Topics in Logic and Complexity

Handout 5

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2223/L15

Constraint Satisfaction Problems

Example:
Can we find x, y, z such that

$$
\begin{aligned}
x+y+z & \geq 4 \\
x-y & =3 \\
z & \leq 2 \\
x & =1
\end{aligned}
$$

Constraint Satisfaction Problems

In general a constraint satisfaction problem (CSP) is specified by:

- A collection V of variables.
- For each variable $x \in V$ a domain D_{v} of possible values.
- A collection of constraints each of which consists of a tuple $\left(x_{1}, \ldots, x_{r}\right)$ of variables and a set

$$
S \subseteq D_{x_{1}} \times \cdots \times D_{x_{r}}
$$

of permitted combinations of values.
We consider finite-domain CSP, where the sets D_{x} are finite.
We further make the simplifying assumption that there is a single domain
D, with $D_{x}=D$ for all $x \in V$.

Constraint Satisfaction Problems

In general a constraint satisfaction problem (CSP) is specified by:

- A collection V of variables.
- A domain D of values
- A collection of constraints each of which consists of a tuple $\left(x_{1}, \ldots, x_{r}\right)$ of variables and a set $S \subseteq D^{r}$ of permitted combinations of values.

The problem is to decide if there is an assignment

$$
\eta: V \rightarrow D
$$

such that for each constraint $C=(x, S)$ we have

$$
\eta(x) \in S .
$$

Example - Boolean Satisfiability

Consider a Boolean formula ϕ in conjunctive normal form (CNF). This can be seen as CSP with

- V the set of variables occurring in ϕ
- $D=\{0,1\}$
- a constraint for each clause of ϕ.

The clause $x \vee y \vee \bar{z}$ gives the constraint $(x, y, z), S$ where

$$
S=\{(0,0,0),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}
$$

Structure Homomorphism

Fix a relational signature σ (no function or constant symbols). Let \mathbb{A} and \mathbb{B} be two σ-structures.
A homomorphism from \mathbb{A} to \mathbb{B} is a function $h: A \rightarrow B$ such that for each relation $R \in \sigma$ and each tuple a

$$
\mathrm{a} \in R^{\mathbb{A}} \quad \Rightarrow \quad h(\mathrm{a}) \in R^{\mathbb{B}}
$$

The problem of deciding, given \mathbb{A} and \mathbb{B} whether there is a homomorphism from \mathbb{A} to \mathbb{B} is NP-complete. Why?

Homomorphism and CSP

Given a CSP with variables V, domain D and constraints \mathcal{C}, let σ be a signature with a relation symbol R_{S} of arity r for each distinct relation $S \subseteq D^{r}$ occurring in \mathcal{C}.
Let \mathbb{B} be the σ-structure with universe D where each R_{S} is interpreted by the relation S

Let \mathbb{A} be the structure with universe V where R_{S} is interpreted as the set of all tuples x for which $(\mathrm{x}, S) \in \mathcal{C}$.

Then, the CSP is solvable if, and only if, there is a homomorphism from \mathbb{A} to \mathbb{B}.

Complexity of CSP

Write $\mathbb{A} \longrightarrow \mathbb{B}$ to denote that there is a homomorphism from \mathbb{A} to \mathbb{B}.
The problem of determining, given \mathbb{A} and \mathbb{B}, whether $\mathbb{A} \longrightarrow \mathbb{B}$ is NP-complete, and can be decided in time $O\left(|B|^{|A|}\right)$.

So, for a fixed structure \mathbb{A}, the problem of deciding membership in the set

$$
\{\mathbb{B} \mid \mathbb{A} \longrightarrow \mathbb{B}\}
$$

is in P.

Non-uniform CSP

On the other hand, for a fixed structure \mathbb{B}, we define the non-uniform CSP with template \mathbb{B}, written $\operatorname{CSP}(\mathbb{B})$ as the class of structures

$$
\{\mathbb{A} \mid \mathbb{A} \longrightarrow \mathbb{B}\}
$$

The complexity of $\operatorname{CSP}(\mathbb{B})$ depends on the particular structure \mathbb{B}. The problem is always in NP. For some \mathbb{B}, it is in P and for others it is NP-complete

Example - 3-SAT

Let \mathbb{B} be a structure with universe $\{0,1\}$ and eight relations

$$
R_{000}, R_{001}, R_{010}, R_{011}, R_{100}, R_{101}, R_{110}, R_{111}
$$

where $R_{i j k}$ is defined to be the relation

$$
\{0,1\}^{3} \backslash\{(i, j, k)\} .
$$

Then, $\operatorname{CSP}(\mathbb{B})$ is essentially the problem of determining satisfiability of Boolean formulas in 3-CNF.

Example-3-Colourability

Let K_{n} be the complete simple undirected graph on n vertices.
Then, an undirected simple graph is in $\operatorname{CSP}\left(K_{3}\right)$ if, and only if, it is 3 -colourable.
$\operatorname{CSP}\left(K_{3}\right)$ is NP-complete.
On the other hand, $\operatorname{CSP}\left(K_{2}\right)$ is in P .

Example - 3XOR-SAT

Let \mathbb{B} be a structure with universe $\{0,1\}$ and two ternary relations

$$
R_{0} \text { and } R_{1} .
$$

where R_{i} is the collection of triples $(x, y, z) \in\{0,1\}^{3}$ such that

$$
x+y+z \equiv i \quad(\bmod 2)
$$

Then, $\operatorname{CSP}(\mathbb{B})$ is essentially the problem of determining satisfiability of Boolean formulas in 3-XOR-CNF. This problem is in P .

Schaefer's theorem

Schaefer (1978) proved that if \mathbb{B} is a structure on domain $\{0,1\}$, then $\operatorname{CSP}(\mathbb{B})$ is in P if one of the following cases holds:

1. Each relation of \mathbb{B} is 0 -valid.
2. Each relation of \mathbb{B} is 1 -valid.
3. Each relation of \mathbb{B} is bijunctive.
4. Each relation of \mathbb{B} is Horn.
5. Each relation of \mathbb{B} is dual Horn.
6. Each relation of \mathbb{B} is affine.

In all other cases, $\operatorname{CSP}(\mathbb{B})$ is NP-complete.

Hell-Nešetrïl theorem

Let H be a simple, undirected graph.
Hell and Nesetril (1990) proved that $\operatorname{CSP}(H)$ is in P if one of the following holds

1. H is edgeless
2. H is bipartite

In all other cases, $\operatorname{CSP}(H)$ is NP-complete.

Feder-Vardi conjecture

Feder and Vardi (1993) conjectured that for every finite relational structure \mathbb{B} :
either $\operatorname{CSP}(\mathbb{B})$ is in P or it is NP-complete.

Ladner (1975) showed that for any languages L and K, if $L \leq_{P} K$ and $K \not_{p} L$, then there is a language M with

$$
L \leq_{P} M \leq_{P} K \text { and } K \not \leq_{P} M \text { and } M \not \mathbb{Z}_{P} L
$$

Corollary: if $P \neq N P$ then there are problems in NP that are neither in P nor NP-complete.

Bulatov-Zhuk theorem

Bulatov and Zhuk (2017) independently proved the Feder-Vardi dichotomy conjecture.

The result came after a twenty-year development of the theory of CSP based on universal algebra.

The complexity of $\operatorname{CSP}(\mathbb{B})$ can be completely classified based on the identitites satisfied by the algebra of polymorphisms of the structure \mathbb{B}.

Polymorphisms

For a pair of structures \mathbb{A} and \mathbb{B} over the same relational structure σ, we write $\mathbb{A} \times \mathbb{B}$ for their Cartesian product.
This is defined to be the σ-structure with universe $A \times B$ so that for any r-ary $R \in \sigma$:

$$
\begin{aligned}
& \left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{r}, b_{r}\right)\right) \in R^{\mathbb{A} \times \mathbb{B}} \quad \text { if, and only if, } \\
& \left(a_{1}, \ldots, a_{r}\right) \in R^{\mathbb{A}} \text { and }\left(b_{1}, \ldots, b_{r}\right) \in R^{\mathbb{B}} .
\end{aligned}
$$

Note: we always have $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{A}$ and $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{B}$

Polymorphisms

We define the k th power of \mathbb{B}, written \mathbb{B}^{k} to be the Cartesian product of \mathbb{B} to itself.

For a structure \mathbb{B}, a k-ary polymorphism of \mathbb{B} is a homomorphism

$$
h: \mathbb{B}^{k} \longrightarrow \mathbb{B}
$$

The collection of all polymorphisms of \mathbb{B} forms an algebraic structure called the clone of polymorphisms of \mathbb{B}.
Algebraic properties of this clone determine the complexity of $\operatorname{CSP}(\mathbb{B})$.

CSP and MSO

For any fixed finite structure \mathbb{B}, the class of structures $\operatorname{CSP}(\mathbb{B})$ is definable in existential MSO.
Let b_{1}, \ldots, b_{n} enumerate the elements of \mathbb{B}.

$$
\begin{aligned}
\exists X_{1} \cdots \exists X_{n} & \forall x \bigvee_{i}^{\bigvee} x_{i}(x) \wedge \\
& \forall x \bigwedge_{i \neq j}^{i \neq j} x_{i}(x) \rightarrow \neg X_{j}(x) \wedge \\
& \bigwedge_{R \in \sigma}^{\forall} \forall x_{1} \cdots \forall x_{r}\left(R\left(x_{1} \cdots x_{r}\right) \rightarrow \bigvee_{\left(b_{1} \cdots b_{i r}\right) \in R^{B}} \bigwedge_{j} x_{i_{j}}\left(x_{j}\right)\right)
\end{aligned}
$$

A structure \mathbb{A} satisfies this sentence if, and only if, $\mathbb{A} \longrightarrow \mathbb{B}$.

k-local Consistency Algorithm

For a positive integer k we define an algorithm called the k-consistency algorithm for testing whether $\mathbb{A} \longrightarrow \mathbb{B}$.
Let S_{0} be the collection of all partial homomorphisms $h: \mathbb{A} \hookrightarrow \mathbb{B}$ with domain size k.
Given a set $S \subseteq S_{0}$, say that $h \in S$ is extendable in S if for each restriction g of h to $k-1$ elements and eacch $a \in A$, there is an $h^{\prime} \in S$ that extends g and whose domain includes a.

k-local Consistency Algorithm

The k-consistency algorithm can now be described as follows

1. $S:=S_{0}$;
2. $S^{\prime}:=\{h \in S \mid h$ is extendable in $S\}$
3. if $S^{\prime}=\emptyset$ then reject
4. else if $S^{\prime}=S$ then accept
5. else goto 2 .

If this algorithm rejects then $\mathbb{A} \nrightarrow \mathbb{B}$. If the algorithm accepts, we can't be sure.

Bounded Width CSP

We say that $\operatorname{CSP}(\mathbb{B})$ has width k if the k-consistency algorithm correctly determines for each \mathbb{A} whether or not $\mathbb{A} \longrightarrow \mathbb{B}$.

We say that $\operatorname{CSP}(\mathbb{B})$ has bounded width if there is some k such that it has width k.

Note: If $\operatorname{CSP}(\mathbb{B})$ has bounded width, it is solvable in polynomial time.
$\operatorname{CSP}\left(K_{2}\right)$ has width 3.
$\operatorname{CSP}\left(K_{3}\right)$ has unbounded width.

Definability in LFP

If $\operatorname{CSP}(\mathbb{B})$ is of bounded width, there is a sentence of LFP that defines it.
The k-consistency algorithm is computing the largest set $S \subseteq S_{0}$ such that every $h \in S$ is extendable in S.
This can be defined as the greatest fixed point of an operator definable in first-order logic.
Exercise: prove it!
Fact: If $\operatorname{CSP}(\mathbb{B})$ is definable in LFP then it has bounded width.
Fact: There are \mathbb{B} for which $\operatorname{CSP}(\mathbb{B})$ is in P, but not of bounded width.

Near-Unanimity Polymorphisms

For $k \geq 3$, a function $f: B^{k} \rightarrow B$ is said to be a near-unanimity (NU) function if for all $a, b \in B$

$$
f(a, \ldots, a, b)=f(a, \ldots, b, a)=\cdots=f(b, \ldots, a, a)=a .
$$

Say \mathbb{B} has a near-unanimity polymorphism of arity k if there is a k-ary near-unanimity function that is a polymorphism of \mathbb{B}.

Fact: if \mathbb{B} has a NU polymorphism of arity k then for every $I>k$, it has a NU polymorphism of arity I.
If $g: \mathbb{B}^{k} \rightarrow \mathbb{B}$ is a NU polymorphism, define

$$
h\left(x_{1}, \ldots, x_{l}\right)=g\left(x_{1}, \ldots, x_{k}\right)
$$

Near-Unanimity and Bounded Width

Theorem

If \mathbb{B} has a NU polymorphism of arity k, then $\operatorname{CSP}(\mathbb{B})$ has width k.
Suppose S is a non-empty set of partial homomorphisms $h: \mathbb{A} \hookrightarrow \mathbb{B}$, each of which is extendable in S.

We can use this and the NU polymorphisms of \mathbb{B} to construct a total homomorphism $g: \mathbb{A} \rightarrow \mathbb{B}$.

