Topics in Logic and Complexity

Handout 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2223/L15

Expressive Power of Logics

We have seen that the expressive power of *first-order logic*, in terms of computational complexity is *weak*.

Second-order logic allows us to express all properties in the *polynomial hierarchy*.

Are there interesting logics intermediate between these two?

We have seen one-monadic second-order logic.

We now examine another—*LFP*—the logic of *least fixed points*.

Inductive Definitions

LFP is a logic that formalises *inductive definitions*. Unlike in second-order logic, we cannot quantify over arbitrary relations, but we can build new relations *inductively*.

Inductive definitions are pervasive in mathematics and computer science.

The *syntax* and *semantics* of various formal languages are typically defined inductively.

viz. the definitions of the syntax and semantics of first-order logic seen earlier.

Transitive Closure

The *transitive closure* of a binary relation E is the *smallest* relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an *inductive definition* of T and, as we have already seen, there is no *first-order* formula that can define T in terms of E.

Monotone Operators

In order to introduce LFP, we briefly look at the theory of *monotone operators*, in our restricted context.

We write Pow(A) for the powerset of *A*. An operator on *A* is a function

 $F: \operatorname{Pow}(A) \to \operatorname{Pow}(A).$

F is *monotone* if

if $S \subseteq T$, then $F(S) \subseteq F(T)$.

Least and Greatest Fixed Points

A fixed point of F is any set $S \subseteq A$ such that F(S) = S.

S is the *least fixed point* of F, if for all fixed points T of F, $S \subseteq T$.

S is the greatest fixed point of F, if for all fixed points T of F, $T \subseteq S$.

Least and Greatest Fixed Points

For any monotone operator F, define the collection of its *pre-fixed points* as:

 $Pre = \{S \subseteq A \mid F(S) \subseteq S\}.$

Note: $A \in Pre$.

Taking

 $L = \bigcap Pre,$

we can show that L is a fixed point of F.

Fixed Points

```
For any set S \in Pre,

L \subseteq S

F(L) \subseteq F(S)

F(L) \subseteq S

F(L) \subseteq L

F(F(L)) \subseteq F(L)

F(L) \in Pre

L \subseteq F(L)
```

by definition of L. by monotonicity of F. by definition of Pre. by definition of L. by monotonicity of F by definition of Pre. by definition of L.

Least and Greatest Fixed Points

L is a *fixed point* of F.

Every fixed point *P* of *F* is in *Pre*, and therefore $L \subseteq P$. Thus, *L* is the least fixed point of *F*

Similarly, the greatest fixed point is given by:

 $G = \bigcup \{S \subseteq A \mid S \subseteq F(S)\}.$

Iteration

Let A be a *finite* set and F be a *monotone* operator on A. Define for $i \in \mathbb{N}$:

 $\begin{array}{rcl} F^0 &=& \emptyset \\ F^{i+1} &=& F(F^i). \end{array}$

For each *i*, $F^i \subseteq F^{i+1}$ (proved by induction).

Iteration

Proof by induction.

 $\emptyset = F^0 \subseteq F^1.$

If $F^i \subseteq F^{i+1}$ then, by monotonicity $F(F^i) \subseteq F(F^{i+1})$

and so $F^{i+1} \subseteq F^{i+2}$.

Logic and Complexity

Anuj Dawar

Fixed-Point by Iteration

If A has n elements, then

$$F^n = F^{n+1} = F^m$$
 for all $m > n$

Thus, F^n is a fixed point of F.

Let *P* be any fixed point of *F*. We can show by induction on *i*, that $F^i \subseteq P$.

 $F^0 = \emptyset \subseteq P$

If $F^i \subseteq P$ then $F^{i+1} = F(F^i) \subseteq F(P) = P$.

Thus *F*^{*n*} is the *least fixed point* of *F*.

Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure \mathbb{A} and let x be a tuple of k free variables of ϕ . For any relation $P \subseteq A^k$, ϕ defines a new relation:

 $F_{P} = \{ \mathsf{a} \mid (\mathbb{A}, P) \models \phi[\mathsf{a}] \}.$

The operator F_{ϕ} : Pow $(A^k) \rightarrow$ Pow (A^k) defined by ϕ is given by the map

 $P \mapsto F_P$.

Or, $F_{\phi,b}$ if we fix parameters b.

Positive Formulas

Definition

A formula ϕ is *positive* in the relation symbol *R*, if every occurrence of *R* in ϕ is within the scope of an even number of negation signs.

Lemma

For any structure A not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple b of elements of A, the operator $F_{\phi,b}$: $Pow(A^k) \rightarrow Pow(A^k)$ is monotone.

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and φ is a formula of LFP in which the symbol R only occurs positively, then

$\mathbf{lfp}_{R,\mathbf{x}}\phi$

is a predicate expression of LFP of arity k.

All occurrences of *R* and variables in x in $\mathbf{lfp}_{R,x}\phi$ are *bound*

Syntax of LFP

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula of LFP.
- If *P* is a predicate expression of LFP of arity *k* and t is a tuple of terms of length *k*, then *P*(t) is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \wedge \psi$, and $\neg \phi$.
- If φ is a formula of LFP and x is a variable then, ∃xφ is a formula of LFP.

Semantics of LFP

Let $\mathbb{A} = (A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ .

Let ϕ be a formula of LFP, and i an interpretation in A of all the free variables (*first or second* order) of ϕ .

To each individual variable x, i associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ , i associates a relation $i(R) \subseteq A^k$.

i is extended to terms t in the usual way.

For constants c, $i(c) = \mathcal{I}(c)$. $i(f(t_1, \ldots, t_n)) = \mathcal{I}(f)(i(t_1), \ldots, i(t_n))$

Semantics of LFP

- If R is a relation symbol in σ , then $\iota(R) = \mathcal{I}(R)$.
- If P is a predicate expression of the form Ifp_{R,x}φ, then *ι*(P) is the relation that is the least fixed point of the monotone operator F on A^k defined by:

 $F(X) = \{ \mathsf{a} \in A^k \mid \mathbb{A} \models \phi[\imath \langle X/R, \mathsf{x}/\mathsf{a} \rangle],$

where $i\langle X/R, x/a \rangle$ denotes the interpretation i' which is just like i except that i'(R) = X, and i'(x) = a.

Semantics of LFP

- If ϕ is of the form $t_1 = t_2$, then $\mathbb{A} \models \phi[i]$ if, $i(t_1) = i(t_2)$.
- If ϕ is of the form $R(t_1, \ldots, t_k)$, then $\mathbb{A} \models \phi[i]$ if,

 $(\imath(t_1),\ldots,\imath(t_k))\in\imath(R).$

- If ϕ is of the form $\psi_1 \wedge \psi_2$, then $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \models \psi_1[i]$ and $\mathbb{A} \models \psi_2[i]$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \not\models \psi[i]$.
- If ϕ is of the form $\exists x\psi$, then $\mathbb{A} \models \phi[i]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[i\langle x/a \rangle]$.

Transitive Closure

The formula (with free variables u and v)

 $\theta \equiv \mathbf{lfp}_{T,xy}[(x = y \lor \exists z(E(x,z) \land T(z,y)))](u,v)$

defines the *reflexive and transitive closure* of the relation *E*.

Thus $\forall u \forall v \theta$ defines *connectedness*.

The expressive power of LFP properly extends that of first-order logic.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol *R* occurs *positively*, then the *greatest fixed point* of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

 $\neg [\mathbf{lfp}_{R,x} \neg \phi(R/\neg R)](x)$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

Logic and Complexity

Simultaneous Inductions

We are given two formulas $\phi_1(S, T, x)$ and $\phi_2(S, T, y)$, S is k-ary, T is l-ary.

The pair (ϕ_1, ϕ_2) can be seen as defining a map:

 $F: \operatorname{Pow}(A^k) \times \operatorname{Pow}(A^l) \to \operatorname{Pow}(A^k) \times \operatorname{Pow}(A^l)$

If both formulas are positive in both S and T, then there is a least fixed point.

 (P_1, P_2)

defined by *simultaneous induction* on \mathbb{A} .

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_1(S, T)$ and $\phi_2(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure A containing at least two elements, define the two relations that are defined on A by ϕ_1 and ϕ_2 by simultaneous induction.

Proof

Assume $k \leq l$. We define P, of arity l + 2 such that: $(c, d, a_1, \dots, a_l) \in P$ if, and only if, either c = d and $(a_1, \dots, a_k) \in P_1$ or $c \neq d$ and $(a_1, \dots, a_l) \in P_2$

For new variables x_1 and x_2 and a new l + 2-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

 $\exists x_1 \exists x_2 (x_1 = x_2 \land \exists y_{k+1}, \ldots, \exists y_l R(x_1, x_2, t_1, \ldots, t_k, y_{k+1}, \ldots, y_l)),$

and replacing all occurrences of $T(t_1, \ldots, t_l)$ by:

 $\exists x_1 \exists x_2 x_1 \neq x_2 \land R(x_1, x_2, t_1, \ldots, t_l).$

Proof

Define ϕ as $(x_1 = x_2 \land \phi_1') \lor (x_1 \neq x_2 \land \phi_2').$ Then,

 $(\mathbf{lfp}_{R,x_1x_2y}\phi)(x,x,y)$

defines *P*, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \ldots, \exists y_l (\mathbf{lfp}_{R, x_1 x_2 y} \phi)(x, x, y);$$

and

$$\phi_{\mathcal{T}} \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land \mathsf{lfp}_{R, x_1 \times_2 y} \phi)(x_1, x_2, y).$$

Logic and Complexity

Any *query* definable in LFP is decidable by a *deterministic* machine in *polynomial time*.

To be precise, we can show that for each formula ϕ there is a *t* such that

 $\mathbb{A} \models \phi[\mathsf{a}]$

is decidable in time $O(n^t)$ where *n* is the number of elements of A. We prove this by induction on the structure of the formula.

- Atomic formulas by direct lookup (O(n^a) time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy.

If $\mathbb{A} \models \phi_1$ can be decided in time $O(n^{t_1})$ and $\mathbb{A} \models \phi_2$ in time $O(n^{t_2})$, then $\mathbb{A} \models \phi_1 \land \phi_2$ can be decided in time $O(n^{\max(t_1, t_2)})$

• If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

 $(\mathbb{A}, \boldsymbol{c} \mapsto \boldsymbol{a}) \models \psi[\boldsymbol{c}/\boldsymbol{x}],$

where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O(n^t)$, then $\mathbb{A} \models \phi$ can be decided in time $O(n^{t+1})$.

```
Suppose \phi \equiv [\mathbf{lfp}_{R,x}\psi](t) (R is l-ary)
To decide \mathbb{A} \models \phi[a]:
R := \emptyset
for i := 1 to n^{l} do
R := F_{\psi}(R)
end
if a \in R then accept else reject
```

To compute $F_{\psi}(R)$

For every tuple $a \in A^{l}$, determine whether $(\mathbb{A}, R) \models \psi[a]$.

If deciding $(\mathbb{A}, R) \models \psi$ takes time $O(n^t)$, then each assignment to R inside the loop requires time $O(n^{l+t})$. The total time taken to execute the loop is then $O(n^{2l+t})$. Finally, the last line can be done by a search through R in time O(n'). The total running time is, therefore, $O(n^{2l+t})$.

The *space* required is O(n').

For any ϕ of LFP, the language $\{[\mathbb{A}]_{\leq} \mid \mathbb{A} \models \phi\}$ is in P.

Suppose ρ is a signature that contains a *binary relation symbol* <, possibly along with other symbols.

Let \mathcal{O}_{ρ} denote those structures A in which < is a *linear order* of the universe.

For any language $L \in P$, there is a sentence ϕ of LFP that defines the class of structures

 $\{\mathbb{A}\in\mathcal{O}_{\rho}\mid [\mathbb{A}]_{<^{\mathbb{A}}}\in L\}$

(Immerman; Vardi 1982)

Recall the proof of Fagin's Theorem, that ESO captures NP.

Given a machine *M* and an integer *k*, there is a *first-order* formula $\phi_{M,k}$ such that

 $\mathbb{A} \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}$

if, and only if, *M* accepts $[A]_{<}$ in time n^{k} , for some order <.

If we fix the order < as part of the structure $\mathbb{A},$ we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations $T_{\sigma_1} \dots T_{\sigma_s}, S_{q_1} \dots S_{q_m}, H$ can be defined *inductively*.

where $\text{Init}_{a}(y)$ is the formula that defines the positions in which the symbol *a* appears in the input.

$$\begin{split} & \mathsf{State}_q(\mathsf{x},\mathsf{y}) \Leftrightarrow \\ & (\mathsf{x} = 1 \land \mathsf{y} = 1 \land q = q_0) \lor \\ & \exists t \exists \mathsf{h} \quad \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,R)\}} & (\mathsf{x} = \mathsf{t} + 1 \land \mathsf{State}_{q'}(\mathsf{t},\mathsf{h}) \land \\ & \mathsf{Tape}_a(\mathsf{t},\mathsf{h}) \land \mathsf{y} = \mathsf{h} + 1)) \\ & \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,L)\}} & (\mathsf{x} = \mathsf{t} + 1 \land \mathsf{State}_{q'}(\mathsf{t},\mathsf{h}) \land \\ & \mathsf{Tape}_a(\mathsf{t},\mathsf{h}) \land \mathsf{h} = \mathsf{y} + 1)). \end{split}$$

Unordered Structures

In the absence of an *order relation*, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an *even* number of elements.

Let \mathcal{E} be the collection of all structures in the empty signature. In order to prove that *evenness* is not defined by any LFP sentence, we show the following.

Lemma

For every LFP formula ϕ there is a first order formula ψ , such that for all structures \mathbb{A} in \mathcal{E} , $\mathbb{A} \models (\phi \leftrightarrow \psi)$.

Unordered Structures

Let $\psi(x, y)$ be a first order formula.

 $\mathbf{lfp}_{R,\mathbf{x}}\psi$ defines the relation

$$\mathsf{F}^{\infty}_{\psi,\mathsf{b}} = igcup_{i\in\mathbb{N}} \mathsf{F}^{i}_{\psi,\mathsf{b}}$$

for a fixed interpretation of the variables y by the tuple of parameters b. For each *i*, there is a first order formula ψ^i such that on any structure A,

$$F^{i}_{\psi,\mathsf{b}} = \{\mathsf{a} \mid \mathbb{A} \models \psi^{i}[\mathsf{a},\mathsf{b}]\}.$$

Defining the Stages

These formulas are obtained by *induction*.

 ψ^1 is obtained from ψ by replacing all occurrences of subformulas of the form R(t) by $t \neq t$.

 ψ^{i+1} is obtained by replacing in $\psi,$ all subformulas of the form R(t) by $\psi^i({\bf t},{\bf y})$

Let b be an *l*-tuple, and a and c two *k*-tuples in a structure \mathbb{A} such that there is an automorphism *i* of \mathbb{A} (i.e. an isomorphism from \mathbb{A} to itself) such that

- $\imath(b) = b$
- *i*(a) = c

Then,

 $\mathsf{a} \in F^i_{\psi,\mathsf{b}}$ if, and only if, $\mathsf{c} \in F^i_{\psi,\mathsf{b}}$.

Bounding the Induction

This defines an *equivalence relation* a \sim_{b} c.

If there are p distinct equivalence classes, then

 $F^{\infty}_{\psi,\mathsf{b}} = F^{p}_{\psi,\mathsf{b}}$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.