13: Betweenness Centrality
 Machine Learning and Real-world Data (MLRD)

Paula Buttery (based on slides by Simone Teufel)

Last session: some simple network statistics

- You measured the degree of each node and the diameter of the network.
- Next two sessions:
- Today: finding gatekeeper nodes via betweenness centrality.
■ Next session: using betweenness centrality of edges to split graph into cliques.
■ Reading for social networks (all sessions):
■ Easley and Kleinberg for background: Chapters 1, 2, 3 and first part of Chapter 20.
- Brandes algorithm: two papers by Brandes (links in practical notes).

Centralities help us talk about interesting nodes

■ Degree: the number of edges connected to a node (can be split into incoming and outgoing) (discovers direct influencers)
■ Closeness: average of the distances from the node (discovers indirect influencers)
■ Betweenness: relative number of shortest paths that rely on the node (discovers gatekeepers)

Gatekeepers nodes are associated with local bridges

■ Last time we saw the concept of local bridge: an edge which increased the shortest paths if cut.

Figure 3-4 from Easley and Kleinberg (2010)

- $A-B$ is a local bridge here.

Nodes with high betweenness are on relatively many

 shortest paths- The betweenness centrality of a node V is defined in terms of the proportion of shortest paths that go through V for each pair of nodes.

■ Here: the red nodes have high betweenness centrality. because we only care about shortest paths.

Betweenness: example

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

- Betweenness: red is minimum; dark blue is maximum.

Betweenness centrality, formally

■ Directed graph $G=<V, E>$

- $\sigma(s, t)$: number of shortest paths between nodes s and t

■ $\sigma(s, t \mid v)$: number of shortest paths between nodes s and t that pass through v.

- $C_{B}(v)$, the betweenness centrality of v :

$$
C_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

Calculating betweenness verbosely

$$
\begin{aligned}
& \mathbf{V}=\{A, B, C, D, E\} \\
& \mathbf{E}=\{(A, B),(B, C),(B, D),(C, E),(D, E)\}
\end{aligned}
$$

$$
C_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

path	route	A	B	C	D	E
(A, B)	A-B					
(A, C)	A-B-C		1			
(A, D)	A-B-D		1			
(A, E)	A-B-C-E		0.5	0.5		
	A-B-D-E		0.5		0.5	
(B, C)	B-C					
(B, D)	B-D					
(B, E)	B-C-E			0.5		
(C, E)	B-D-E				0.5	
(D, E)	D-E					
		0	3	1	1	0

Calculating Betweenness with Brandes

1) Find number of shortest paths:

- $\sigma(s, t)$ can be calculated recursively:

$$
\sigma(s, t)=\sum_{u \in \operatorname{Pred}(t)} \sigma(s, u)
$$

$-\operatorname{Pred}(t)=\{u:(u, t) \in E, d(s, t)=d(s, u)+1\}$ predecessors of t on shortest path from s

- $d(s, u)$: Distance between nodes s and u

■ Using a Breadth First search with each node as source s once, gives total complexity of $O(V(V+E))$.

Calculating Betweenness with Brandes

2) Find dependency on specific nodes for specific shortest paths:

■ There are a cubic number of pairwise dependencies $\delta(s, t \mid v)$ where:

$$
\delta(s, t \mid v)=\frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

■ Brandes algorithm intuition: the dependencies can be aggregated without calculating them all explicitly.
■ Can calculate dependency of s on v based on dependencies one step further away.

Calculating Betweenness with Brandes

2) Find dependency on specific nodes for specific shortest paths:

■ Define one-sided dependencies (how dependant are shortest paths from s on v):

$$
\delta(s \mid v)=\sum_{t \in V} \delta(s, t \mid v)
$$

■ Then Brandes (2001) shows:

$$
\delta(s \mid v)=\sum_{\substack{(v, w) \in E \\ w: d(s, w)=d(s, v)+1}} \frac{\sigma(s, v)}{\sigma(s, w)} \cdot(1+\delta(s \mid w))
$$

And: $C_{B}(v)=\sum_{s \in V} \delta(s \mid v)$

Calculating Betweenness with Brandes

Algorithm:
■ For all vertices $s \in V$:
■ Calculate $\delta(s \mid v)$ for all $v \in V$ in two phases:
1 Breadth-first search, calculating distances and shortest path counts from s, (push all vertices onto stack as they're visited).
2 Visit all vertices in reverse order (pop off stack), aggregating dependencies according to equation.

Calculating Betweenness with Brandes: example

$$
\sigma(s, t)=\sum_{u \in \operatorname{Pred}(t)} \sigma(s, u)
$$

where
$\operatorname{Pred}(t)=\{u:(u, t) \in E, d(s, t)=d(s, u)+1\}$
and $d(s, t)$ is distance between s and t

Calculating Betweenness with Brandes: example

Calculating Betweenness with Brandes: example

Calculating Betweenness with Brandes: example

$$
C_{B}(v)=\sum_{s \in V} \delta(s \mid v)
$$

$$
\begin{aligned}
C_{B}(A) & =0 \\
C_{B}(B) & =3 \\
C_{B}(C) & =1 \\
C_{B}(D) & =1 \\
C_{B}(E) & =0
\end{aligned}
$$

Calculating Betweenness with Brandes

- The algorithm is for directed graphs.

■ But undirected graphs are easy: the algorithm works in exactly the same way, except that each pair is considered twice, once in each direction.
■ Therefore: halve the scores at the end for undirected graphs.

- Brandes has lots of other variants, including edge betweenness centrality, which we'll use in the next session.

Today

- Task 11: Implement the Brandes algorithm for efficiently determining the betweenness of each node.

Literature

■ Detailed notes on the Brandes algorithm on course page / Moodle.
■ Easley and Kleinberg (2010, page 79-82). But this is an informal description.
■ Ulrich Brandes (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology. 25:163-177.
■ Ulrich Brandes (2008) On variants of shortest-path betweenness centrality and their generic computation. Social Networks. 30 (2008), pp. 136-145

