Topics in Logic and Complexity Handout 5

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2223/L15

Constraint Satisfaction Problems

Example:

Can we find x, y, z such that

Constraint Satisfaction Problems

In general a *constraint satisfaction problem (CSP)* is specified by:

- A collection V of variables.
- For each variable $x \in V$ a *domain* D_v of possible *values*.
- A collection of *constraints* each of which consists of a tuple (x_1, \ldots, x_r) of variables and a set

 $S \subseteq D_{x_1} \times \cdots \times D_{x_r}$

of permitted combinations of values.

We consider *finite-domain* CSP, where the sets D_x are *finite*. We further make the simplifying assumption that there is a *single domain* D, with $D_x = D$ for all $x \in V$.

Constraint Satisfaction Problems

In general a *constraint satisfaction problem (CSP)* is specified by:

- A collection V of variables.
- A domain *D* of *values*
- A collection of *constraints* each of which consists of a tuple (x₁,..., x_r) of variables and a set S ⊆ D^r of permitted combinations of values.

The problem is to *decide* if there is an assignment

 $\eta: V \to D$

such that for each constraint C = (x, S) we have

 $\eta(x) \in S$.

Example - Boolean Satisfiability

Consider a Boolean formula ϕ in *conjunctive normal form* (CNF). This can be seen as *CSP* with

- V the set of variables occurring in ϕ
- $D = \{0, 1\}$
- a *constraint* for each *clause* of ϕ .

The clause $x \lor y \lor \overline{z}$ gives the constraint (x, y, z), S where

 $S = \{(0,0,0), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$

Structure Homomorphism

Fix a relational signature σ (no function or constant symbols). Let \mathbb{A} and \mathbb{B} be two σ -structures. A *homomorphism* from \mathbb{A} to \mathbb{B} is a function $h : A \to B$ such that for each relation $R \in \sigma$ and each tuple a

$$\mathsf{a} \in R^\mathbb{A} \quad \Rightarrow \quad h(\mathsf{a}) \in R^\mathbb{B}$$

The problem of deciding, given \mathbb{A} and \mathbb{B} whether there is a homomorphism from \mathbb{A} to \mathbb{B} is NP-complete. Why?

Homomorphism and CSP

Given a CSP with variables V, domain D and constraints C, let σ be a signature with a relation symbol R_S of arity r for each distinct relation $S \subseteq D^r$ occurring in C.

Let \mathbb{B} be the σ -structure with universe D where each R_S is interpreted by the relation S

Let \mathbb{A} be the structure with universe V where R_S is interpreted as the set of all tuples x for which $(x, S) \in C$.

Then, the CSP is solvable *if, and only if,* there is a homomorphism from \mathbb{A} to \mathbb{B} .

Complexity of CSP

Write $\mathbb{A} \longrightarrow \mathbb{B}$ to denote that *there is* a homomorphism from \mathbb{A} to \mathbb{B} .

The problem of determining, given A and B, whether $A \longrightarrow B$ is *NP-complete*, and can be decided in time $O(|B|^{|A|})$.

So, for a fixed structure $\mathbb{A},$ the problem of deciding membership in the set

 $\{\mathbb{B} \mid \mathbb{A} \longrightarrow \mathbb{B}\}$

is in P.

Non-uniform CSP

On the other hand, for a fixed structure \mathbb{B} , we define the *non-uniform CSP* with template \mathbb{B} , written $CSP(\mathbb{B})$ as the class of structures

 $\{\mathbb{A} \mid \mathbb{A} \longrightarrow \mathbb{B}\}$

The complexity of CSP(\mathbb{B}) depends on the particular structure \mathbb{B} . The problem is always in NP. For some \mathbb{B} , it is in P and for others it is NP-complete

Example - 3-SAT

Let \mathbb{B} be a structure with universe $\{0,1\}$ and *eight* relations

 $R_{000}, R_{001}, R_{010}, R_{011}, R_{100}, R_{101}, R_{110}, R_{111}$

where R_{iik} is defined to be the relation

 $\{0,1\}^3\setminus\{(i,j,k)\}.$

Then, $CSP(\mathbb{B})$ is *essentially* the problem of determining satisfiability of Boolean formulas in 3-*CNF*.

Example - 3-Colourability

Let K_n be the *complete* simple undirected graph on *n* vertices.

Then, an undirected simple graph is in $CSP(K_3)$ *if, and only if,* it is *3-colourable*.

 $CSP(K_3)$ is NP-complete.

On the other hand, $CSP(K_2)$ is in P.

Example - 3XOR-SAT

Let \mathbb{B} be a structure with universe $\{0,1\}$ and *two* ternary relations R_0 and R_1 .

where R_i is the collection of triples $(x, y, z) \in \{0, 1\}^3$ such that

 $x + y + z \equiv i \pmod{2}$

Then, $CSP(\mathbb{B})$ is *essentially* the problem of determining satisfiability of Boolean formulas in *3-XOR-CNF*. This problem is in P.

Schaefer's theorem

Schaefer (1978) proved that if \mathbb{B} is a structure on domain $\{0, 1\}$, then $CSP(\mathbb{B})$ is in P if one of the following cases holds:

- 1. Each relation of \mathbb{B} is 0-valid.
- 2. Each relation of \mathbb{B} is 1-valid.
- 3. Each relation of \mathbb{B} is *bijunctive*.
- 4. Each relation of \mathbb{B} is *Horn*.
- 5. Each relation of \mathbb{B} is *dual Horn*.
- 6. Each relation of \mathbb{B} is *affine*.

In all other cases, $CSP(\mathbb{B})$ is *NP-complete*.

Hell-Nešetřil theorem

Let *H* be a *simple*, *undirected graph*.

Hell and Nešetřil (1990) proved that CSP(H) is in P if one of the following holds

- 1. *H* is *edgeless*
- 2. *H* is bipartite

In all other cases, CSP(H) is *NP-complete*.

Feder-Vardi conjecture

Feder and Vardi (1993) conjectured that for *every* finite relational structure B: *either* CSP(B) *is in* P *or it is* NP-*complete.*

Ladner (1975) showed that for any *languages* L and K, if $L \leq_P K$ and $K \leq_P L$, then there is a language M with

 $L \leq_P M \leq_P K$ and $K \not\leq_P M$ and $M \not\leq_P L$

Corollary: if $P \neq NP$ then there are problems in NP that are neither in P nor NP-complete.

Bulatov-Zhuk theorem

Bulatov and Zhuk (2017) independently proved the Feder-Vardi *dichotomy conjecture*.

The result came after a twenty-year development of the theory of CSP based on *universal algebra*.

The complexity of $CSP(\mathbb{B})$ can be completely classified based on the identitites satisfied by the *algebra of polymorphisms* of the structure \mathbb{B} .

Polymorphisms

For a pair of structures \mathbb{A} and \mathbb{B} over the same relational structure σ , we write $\mathbb{A} \times \mathbb{B}$ for their *Cartesian product*. This is defined to be the σ -structure with universe $A \times B$ so that for any *r*-ary $R \in \sigma$:

 $((a_1, b_1), \ldots, (a_r, b_r)) \in R^{\mathbb{A} \times \mathbb{B}}$ if, and only if,

 $(a_1,\ldots,a_r)\in R^{\mathbb{A}}$ and $(b_1,\ldots,b_r)\in R^{\mathbb{B}}.$

Note: we always have $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{A}$ and $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{B}$

Polymorphisms

We define the *k*th power of \mathbb{B} , written \mathbb{B}^k to be the Cartesian product of \mathbb{B} to itself.

For a structure \mathbb{B} , a *k-ary polymorphism* of \mathbb{B} is a homomorphism

 $h: \mathbb{B}^k \longrightarrow \mathbb{B}$

The collection of all polymorphisms of \mathbb{B} forms an *algebraic structure* called the *clone of polymorphisms* of \mathbb{B} .

Algebraic properties of this clone *determine* the *complexity* of $CSP(\mathbb{B})$.

CSP and MSO

For any fixed finite structure \mathbb{B} , the class of structures $CSP(\mathbb{B})$ is definable in *existential MSO*.

Let b_1, \ldots, b_n enumerate the elements of \mathbb{B} .

$$\exists X_1 \cdots \exists X_n \quad \forall x \bigvee_{i \neq j} X_i(x) \land$$
$$\forall x \bigwedge_{i \neq j}^{i} X_i(x) \to \neg X_j(x) \land$$
$$\bigwedge_{R \in \sigma} \forall x_1 \cdots \forall x_r (R(x_1 \cdots x_r) \to \bigvee_{(b_i_1 \cdots b_{i_r}) \in R^{\mathbb{B}}} \bigwedge_j X_{i_j}(x_j))$$

A structure A satisfies this sentence *if*, and only *if*, $\mathbb{A} \longrightarrow \mathbb{B}$.

k-local Consistency Algorithm

For a positive integer k we define an algorithm called the *k*-consistency algorithm for testing whether $\mathbb{A} \longrightarrow \mathbb{B}$.

Let S_0 be the collection of all *partial homomorphisms* $h : \mathbb{A} \hookrightarrow \mathbb{B}$ with *domain size* k.

Given a set $S \subseteq S_0$, say that $h \in S$ is *extendable* in S if for each restriction g of h to k - 1 elements and each $a \in A$, there is an $h' \in S$ that extends g and whose domain includes a.

k-local Consistency Algorithm

The k-consistency algorithm can now be described as follows

- 1. $S := S_0;$
- 2. $S' := \{h \in S \mid h \text{ is extendable in } S\}$
- 3. if $S' = \emptyset$ then reject
- 4. else if S' = S then accept
- 5. else goto 2.

If this algorithm rejects then $\mathbb{A} \not\longrightarrow \mathbb{B}$. If the algorithm accepts, we can't be sure.

Bounded Width CSP

We say that $CSP(\mathbb{B})$ has width k if the k-consistency algorithm correctly determines for each A whether or not $\mathbb{A} \longrightarrow \mathbb{B}$.

We say that $CSP(\mathbb{B})$ has bounded width if there is some k such that it has width k.

Note: If $CSP(\mathbb{B})$ has bounded width, it is solvable in *polynomial time*.

 $CSP(K_2)$ has width 3. $CSP(K_3)$ has *unbounded* width.

Definability in LFP

If $CSP(\mathbb{B})$ is of bounded width, there is a sentence of LFP that *defines* it.

The *k*-consistency algorithm is computing the *largest* set $S \subseteq S_0$ such that every $h \in S$ is extendable in S. This can be defined as the *greatest fixed point* of an operator definable in *first-order logic*.

Exercise: prove it!

Fact: If $CSP(\mathbb{B})$ is definable in LFP then it has *bounded width*. *Fact:* There are \mathbb{B} for which $CSP(\mathbb{B})$ is in P, but not of bounded width.

Near-Unanimity Polymorphisms

For $k \ge 3$, a function $f : B^k \to B$ is said to be a *near-unanimity* (NU) function if for all $a, b \in B$

$$f(a,\ldots,a,b)=f(a,\ldots,b,a)=\cdots=f(b,\ldots,a,a)=a.$$

Say \mathbb{B} has a *near-unanimity polymorphism* of arity k if there is a k-ary near-unanimity function that is a *polymorphism* of \mathbb{B} .

Fact: if \mathbb{B} has a NU polymorphism of arity *k* then for every l > k, it has a NU polymorphism of arity *l*.

If $g : \mathbb{B}^k \to \mathbb{B}$ is a NU polymorphism, define

 $h(x_1,\ldots,x_l)=g(x_1,\ldots,x_k)$

Near-Unanimity and Bounded Width

Theorem

If \mathbb{B} has a NU polymorphism of arity k, then $CSP(\mathbb{B})$ has width k.

Suppose *S* is a *non-empty* set of partial homomorphisms $h : \mathbb{A} \hookrightarrow \mathbb{B}$, each of which is *extendable* in *S*.

We can use this *and* the NU polymorphisms of \mathbb{B} to construct a *total* homomorphism $g : \mathbb{A} \to \mathbb{B}$.