
Mobile Health:
Practical 2

Machine Learning
and Features of Health Data

Ian Tang
Sotirios Vavaroutas

Colab Notebook

Please open the Colab notebook for

today’s session by visiting the relevant

link on Moodle

Then, please save a copy of this

notebook into your Drive:

● File > Save a Copy in Drive

Recap: IMU data

Inertial Measurement Unit (IMU) data is collected via:

● Accelerometers

● Gyroscopes

● Magnetometers

Its preprocessing may involve:

● Signal filtering (removing certain frequencies)

● Magnitude normalisation

● Localising temporal patterns of interest

● Mapping classes with windows

We will be focusing on Deep Learning

Deep Learning
Subset of ML targeted on building
artificial neural networks

Traditional ML
Enables machines to “learn” how to
undertake certain tasks with no human
supervision

Artificial Intelligence

Machine Learning

Deep
Learning

More on Deep Learning

● DL is implemented using Neural Networks

● Layers are the highest-level building

blocks in DL:
○ They receive weighted inputs and transform

them using mathematical functions

○ Each layer passes the transformed values as

output to the next layer

○ Consequently, higher-level features are

identified from lower-level features

obtained at previous layers

MotionSense: IMU dataset we will be using

● Time-series data generated by accelerometer and gyroscope sensors

○ Altitude, gravity, user acceleration, rotation rate

● Collected with an iPhone 6s kept in the participant's front pocket

● All data collected in 50Hz sample rate

● 24 participants

● 6 activities in 15 trials in the same environment and conditions

○ Going downstairs, upstairs, walking, jogging, sitting, and standing

Malekzadeh, Mohammad & Clegg, Richard & Cavallaro, Andrea & Haddadi, Hamed. (2019). Mobile sensor data anonymization.

Proceedings of the International Conference on Internet of Things Design and Implementation, 49-58.

Libraries to import to our Colab notebook

● import tensorflow as tf

● import pandas as pd

● import numpy as np

● import sklearn.model_selection

● import sklearn.metrics

● import scipy

● import requests

● import zipfile

● import os

● import re

● import glob

1.1 Downloading the Dataset

file_url = "..."

dataset_file_name = "B_Accelerometer_data.zip"

data_directory = "data"

accelerometer_data_folder_path = "data/B_Accelerometer_data/B_Accelerometer_data"

r = requests.get(file_url)

with open(dataset_file_name, 'wb') as f:

 f.write(r.content)

with zipfile.ZipFile(dataset_file_name, 'r') as zip_ref:

 zip_ref.extractall(os.path.join(data_directory, dataset_file_name.split(".")[0]))

There are 6 different labels:

● dws: downstairs

● ups: upstairs

● sit: sitting

● std: standing

● wlk: walking

● jog: jogging

Labels in this Dataset

1.2 Loading the Dataset to Memory
Loop through every trial folder

for trial_folder in all_trials_folders:

 # Get the label of the trial

 ...

 # Loop through files for every user of the trail

 for trial_user_file in sorted(glob.glob(trial_folder + "/*.csv")):

 # Use regex to match the user id

 ...

 # Read file

 ...

 # Extract the x, y, z channels

 values = user_trial_dataset[["x", "y", "z"]].values

1.2 Loading the Dataset to Memory

 # The label is the same during the entire trial,

 # so it is repeated here to pad to the same length

 # as the values

 labels = np.repeat(label, values.shape[0])

 if user_id not in user_split_datasets:

 user_split_datasets[user_id] = []

 user_split_datasets[user_id].append((values, labels))

 else:

 print("[ERR] User id not found", trial_user_file)

label_list = list(label_set.keys())

user_split_datasets.keys()

Potential tasks that can be performed

Multi-Class Classification
Data is classified into three or
more groups

Binary Classification
Data is classified into two
mutually exclusive groups

Input

Input

Walking

Sitting

Upstairs

Sitting

Downstairs

Jogging

Standing

Splitting the dataset: train/validation/test

● Training set:
○ Data used to fit the model

● Validation set:
○ Data used to evaluate the model while tuning model’s hyperparameters

○ Can lead to biases as the “knowledge” of the validation set can indirectly affect

the training

● Test set:
○ Data used to evaluate success of the final model

○ Fully unbiased

How to partition our dataset into the subsets for optimal evaluation?

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

1.3 Visualising the Data

timeseries, labels = user_split_datasets[user_id][session]

plot_accelerometer_timeseries(timeseries[:500])

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

2.1 Sliding Window

2.1 Sliding Window

2.1 Making a Windowed Dataset

def get_windows_dataset_from_user_list_format(user_datasets, window_size=400,
shift=200, stride=1, verbose=0)

window_size = 400

user_datasets_windowed =

get_windows_dataset_from_user_list_format(

user_split_datasets,

window_size=window_size,

shift=window_size//2

)

2.1.1 Windowed Dataset

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

2.2 Training & Testing Split
def combine_windowed_dataset(user_datasets_windowed, train_users, test_users =

None, verbose = 0)

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

2.3 Normalisation

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

2.4 Label Encoding

def apply_label_map(y, label_map)

Pre-processing the dataset

We need to:

1. Use a sliding window to make a windowed dataset

2. Split the dataset into a training and a test set

3. Normalise the datasets

4. Apply label encoding

5. Subdivide the training set into training and validation sets

2.5 Training & Validation Split

sklearn.model_selection.train_test_split

Training
Set

(4689)

Training
Set

(5211)

Validation
Set

(522)

Test
Set

(1419)

2.6 Label Distribution

Jeffares, A. (2018). Supervised vs Unsupervised Learning in 3 Minutes [infographic].

https://towardsdatascience.com/supervised-vs-unsupervised-learning-in-2-minutes-72dad148f242

3 Deep Learning
● Supervised Learning

Saeed, A., Ozcelebi, T., & Lukkien, J. (2019). Multi-task self-supervised learning for human activity detection. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1-30.

3.1 Building a CNN
● Transformation Prediction Network (TPN)

3.1 Building a CNN
● Transformation Prediction Network (TPN)

Saeed, A., Ozcelebi, T., & Lukkien, J. (2019). Multi-task self-supervised learning for human activity detection. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1-30.

3.2 Training a Neural Network

3.2 Training History

Slide redacted due to this being a live coding
exercise to be completed during the practical

3.2 Training History

Slide redacted due to this being a live coding
exercise to be completed during the practical

3.3 Evaluation

Slide redacted due to this being a live coding
exercise to be completed during the practical

3.3 Evaluation

Slide redacted due to this being a live coding
exercise to be completed during the practical

Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable activity

recognition. Sensors, 16(1), 115.

4 Exploration: DeepConvLSTM

Assignment 2

● Released today, due on the 17th of March

● Weighting: 70% of the course grade

● Part II: Colab notebook and reflection report of 1,000 words

● Part III/MPhil: Colab notebook and a reflection report of 1,500 words

● Please use the help forum on Moodle for any questions

Open Help Forum

Open Help Forum

Open Help Forum

Questions

