13: Betweenness Centrality Machine Learning and Real-world Data (MLRD)

Paula Buttery (based on slides by Simone Teufel)

Last session: some simple network statistics

- You measured the degree of each node and the diameter of the network.
- Next two sessions:
 - Today: finding gatekeeper nodes via betweenness centrality.
 - Next session: using betweenness centrality of edges to split graph into cliques.
- Reading for social networks (all sessions):
 - Easley and Kleinberg for background: Chapters 1, 2, 3 and first part of Chapter 20.
 - Brandes algorithm: two papers by Brandes (links in practical notes).

Centralities help us talk about interesting nodes

- Degree: the number of edges connected to a node (can be split into incoming and outgoing) (discovers direct influencers)
- Closeness: average of the distances from the node (discovers indirect influencers)
- Betweenness: relative number of shortest paths that rely on the node (discovers gatekeepers)

Gatekeepers nodes are associated with local bridges

■ Last time we saw the concept of local bridge: an edge which increased the shortest paths if cut.

Figure 3-4 from Easley and Kleinberg (2010)

■ A-B is a local bridge here.

Nodes with high betweenness are on relatively many shortest paths

■ The betweenness centrality of a node V is defined in terms of the proportion of shortest paths that go through V for each pair of nodes.

https://www.linkedin.com/pulse/wtf-do-you-actually-know-who-influencers-walter-pike

■ Here: the red nodes have high betweenness centrality. because we only care about shortest paths.

Betweenness: example

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

■ Betweenness: red is minimum; dark blue is maximum.

Betweenness centrality, formally

- \blacksquare Directed graph $G = \langle V, E \rangle$
- lacktriangledown $\sigma(s,t)$: number of shortest paths between nodes s and t
- lacksquare $\sigma(s,t|v)$: number of shortest paths between nodes s and t that pass through v.
- \blacksquare $C_B(v)$, the betweenness centrality of v:

$$C_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

Calculating betweenness verbosely

 $V = \{A, B, C, D, E\}$ $E = \{(A,B), (B,C), (B,D), (C,E), (D,E)\}$

$C_B(v) =$	$\sum_{s \ t \in V}$	$\sigma(s,t v)$		
		$\sigma(s,t)$		

	path	route	Α	В	С	D	Ε	_
	(A,B)	A-B						-
	(A,C)	A-B-C		1				
	(A,D)	A-B-D		1				
	(A,E)	A-B-C-E		0.5	0.5			
		A-B-D-E		0.5		0.5		
	(B,C)	B-C						
	(B,D)	B-D						
	(B,E)	B-C-E			0.5			1
		B-D-E				0.5		(
	(C,E)	C-E						
	(D,E)	D-E						_
=	·		0	3	1	1	0	-

- 1) Find number of shortest paths:
 - lacksquare $\sigma(s,t)$ can be calculated recursively:

$$\sigma(s,t) = \sum_{u \in Pred(t)} \sigma(s,u)$$

- $Pred(t) = \{u \colon (u,t) \in E, d(s,t) = d(s,u) + 1\}$ predecessors of t on shortest path from s
- d(s, u): Distance between nodes s and u
- Using a Breadth First search with each node as source s once, gives total complexity of O(V(V+E)).

- 2) Find dependency on specific nodes for specific shortest paths:
 - There are a cubic number of pairwise dependencies $\delta(s,t|v)$ where:

$$\delta(s,t|v) = \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

- Brandes algorithm intuition: the dependencies can be aggregated without calculating them all explicitly.
- Can calculate dependency of *s* on *v* based on dependencies one step further away.

- 2) Find dependency on specific nodes for specific shortest paths:
 - Define one-sided dependencies (how dependant are shortest paths from s on v):

$$\delta(s|v) = \sum_{t \in V} \delta(s, t|v)$$

■ Then Brandes (2001) shows:

$$\delta(s|v) = \sum_{\substack{(v,w) \in E \\ w: d(s,w) = d(s,v) + 1}} \frac{\sigma(s,v)}{\sigma(s,w)} \cdot (1 + \delta(s|w))$$

And:
$$C_B(v) = \sum_{s \in V} \delta(s|v)$$

Algorithm:

- For all vertices $s \in V$:
- Calculate $\delta(s|v)$ for all $v \in V$ in two phases:
 - 1 Breadth-first search, calculating distances and shortest path counts from s, (push all vertices onto stack as they're visited).
 - Visit all vertices in reverse order (pop off stack), aggregating dependencies according to equation.

$$\sigma(s,t) = \sum_{u \in Pred(t)} \sigma(s,u)$$

where

 $Pred(t) = \{u : (u, t) \in E, d(s, t) = d(s, u) + 1\}$

and d(s,t) is distance between s and t

$$\delta(s|v) = \sum_{\substack{(v,w) \in E \\ w : d(s,w) = d(s,v) + 1}} \frac{\sigma(s,v)}{\sigma(s,w)} \cdot (1 + \delta(s|w))$$

$$\delta(s|v) = \sum_{\substack{(v,w) \in E \\ w : d(s,w) = d(s,v) + 1}} \frac{\sigma(s,v)}{\sigma(s,w)} \cdot (1 + \delta(s|w))$$

- The algorithm is for directed graphs.
- But undirected graphs are easy: the algorithm works in exactly the same way, except that each pair is considered twice, once in each direction.
- Therefore: halve the scores at the end for undirected graphs.
- Brandes has lots of other variants, including edge betweenness centrality, which we'll use in the next session.

Today

■ Task 11: Implement the Brandes algorithm for efficiently determining the betweenness of each node.

Literature

- Detailed notes on the Brandes algorithm on course page / Moodle.
- Easley and Kleinberg (2010, page 79-82). But this is an informal description.
- Ulrich Brandes (2001). A faster algorithm for betweenness centrality. *Journal of Mathematical Sociology*. 25:163–177.
- Ulrich Brandes (2008) On variants of shortest-path betweenness centrality and their generic computation. *Social Networks.* 30 (2008), pp. 136–145