</td>
</tr>
</tbody>
</table>

- Output: HMM parameters A, B
- Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later
Parameter estimation of HMM parameters A, B

- Transition matrix A consists of transition probabilities a_{ij}

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{\text{count}_{\text{trans}}(X_t = s_i, X_{t+1} = s_j)}{\text{count}_{\text{trans}}(X_t = s_i)}$$

- Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{\text{count}_{\text{emission}}(O_t = k_j, X_t = s_i)}{\text{count}_{\text{emission}}(X_t = s_i)}$$

- (Add-one smoothed versions of these)
Literature

 - We use state-emission HMM instead of arc-emission HMM
 - We avoid initial state probability vector π by using explicit start and end states (s_0 and s_f) and incorporating the corresponding probabilities into the transition matrix A.

- (Jurafsky and Martin, 3rd Edition, online, Chapter 8.4 (but careful, notation!))

