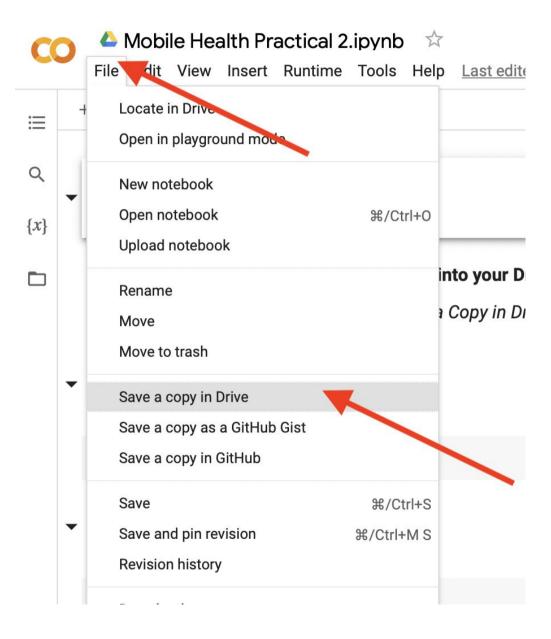
Mobile Health: Practical 2

Machine Learning and Features of Health Data

lan Tang Sotirios Vavaroutas



Colab Notebook

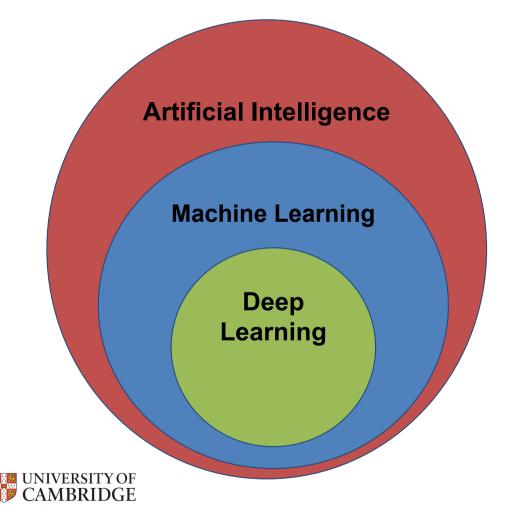
Please open the Colab notebook for today's session by visiting the relevant link on Moodle

Then, please save a copy of this notebook into your Drive:

• File > Save a Copy in Drive

Recap: IMU data

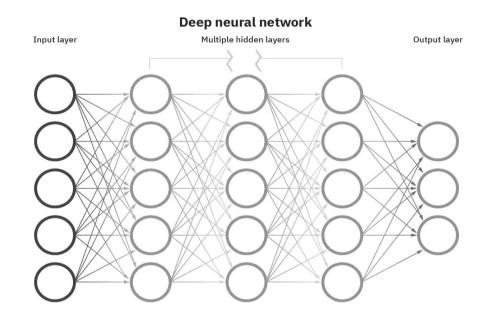
Inertial Measurement Unit (IMU) data is collected via:


- Accelerometers
- Gyroscopes
- Magnetometers

Its preprocessing may involve:

- Signal filtering (removing certain frequencies)
- Magnitude normalisation
- Localising temporal patterns of interest
- Mapping classes with windows

We will be focusing on Deep Learning


Traditional ML

Enables machines to "learn" how to undertake certain tasks with no human supervision

Deep Learning Subset of ML targeted on building artificial neural networks

More on Deep Learning

- DL is implemented using Neural Networks
- Layers are the highest-level building blocks in DL:
 - They receive weighted inputs and transform them using mathematical functions
 - Each layer passes the transformed values as output to the next layer
 - Consequently, higher-level features are identified from lower-level features obtained at previous layers

MotionSense: IMU dataset we will be using

- Time-series data generated by accelerometer and gyroscope sensors
 - Altitude, gravity, user acceleration, rotation rate
- Collected with an iPhone 6s kept in the participant's front pocket
- All data collected in 50Hz sample rate
- 24 participants
- 6 activities in 15 trials in the same environment and conditions
 - Going downstairs, upstairs, walking, jogging, sitting, and standing

Malekzadeh, Mohammad & Clegg, Richard & Cavallaro, Andrea & Haddadi, Hamed. (2019). Mobile sensor data anonymization. Proceedings of the International Conference on Internet of Things Design and Implementation, 49-58.

Libraries to import to our Colab notebook

- <u>import tensorflow as tf</u>
- import pandas as pd
- import **numpy** as np
- import **sklearn**.model selection
- import **sklearn**.metrics
- import scipy
- import requests
- import zipfile
- import os
- import re
- import glob

1.1 Downloading the Dataset

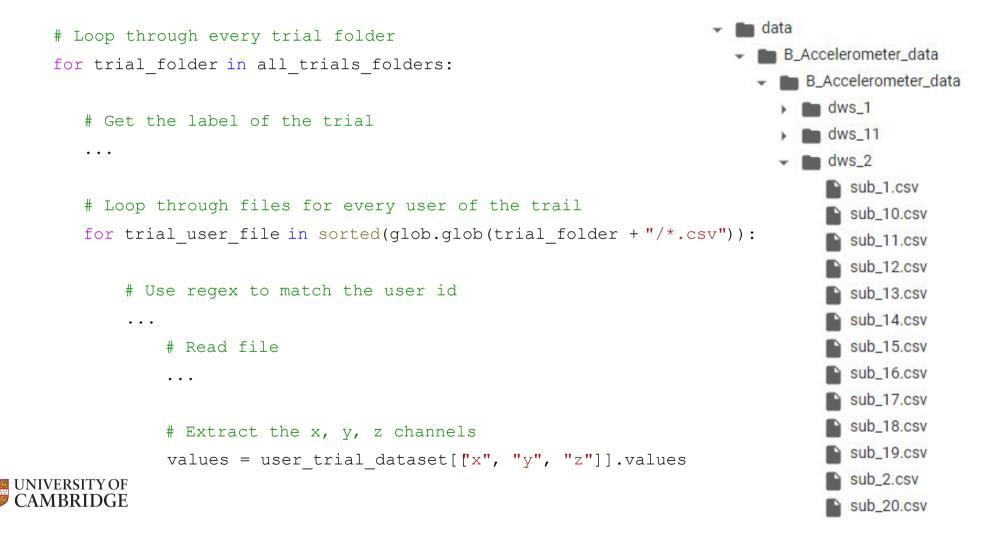
```
file_url = "..."
dataset_file_name = "B_Accelerometer_data.zip"
data_directory = "data"
accelerometer_data_folder_path = "data/B_Accelerometer_data/B_Accelerometer_data"
```

```
r = requests.get(file url)
```

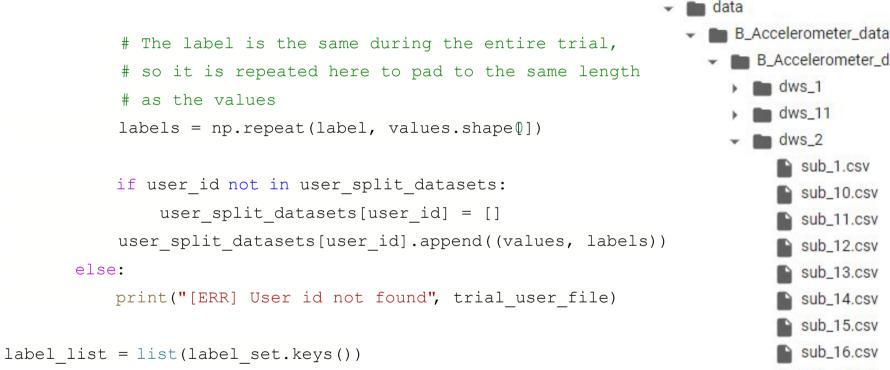
```
with open(dataset_file_name, 'wb') as f:
```

```
f.write(r.content)
```

```
with zipfile.ZipFile(dataset_file_name, 'r') as zip_ref:
    zip_ref.extractall(os.path.join(data_directory, dataset_file_name.split(".")[0]))
```

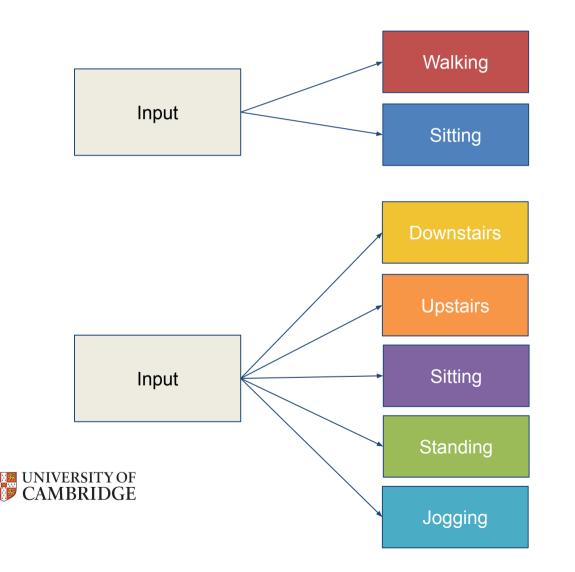


Labels in this Dataset

There are 6 different labels:


- dws: downstairs
- **ups:** upstairs
- **sit:** sitting
- **std:** standing
- wlk: walking
- **jog:** jogging

1.2 Loading the Dataset to Memory

1.2 Loading the Dataset to Memory



user split datasets.keys()

Potential tasks that can be performed

Binary Classification

Data is classified into two mutually exclusive groups

Multi-Class Classification Data is classified into three or more groups

Splitting the dataset: train/validation/test

• Training set:

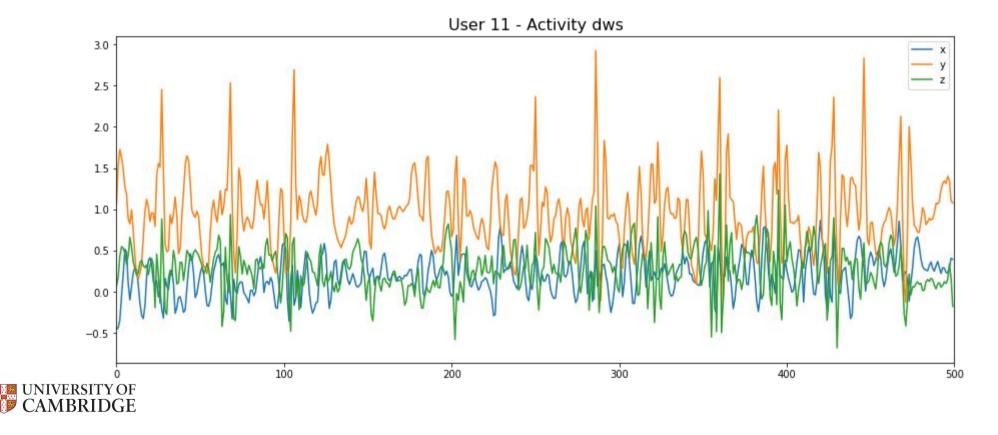
• Data used to fit the model

• Validation set:

- Data used to evaluate the model while tuning model's hyperparameters
- Can lead to biases as the "knowledge" of the validation set can indirectly affect the training
- Test set:
 - Data used to evaluate success of the final model
 - Fully unbiased

How to partition our dataset into the subsets for optimal evaluation?

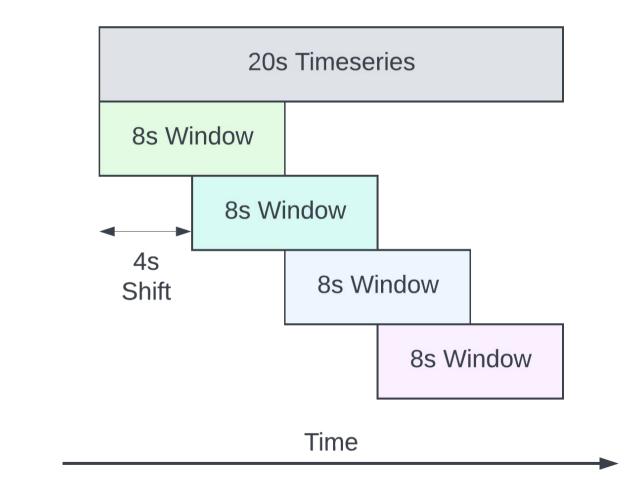
Pre-processing the dataset


We need to:

- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- 5. Subdivide the training set into training and validation sets

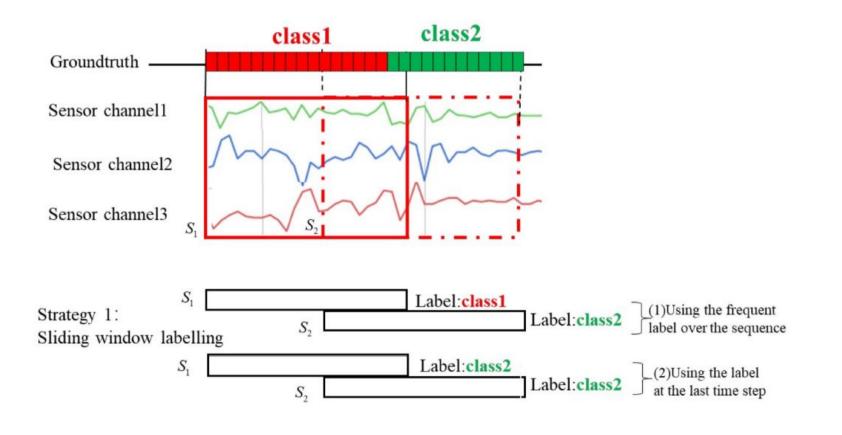
1.3 Visualising the Data

timeseries, labels = user_split_datasets[user_id][session]
plot_accelerometer_timeseries(timeseries[500])


Pre-processing the dataset

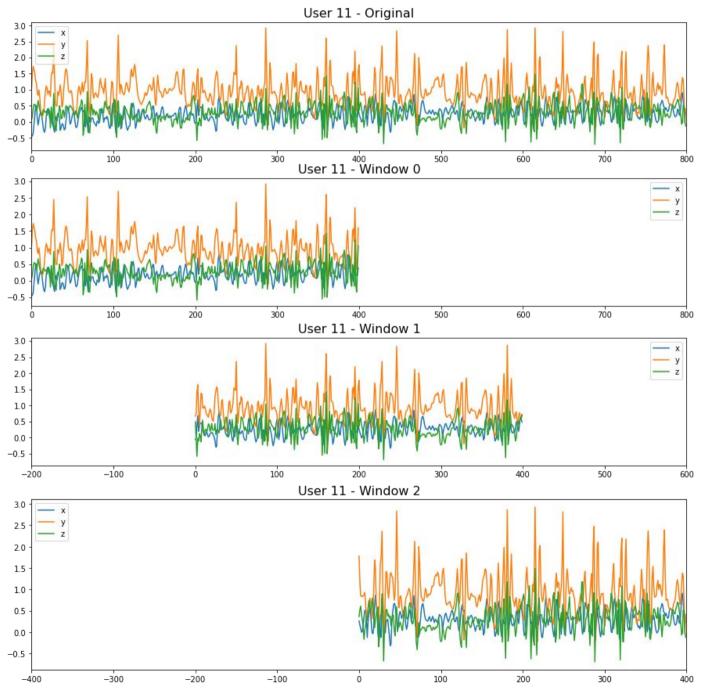
We need to:

- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- 5. Subdivide the training set into training and validation sets



2.1 Sliding Window

Zhang, Yong & Zhang, Yu & Zhang, Zhao & Bao, Jie & Song, Yunpeng. (2018). Human activity recognition based on time series analysis using U-Net.


2.1 Making a Windowed Dataset

```
def get_windows_dataset_from_user_list_format(user_datasets, window_size=400,
shift=200, stride=1, verbose=0)
```

```
window_size = 400
user_datasets_windowed =
    get_windows_dataset_from_user_list_format(
        user_split_datasets,
        window_size=window_size,
        shift=window_size//2
    )
```


2.1.1 Windowed Dataset

Pre-processing the dataset

We need to:

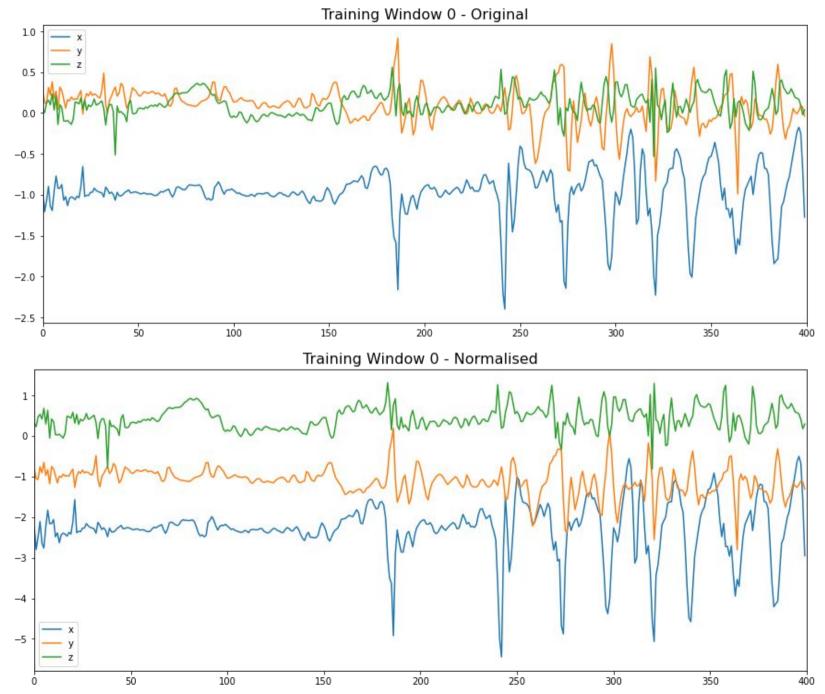
- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- 5. Subdivide the training set into training and validation sets

2.2 Training & Testing Split

def combine_windowed_dataset(user_datasets_windowed, train_users, test_users = None, verbose = 0)

Tr	aining	set			
+	(280,	400,	3)	Samples from User 10	9
+	(279,	400,	3)	Samples from User 1	1
+	(248,	400,	3)	Samples from User 1	2
+	(238,	400,	3)	Samples from User 1	3
+	(281,	400,	3)	Samples from User 1	5
+	(311,	400,	3)	Samples from User 10	5
+	(258,	400,	3)	Samples from User 1	7
+	(297,	400,	3)	Samples from User 18	8
+	(292,	400,	3)	Samples from User 2	
+	(259,	400,	3)	Samples from User 20	Э
+	(327,	400,	3)	Samples from User 2	1
+	(263,	400,	3)	Samples from User 2	2
+	(238,	400,	3)	Samples from User 24	4
+	(295,	400,	3)	Samples from User 3	
+	(262,	400,	3)	Samples from User 4	
+	(244,	400,	3)	Samples from User 5	
+	(287,	400,	3)	Samples from User 7	
+	(285,	400,	3)	Samples from User 8	
+	(267,	400,	3)	Samples from User 9	
					-
=	(5211	, 400	, 3)	Samples	

+	(293,	400,	3)	Samples	from User	1
+	(263,	400,	3)	Samples	from User	14
+	(343,	400,	3)	Samples	from User	19
+	(252,	400,	3)	Samples	from User	23
+	(268,	400,	3)	Samples	from User	6


Pre-processing the dataset

We need to:

- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- 5. Subdivide the training set into training and validation sets

2.3 Normalisation

Pre-processing the dataset

We need to:

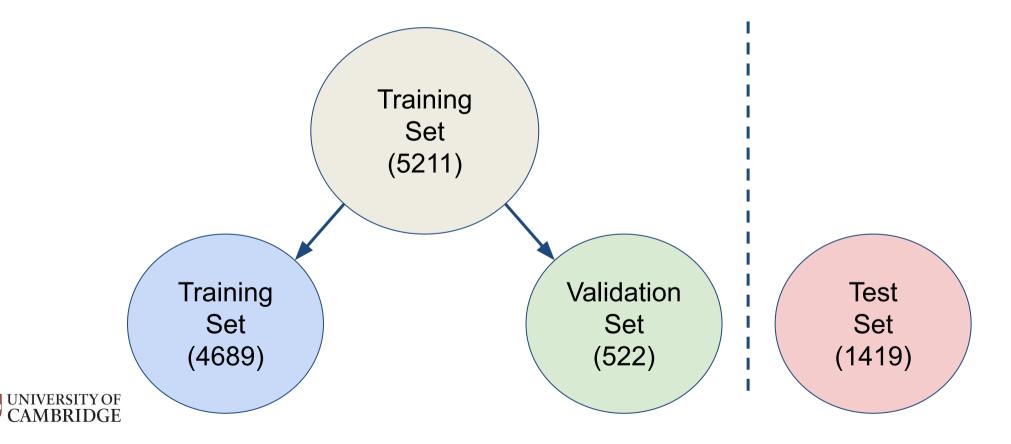
- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- 5. Subdivide the training set into training and validation sets

2.4 Label Encoding

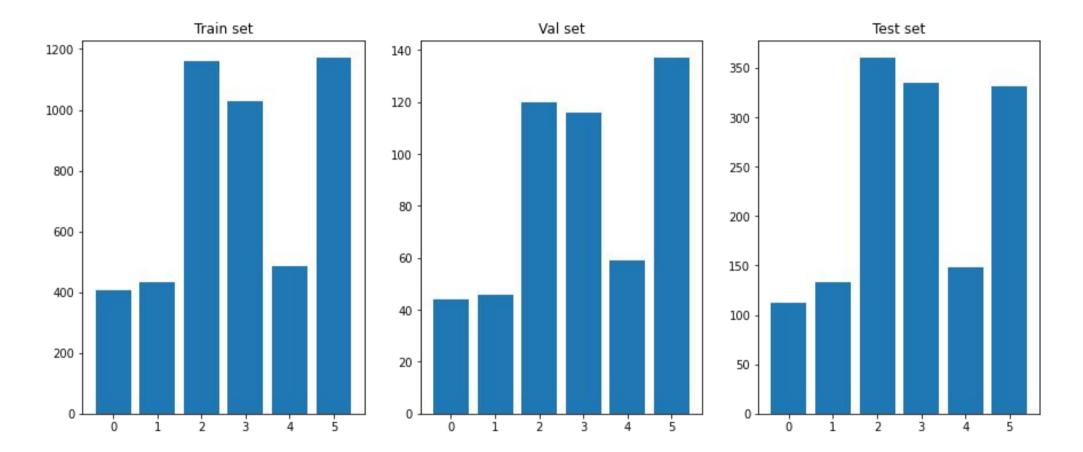
def apply_label_map(y, label_map)

Mapping						
dws> 0						
jog> 1	Original:	['dws'	'wlk' 'sit'	'wlk'	'std'	'sit']
sit> 2	Mapped:	-				-
std> 3		L	-			
ups> 4						
wlk> 5						

Pre-processing the dataset

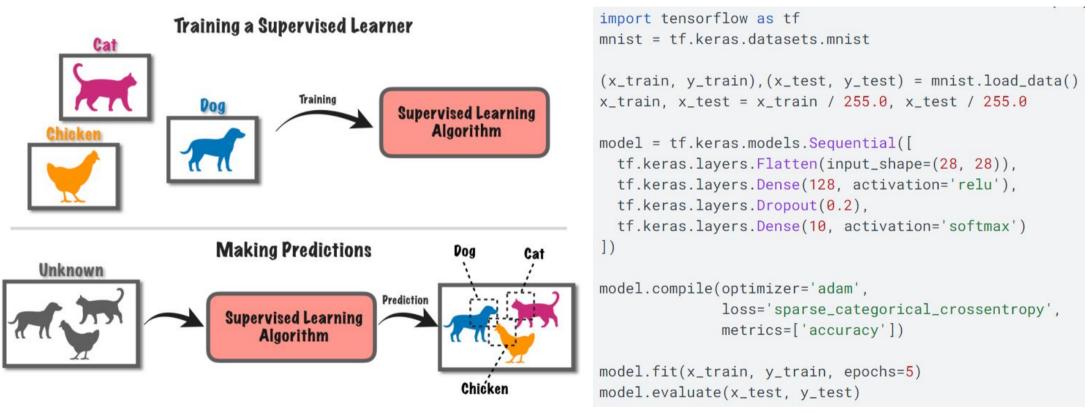

We need to:

- 1. Use a sliding window to make a windowed dataset
- 2. Split the dataset into a training and a test set
- 3. Normalise the datasets
- 4. Apply label encoding
- **5.** Subdivide the training set into training and validation sets



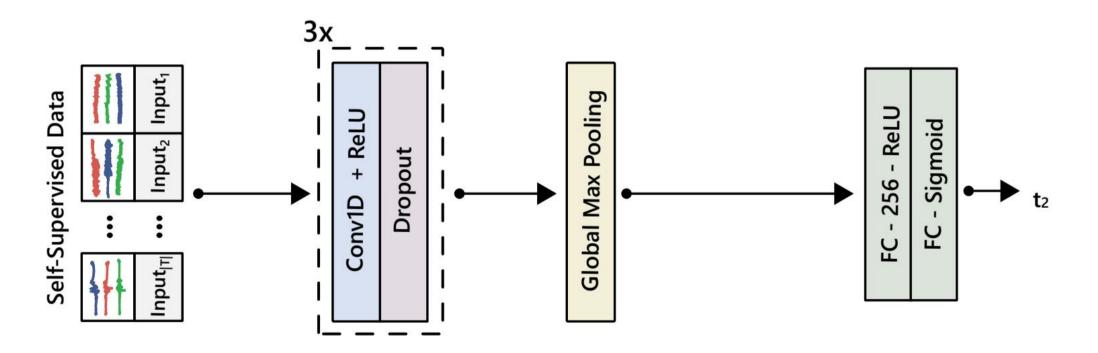
2.5 Training & Validation Split

sklearn.model_selection.train_test_split


2.6 Label Distribution

3 Deep Learning

• Supervised Learning



Jeffares, A. (2018). Supervised vs Unsupervised Learning in 3 Minutes [infographic]. https://towardsdatascience.com/supervised-vs-unsupervised-learning-in-2-minutes-72dad148f242

3.1 Building a CNN

• Transformation Prediction Network (TPN)

UNIVERSITY OF CAMBRIDGE

Saeed, A., Ozcelebi, T., & Lukkien, J. (2019). Multi-task self-supervised learning for human activity detection. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1-30.

3.1 Building a CNN

• Transformation Prediction Network (TPN)

```
model = tf.keras.Sequential([
    tf.keras.Input(shape=train_x.shape[1:], name='input'),
    tf.keras.layers.Conv1D(32, 24, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(l=1e-4)),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.Conv1D(64, 16, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(l=1e-4)),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.Conv1D(96, 8, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(l=1e-4)),
    tf.keras.layers.Conv1D(96, 8, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(l=1e-4)),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.GlobalMaxPool1D(data_format='channels_last', name='global_max_pooling1d'),
    tf.keras.layers.Dense(output_shape),
    tf.keras.layers.Softmax()
])
```


Saeed, A., Ozcelebi, T., & Lukkien, J. (2019). Multi-task self-supervised learning for human activity detection. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1-30.

3.2 Training a Neural Network

```
optimizer = tf.keras.optimizers.Adam(learning_rate=0.003)
model.compile(
    optimizer=optimizer,
    loss=tf.keras.losses.SparseCategoricalCrossentropy(),
    metrics=['accuracy']
)
```

```
history = model.fit(
    x=train_set[0],
    y=train_set[1],
    validation_data=val_set,
    batch_size=256,
    shuffle=True,
    epochs=30
)
```

3.2 Training History

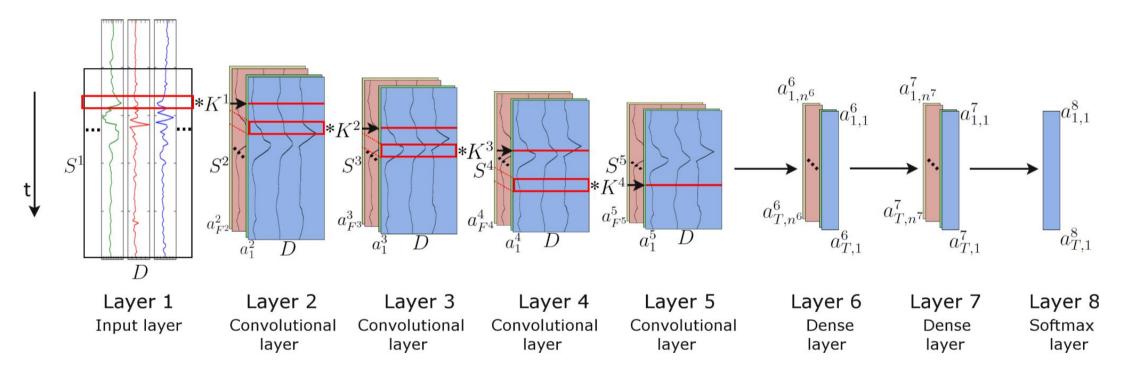
Slide redacted due to this being a live coding exercise to be completed during the practical

3.2 Training History

Slide redacted due to this being a live coding exercise to be completed during the practical

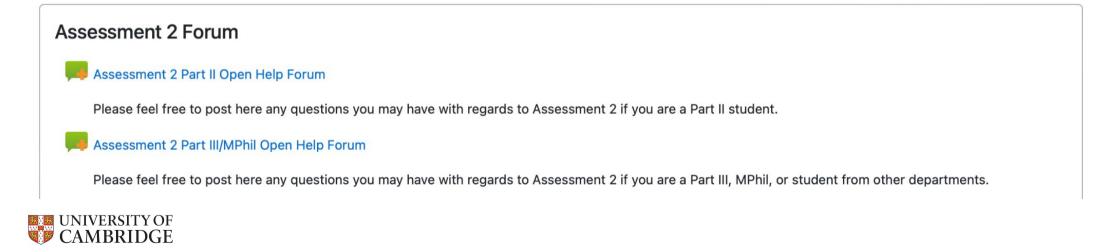
3.3 Evaluation

Slide redacted due to this being a live coding exercise to be completed during the practical



3.3 Evaluation

Slide redacted due to this being a live coding exercise to be completed during the practical


4 Exploration: DeepConvLSTM

UNIVERSITY OF Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.

Assignment 2

- Released today, due on the **17th of March**
- Weighting: **70%** of the course grade
- **Part II:** Colab notebook and reflection report of 1,000 words
- **Part III/MPhil:** Colab notebook and a reflection report of 1,500 words
- Please use the help forum on Moodle for any questions

Open Help Forum

✤ Back to 'Assessment 2 Forum'					
		t 2 Part III/MPhil Oper re any questions you may have with rega ments.	-	are a Part III, MPhil, or	
			,	Manage forum subscriptions	
Assessment 2 Part II Open Help Foru	m	Jump to	¢	•	

Open Help Forum

✤ Back to 'Assessment 2 Forum'				
	📕 Assess	sment 2 Part III/MPhi	Open Help Forum	
	Please feel free to student from othe		e with regards to Assessment 2 if you are a Part III, MPhil, or	
	Add a new discu	ussion		
	Add your disc	ussion		
		Your subject		
		Type your post		
		Choose Files no files selected		
			Reveal yourself in this post	
		Submit Cancel	Use advanced editor and additional options	

Open Help Forum

Mobile Health 2022-23

ack to 'Assessment 2 Forum'		0
	🛤 Assessment 2 Part III/MPhil Open Help Forum	🛃 Export
	Please feel free to post here any questions you may have with regards to Assessment 2 if you are a Part III, MPhil, or student from other departments.	 Q View posters Optional subscription Subscribe to this forum
	Manage forum subscriptions	
Assessment 2 Part II Open Help Forur	Jump to +	

Questions

