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Sleep Stages Classification with Audio

* During sleep (in contrast to wakefulness) there is an increase of upper
airway resistance due to decreased activity of the pharyngeal dilator
muscles, which is reflected by amplification of air-pressure
oscillations during breathing. These air-pressure oscillations are

perceived as breathing sounds during sleep.

* REM (rapid-eye movement), N(on)REM, and wakefulness are
associated with lack of, some, and considerable body movement.

* Breathing pattern is more periodic and consistent in deep NREM
sleep compared to REM and wakefulness

.g %ﬁ%%‘%ggﬁ Dafna, E., Tarasiuk, A. & Zigel, Y. Sleep staging using nocturnal sound analysis. Sci Rep 8, 13474 (2018).




Audio

* Microphone on the bed: (Edirol R-4 pro, Bellingham, WA, USA) with a
directional microphone (R@DE, NTG-1, Silverwater, NSW, Australia)
was placed at a distance of one meter above the subject’s head and

used for acquiring the audio signals. °

* Polisomnography (PSG) for ground truth —
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Detection of
Macro Sleep Stages
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Raw sound
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Within Breathing Features

* During sleep, airways resistance is higher than during wakefulness,
hence breathing efforts become greater, which translates into several
factors including louder breathing sounds, prolonged breathing
duration, and different vocal sounds (snores).

count importance

A

A. Within breathing features (WB) Feature code

33 0.270

Detection score of inspiration (l,5) WB_DI 2 0.093

Detection score of expiration (i,6) WB_DE 2 0.048

Detection score of respiration (i,0) WB DR 2 0.037

Duration inspiration (i,0) WB_Durl 2 0.075

Duration expiration (i,6) WB_DurE 2 0.024

Stationarity inspiration (u,o) WB SI 2 0.013

Stationarity expiration (u,0) WB_SE 2 0.009

Sound intensity inspiration (u,o) WB_SII 2 0.044

Sound intensity expiration (i,6) WB_SIE 2 0.009

Sound intensity inspiration top 1% (u,o) WB_SII01 2 0.027

Sound intensity expiration top 1% (i,0) WB_SIEO1 2 0.053

Entropy inspiration (u,0) WB_EI 2 0.045

Entropy expiration (u,0) WB_EE 2 0.008

Frequency centroid inspiration (i,0) WB _FCI 2 0.031

w UNIVERSITY OF Frequency centroid expiration (p,o) WB FCE 2 0.036
2P CAMBRIDGE Frequency bandwidth (resp., insp., expi.) WB FB 3 0.009



Between Breathing Features

 Alternations in ventilation may affect fundamental respiration factors
such as respiratory cycle period, respiratory duty cycle, and
respiration consistency, and can be measured using sound analysis.
These respiration factors are most likely to have more substantial
variability during REM as opposed to NREM.

B. Between breathing features (BB) 12 0.267
Respiration duty cycle BB DCR 1 0.026
Inspiration duty cycle BB DCI 1 0.058
Expiration duty cycle BB DCE 1 0.020
Respiration cycle period (u,0) BB RCP 2 0.033
Respiration cycle period consistency BB RCPC 1 0.068
Respiration cycle periods fourth-order curve BB RCPfit 5 0.023
Breathing Count BB BC 1 0.006
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Body Movement Features

* Wakefulness is accompanied by relatively greater body movement,

compared to NREM, while during REM sleep body movement should
be absent by definition.

C. Body movement features (BM) 10 0.054
Body movement average score BM AS 1 0.002
Body movement overall score percentiles BM OS 7 0.017
Sound intensity body movement (all curve) BM SI 1 0.007
Sound intensity body movement 10% (all curve) BM SI01 1 0.038
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Real time Classification
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Results

One Subject

Blue= wake
Orange= REM sleep
Red= Non-REM sleep
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Coronary Heart Disease and Voice

* In Coronary Heart Disease, plague builds in arteries (which carry
oxygen to the heart) and restricts flow.

* These changes can induce respiration changes, irregular breathing
and increased muscle tension in the vocal tract.

* Participant’s voice while sustaining vowels was analyzed.
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Feature: Average Fundamental Frequency

* Fundamental frequency (FF) is the rate of vocal fold vibration
* FF: lowest frequency of a periodic waveform.

* Average all the extracted fundamental frequencies period by period.

Segment of a speech signal, with the period length L, and fundamental
frequency FO=1/L.

T T T
L=104ms FO =96.1 Hz
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Jitter and Shimmer

 Amount of variation in period length and amplitude are known
respectively as jitter and shimmer.

* They are perceived as roughness, breathiness, or hoarseness in a

speaker’s voice.
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Features: Absolute Jitter

* Absolute Jitter is the period to period variability of the pitch period
e Jitter in essence measures the changes in distance between peaks

N-1
Jita =— Z | TO_T+D) |

A=l i=1

Feature: Shimmer

* Measures the differences between amplitudes of the max peaks in
periods
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Results (male group)
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Parameters

Control Group
(mean + SD)

CHD Group
(mean = SD)

Jita (psec)

116.56+41.09

68.45+27.88

RAP (%)

0.80+0.30

0.54+0.30

PPQ (%)

0.81£0.30

0.53+0.31

ShdB (dB) 0.73+0.25 0.45+0.16
Shim (%) 8.056+2.59 4.98+1.59
APQ (%) 5.87+1.76 3.70+1.14
SAPQ (%) 8.69+3.23 6.3242.30




Parkinson’s

* Parkinson's disease is a brain disorder that leads to shaking, stiffness,
and difficulty with walking, balance, and coordination.

* Hypokinetic dysarthria (HD) occurs in 90% of Parkinson’s disease (PD)
patients.

* HD is characterized by rigidity, bradykinesia, and reduced muscular
control of the larynx, articulatory organs, and other physiological
support mechanisms of human speech production. The following
speech flaws have been observed: increased acoustic noise, reduced
intensity of voice, harsh and breathy voice quality, increased voice
nasality, monopitch, monoloudness, and speech rate disturbances.
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Parkinson’s diagnosis via voice:
Shimmer works

Vowel  Feature 0 MI D ACC [%] SEN [%] SPE[%] TSS
as) I (99p) 00219 07540 0.8029 6541 66.67 6327  1.65
e(s) BWa, (Ip) ~0.0045 0.5826 0.9609  68.42 69.05 67.35 171
i(s)  IMF-SNRrkgo (i)  —-0.0865 03564 03216  68.42 72.62 6122  1.68
o(s)  IMF-SNRgg (1p) 0.0946  0.5631 02781  68.42 72.62 6122  1.68
u(s)  IMF-SNRsgo (std) _0.0568 0.6674 05152  67.67 67.86 67.35  1.70
a()  IMF-SNRsgo (Ip) 0.0807 03127 03037  63.16 64.29 6122 162
e()  IMF-GNE (median) _0.0747 04386 03920  63.91 63.10 6531  1.64
i()  IMF-NSRgg (Ip) 0.0438 07679 0.6161  62.41 60.71 6531  1.62
o()  Fp(ir) ~0.0292 0.6948 0.7388  66.92 71.43 59.18  1.65
u(d)  IMF-GNE (99p) ~0.0309 02310 0.7247  68.42 71.43 6327  1.69
a(l)  jitter (RAP) 00568 04549 05152 69.92 7381 6327 170
e(l) IMF-NSRgg (std) 02911 0.6768 0.0008  66.92 66.67 6735  1.69
i)  IMF-CPP (median) ~0.1790 0.7071 0.0399  67.67 70.24 6327  1.68
o(l) IMF-SNRgg (1p) _0.0345 06136 0.6935  62.41 69.05 51.02 155
u(l) IMF-NSRgg (ir) 02010 0.6654 0.0211  69.17 71.43 6531 171
a(ls)  IME-NSRgp (median)  0.0930  0.7455 02865  64.66 67.86 5918 1.63
e(s) IMFNSRrkgo (std) —0.1636 0.6317 0.0605  66.17 63.10 7143 1.69
i(ls)  shimmer (local, dB) ~0.4064 07633  0.0000  72.18 75.00 6735 175
o(ls)y IMF-FD (median) 02119 07276 0.0150  66.17 70.24 59.18  1.64
u(ls) HNR (median) 02976 0.6768 0.0006  65.41 70.24 5714  1.62

Z. Smekal, J. Mekyska, Z. Galaz, Z. Mzourek, |. Rektorova and M. Faundez-Zanuy, "Analysis of
phonation in patients with Parkinson's disease using empirical mode decomposition," 2015

International Symposium on Signals, Circuits and Systems (ISSCS), 2015
5 UNIVERSITY OF
CAMBRIDGE




OpenSmile Toolkit and Features

Audio features (low-level)

The following (audio-specific) low-level descriptors can be computed by openSMILE:

e Frame Energy

e Frame Intensity / Loudness (approximation)

Critical Band spectra (Mel/Bark/Octave, triangular masking filters)

e Mel-/Bark-Frequency-Cepstral Coefficients (MFCC)

Auditory Spectra

e Loudness approximated from auditory spectra

Perceptual Linear Predictive (PLP) Coefficients

Perceptual Linear Predictive Cepstral Coefficients (PLP-CC)

Linear Predictive Coefficients (LPC)

Line Spectral Pairs (LSP, aka. LSF)

e Fundamental Frequency (via ACF/Cepstrum method and via Subharmonic-Summation (SHS))
Probability of Voicing from ACF and SHS spectrum peak

o Voice-Quality: Jitter and Shimmer

e Formant frequencies and bandwidths

e Zero and Mean Crossing rate

e Spectral features (arbitrary band energies, roll-off points, centroid, entropy, maxpos, minpos,

variance (= spread), skewness, kurtosis, slope)

e Psychoacoustic sharpness, spectral harmonicity

e CHROMA (octave-warped semitone spectra) and CENS features (energy-normalised and
smoothed CHROMA)

e CHROMA-derived features for Chord and Key recognition

e FO Harmonics ratios
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Heart Auscultation

One heartbeat consists of two sounds, commonly
known as: “Lub” and “Dub”.

“Lub” = turbulence from closure of mitral and
tricuspid valves
“Dub” = turbulence from closure of aortic and
pulmonic valves

Trainee doctors from USA, UK, and Canada could only

diagnose the heart pathology correctly in 23% of cases [1]

[1] S. Mangione, “Cardiac auscultatory skills of physicians-in-training: a comparison of
three English- speaking countries,” Am. J. Med., vol. 110, no. 3, pp. 210-216, Feb.
2001.
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Hear Pathology Diagnosis through Audio Data
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Alignment of ECG and Audio

S1 - first heart sound signal S2 -second heart sound signal RR:: interval of PCG«

R: R wave T: T wave rri: interval of ECG«
; systole . diastole | systole . diastole systoleidiastole
PCG (a) :
ECG (b)
B
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FFT of S1 and S2 components
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Shannon Energy based Envelope Calculation

Ampliude

Shannon Energy () = —signal?(t) log(signal(®) ‘i q "

N
1
Eqvg = — NZ Shannon Energy(t)
t=1

P. Sharma, S. Saha, S. Kumari (2018); Study and Design of a Shannon-
B UNIVERSITY OF
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Shannon Energy based
Peak Detection

* Rejection of extra peak is dataset
dependent and based on peaks per
time interval and their distance.

Chakir, Fatima et al. “Phonocardiogram signals processing approach
for PASCAL Classifying Heart Sounds Challenge.” Signal, Image and
Video Processing 12 (2018): 1149-1155.
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Features...

[and KNN classifier]
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Descriptor Significance

T1 The interval between S1 and S2 peaks

T2 The interval between S2 and S1 peaks

F1 The sum of the amplitude variations between two
successive samples of the signal during the period
between S1 and S2 peaks divided by the length T1

F2 The sum of the amplitude variations between two
successive samples of the signal during the period
between S2 and S1 peaks divided by the length T2

Pw The total original signal power

Esl The standard deviation between S1 and S2 peaks

Es2 The standard deviation between S2 and S1 peaks

R Takes the value 1 if there is an additional peak S1 or
S2 out of rhythm; otherwise, it is equal to 0

L Length of the signal

Zp The zero crossing rate

Mn The minimum amplitude of the signal

Mx The maximum amplitude of the signal




Confusion Matrix of Classification

Table 3 Confusion matrix for Dataset A

Normal Murmur Extra HS Artifact Total

Normal 10 1 1 2 14
Murmur 4 9 0 1 14
Extra HS 1 0 5 2 8
Artifact 2 1 0 13 16
Total 17 11 6 18 52

Table 2 Total error of the first PASCAL classifying heart sounds chal-
lenge found by our methodology and by other approaches

Dataset A (s) Dataset B (s)
ISEP/IPP Portugal 95.68 18.06
CS UCL 76.97 18.89
SLAC Stanford 28.2 19.11
UPD DCS Philippines 68.32 16.93

Our methodology 19.44 732




More general audio features

Feature Group

Description

Waveform
Signal energy
Loudness

FFT spectrum
ACF, Cepstrum

Mel/Bark spectr.

Semitone spectr.
Cepstral

Pitch

Voice Quality
LPC

Auditory

Formants
Spectral

Tonal

Zero-Crossings, Extremes, DC
Root Mean-Square & logarithmic
Intensity & approx. loudness
Phase, magnitude (lin, dB, dBA)
Autocorrelation and Cepstrum
Bands 0-Npe:

FFT based and filter based
Cepstral features, e.g. MFCC, PLP-
CC

Fy via ACF and SHS methods
Probability of Voicing

HNR, Jitter, Shimmer

LPC coeft., reflect. coeff., residual
Line spectral pairs (LSP)

Auditory spectra and PLP coeff.
Centre frequencies and bandwidths
Energy in N user-defined bands,
multiple roll-off points, centroid,
entropy, flux, and rel. pos. of
max./min.

CHROMA, CENS, CHROMA-
based features

E. Bondareva, J. Han, W. Bradlow, C. Mascolo. Segmentation-free
Heart Pathology Detection Using Deep Learning. In Procs of Int.
Conf. of the IEEE Engineering in Medicine and Biology Society. 2021.



Deep Learning Pipeline

* Of the 6K features:
* Principal Component Analysis used to reduce features to ~500 feature vector

* A deep learning fully connected network is used (6 layers)

Previous works Our method
[3] [9] [4] [5] [13] | SVM DNN

PN 070 0.77 071 082 0.77 | 0.82 0.81
PM 030 037 033 059 0.76 | 0.70 0.96
PE 0.67 0.17 1.00 0.18 0.50 | 0.20 0.50
Sens | 0.19 051 0.14 049 034 | 0.54 0.47
Spec | 0.84 059 090 0.66 095 | 0.77 0.99

E. Bondareva, J. Han, W. Bradlow, C. Mascolo. Segmentation-free
Heart Pathology Detection Using Deep Learning. In Procs of Int.
Conf. of the IEEE Engineering in Medicine and Biology Society. 2021.



Deep Learning

» Often generate vectors/matrices of features as input
* Construct a DNN architecture able to solve the task

Speech analysis for health: Current state-of-the-art and the increasing impact M)

Check for

Of deep learning updates

Nicholas Cummins®*, Alice Baird?, Bjorn W. Schuller®"

2ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
Y GLAM - Group on Language, Audio & Music, Imperial College London, UK

ARTICLEINFO ABSTRACT

Keywords: Due to the complex and intricate nature associated with their production, the acoustic-prosodic properties of a
Speech speech signal are modulated with a range of health related effects. There is an active and growing area of



Self Supervised and Transfer Learning

* Like for HAR, pretraining, self supervised and transfer learning are
useful in audio analysis. Example of application of pretrained model:
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COVID-19 Detection:
pretrained audio model example
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Questions
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