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Last session: Zipf’s Law and Heaps’ Law

Zipf’s Law: small number of very high-frequency words;
large number of low-frequency words (“long tail”).
Heaps’ Law: as more text is gathered, there will be
diminishing returns in terms of discovery of new word
types in the tail.

We will systematically always encounter new unseen words
in new texts.

Smoothing works by
lowering the MLE estimate for seen types
redistributing this probability to unseen types (e.g. for words
in long tail we might encounter during our experiment).



Observed system improvement

This produced a better system.
Or at least, you observed higher accuracies.
Today: we use a statistical test to gather evidence that one
system is really better than another system.
really = “significantly”



Variation in the data

Documents are different (writing style, length, type of
words used, . . . )
Some documents will make it easier for your system to
score well, some will make it easier for some other system.
Maybe you were just lucky and all documents in the test
set are in the smoothed system’s favour?

This could be the case if you don’t have enough data.
This could be the case if the difference in accuracy is small.

Maybe both systems perform equally well in reality?
We need to show that the smoothed system is significantly
better.



Statistical Significance Testing

Let’s say we observe that System 1 returns a higher overall
accuracy than System 2 in our experiment, and now we
want to show that System 1 is significantly better.
Null Hypothesis: two result sets come from the same
distribution

System 1 is (really) equally good as System 2.

First, choose a significance level (α), e.g., α = 0.01 or 0.05.
We then try to reject the null hypothesis with confidence
1− α (99% or 95% in this case)
Rejecting the null hypothesis means showing that the
observed result is unlikely to have occurred by chance.



Sign Test (non-parametric, paired)

The sign test uses a binary event model.
Here, events correspond to documents.
Events have binary outcomes:

Positive: System 1 beats System 2 on this document.
Negative: System 2 beats System 1 on this document.
(Tie: System 1 and System 2 do equally well on this
document / have identical results – more on this later).

Binary distribution allows us to calculate the probability
that, say, (at least) 1,247 out of 2,000 such binary events
are positive.
Which is identical to the probability that (at most) 753 out
of 2,000 are negative.



Binomial Distribution B(N, q)

Call the probability of a negative outcome q (here q=0.5)

Probability of observing X = k negative events out of N :

Pq(X = k|N) =

(
N

k

)
qk(1− q)N−k

At most k negative events:

Pq(X ≤ k|N) =
k∑

i=0

(
N

i

)
qi(1− q)N−i
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Binary Event Model and Statistical Tests

If the probability of observing the event we saw under the
Null Hypothesis is very small (smaller than our
pre-selected significance level α, e.g., 0.05), we can safely
reject the Null hypothesis.
The P (X ≤ k) we just calculated directly gives us the
probability we are interested in.
If P (X ≤ k) ≤ 0.05, this means there is a less than 5%
chance that the effect is due to chance.



Two-Tailed vs. One-Tailed Tests

So far, we’ve been testing difference in a specific direction:
probability that at most 753 out of 2,000 such binary
events are negative [One-tailed test]

A more conservative, rigorous test would be a non-directional
one (though some debate on this!)

probability of observing an event that is at least as extreme
as 753 out of 2000 [Two-tailed test]
0.05 of the probability mass gets split up between the two
tails.

Due to symmetry of B(N,0.5): if
2P (X ≤ k) ≤ 0.05, then there is less
than a 5% chance that System 1 and
System 2 perform equally well.
We’ll be using the two-tailed test.



Specificity and Power of a Test

When we perform significance testing, there are two things we
don’t want to happen:

That a test declares a difference when it it doesn’t exist
(Type 1 error).

α is the probability that this happens.
1- α is called the specificity of a test.

That a test declares no difference when it does exist
(Type 2 error).

β is the probability that this happens.
1-β is called the power of a test.



What to do if you suspect a problem

Power issues (Type 2 errors):
This is quite common
Use a more powerful test, for instance permutation test
rather than sign test.
Use more data
Change your system so there is a stronger effect
Hopefully, your p will decrease and finally reach below α.

Specificity issues (Type 1 errors):
This should never happen (problem of scientific ethics)
Develop an intuition when numbers look “too good to be
true"
You probably used the wrong test (which has built-in
assumptions that don’t apply)
Or you applied the test wrong.



Treatment of Ties

Standard textbooks (assuming continuous distributions)
often recommend to ignore ties.
When comparing two systems in classification tasks, it is
common for a large number of ties to occur.
Disregarding ties will lead to unjustifed rejection of Null
hypothesis (Type 1 error).
Here, we will treat ties by adding 0.5 events to the positive
and 0.5 events to the negative side (and round up at the
end).



Claims supported by Significance Testing

Significance tests cannot show that two distributions are
the same, they can only potentially ever show a difference.
As a result, if you pass the test and are able to reject the
Null hypothesis, you can report “better".
If you fail the test, you have an inconclusive result.
You are unable to reject the Null hypothesis, but that
doesn’t mean that the Null hypothesis is proven.
If your system performs below your competitor’s system,
and your significance test fails, the test failure is not proof
that your system is equally good as your competitor’s.
You failed the test because there was too little data or
because there was no effect.



Effect Size and Significance

“System 1 is significantly better than System 2.” ≡
“The difference between System 1 and System 2 is sta-
tistically significant at α = 0.01.”

Effect size = difference in measured results between
systems
Significance = binary flag
Report both, separately but in neighbouring tables
Any statements about differences without (mentioning)
significance are strictly speaking meaningless.
Also note: the only thing that can ever be significant is a
delta, never a single measured value.



Example of what that looks like

System
A B C D E F

weighted F 79.1 71.4 74.9 75.2 69.5 70.2
macro-F 69.6 57.7 64.3 63.3 57.8 60.1

BLC 73.0 65.6 65.6 56.7 64.6 63.5
Sub 67.5 57.5 59.0 61.5 55.2 57.1
Super 46.2 19.0 42.4 42.4 26.1 35.7
Abstract 91.9 88.8 90.3 92.5 85.1 84.1

System A: Our best system
System B: System A without property-based indicators
System C: System A without perceptual indicators
System D: System A without WSD
System E: CT21 with WSD
System F: CT21 (original)

System B (71.4) ∗

System C (74.9)

System D (75.9)

System E (69.5) ∗∗ ∗

System F (70.2) ∗∗

System A System B System C System D System E

(79.1) (71.4) (74.9) (75.2) (69.5)

Permutation test results between Results in Weighted F for all systems, * p < 0.1, ** p < 0.05.



Significance Reporting – the three deadly sins

Case 1 No significance test performed, statements of
“better" and “outperform" and the like are used only based
on raw comparisons of numbers

→ Methodological
Unsoundness
Case 2 Significance test was performed, but statements of
“better" etc are still made for all differences, even the
insignificant ones → Scientific illiteracy
No test are performed, statements of “better" etc are made
just on basis of raw differences, and the keyword
“significant" is still used, often to refer to big effect sizes →
Scientific Fraud
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Significant Digits

When reporting your results, you will typically get some
fraction, not exact numbers
Where should you round when reporting your means?
Doesn’t it look “scientific" if I report many post-point digits?
No, you should only report as many significant digits as are
“meaningful".



Significant Digits

For instance, when deciding whether you should report
0.34 or 0.344, you should only report three digits if the
difference between 0.340 and 0.344 is likely to be
significant on your dataset.
This is not easily testable for each case.
Therefore, err on the safe side
You don’t want to imply there is significance in numbers
when there isn’t (potential fraud case)
In almost all cases, this means reporting fewer digits
Sure sign of a rookie paper: 6 post-digital point
"significance" digits reported but significance test fails even
between systems with adjacent first or second post-digital
digits.



Today’s Tasks I

Implement the above-introduced test for statistical
significance
Implementation details on moodle (including helper code
as before)



Today’s Tasks II

Use the significance test on pairs of systems
Create more (potentially better) systems
Improve the simple lexicon-based classifier by weighting
terms with stronger sentiment more.

You can empirically find out the optimal weight.
We call this process parameter tuning.
Use the training corpus to set your parameters, then test on
the 200 documents as before.
We should really call the test corpus “validation corpus” in
that case, but we don’t need it here as there is no learning
phase
You will use validation corpora in the way they were
intended in Session 5.



Starred Tick — Parameter tuning for NB Smoothing

Formula for smoothing with a constant ω:

P̂ (wi|c) =
count(wi, c) + ω

(
∑

w∈V count(w, c)) + ω|V |

We used add-one smoothing in Task 2 (ω = 1).
Using the training corpus, we can optimise the smoothing
parameter ω.
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