

MPhil Advanced Computer Science Topics in Logic and Complexity

Lent 2023

Anuj Dawar

Exercise Sheet 1

1. Show that, for every nondeterministic machine M which uses $O(\log n)$ work space, there is a machine R with three tapes (`input`, `work` and `output`) which works as follows. On input x , R produces on its output tape a description of the configuration graph for M, x , and R uses $O(\log |x|)$ space on its work tape.

Explain why this means that if Reachability is in L , then $\mathsf{L} = \mathsf{NL}$.

2. Show that a language L is in $\mathsf{co-NP}$ if, and only if, there is a nondeterministic Turing machine M and a polynomial p such that M halts in time $p(n)$ for all inputs of length x , and L is exactly the set of strings x such that *all* computations of M on input x end in an accepting state.
3. Define a *strong* nondeterministic Turing machine as one where each computation has three possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L , if for every $x \in L$, every computation path of M on x ends in either accept or maybe, with at least one accept *and* for $x \notin L$, every computation path of M on x ends in reject or maybe, with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial time, then $L \in \mathsf{NP} \cap \mathsf{co-NP}$.

4. *Geography* and *HEX* are examples of two-player games played on graphs for which the problem of deciding which of the two players has a winning strategy is PSpace -complete (defined at the end of Handout 1). The games are defined as follows.

Geography We are given a directed graph $G = (V, E)$ with a distinguished start vertex $s \in V$. At the beginning of the game, s is *marked*. The players move alternately. The player whose turn it is marks a previously unmarked vertex v such that there is an edge from u to v , where u is the vertex marked most recently by the other player. A player who gets stuck (i.e. the vertex most recently marked is u and all edges leaving u go to marked vertices) loses the game.

HEX We are given a directed graph $G = (V, E)$ with two distinguished vertices $a, b \in V$. There are two players (*red* and *blue*) who take alternate turns. In each turn, the player chooses a vertex not previously coloured and colours it with its own colour (player *red* colours it red or player *blue* colours it blue). The game ends when all nodes have been coloured. If there is a path from a to b consisting entirely of red vertices, then player *red* has won, otherwise *blue* has won.

Explain why both these problems are in **PSpace**. Prove, by means of suitable reductions, that they are **PSpace**-complete.

5. A second-order Horn sentence (**SO-Horn** sentence, for short) is one of the form

$$Q_1 R_1 \dots Q_p R_p (\forall \mathbf{x} \bigwedge_i C_i)$$

where, each Q_i is either \exists or \forall , each R_i is a relational variable and each C_i is a *Horn* clause, which is defined for our purposes as a disjunction of atomic and negated atomic formulas such that it contains at most one positive occurrence of a relational variable. A sentence is said to be **ESO-Horn** if it is as above, and all Q_i are \exists .

- (a) Show that any **ESO-Horn** sentence in a relational signature defines a class of structures decidable in polynomial time.
- (b) Show that, if K is an isomorphism-closed class of structures in a relational signature including $<$, such that each structure in K interprets $<$ as a linear order and

$$\{[\mathcal{A}]_< \mid \mathcal{A} \in K\}$$

is decidable in polynomial time, then there is an **ESO-Horn** sentence that defines K .

- (c) Show that any **SO-Horn** sentence is equivalent to an **ESO-Horn** sentence.

6. Recall that a Boolean formula is in *conjunctive normal form* if it is the conjunction of a collection of *clauses*, each of which is the disjunction of a set of *literals*. Each literal is either a propositional variable or the negation of a propositional variable. We say that a formula is in *3-CNF* if it is in conjunctive normal form and each clause contains exactly 3 literals. It is in *2-CNF* if it is in conjunctive normal form and each clause contains exactly 2 literals.

The problem of deciding whether a given formula in 3-CNF is satisfiable is known to be **NP**-complete. Here, the aim is to show that the problem of deciding whether a given formula in 2-CNF is satisfiable is in **NL**.

- (a) Show that every clause containing 2 literals can be written as an implication in exactly two ways.

For any formula ϕ in 2-CNF, define the directed graph G_ϕ to be the graph whose set of vertices is the set of all literals that occur in ϕ , and in which there is an edge from literal x to literal y if, and only if, the implication $(x \rightarrow y)$ is equivalent to one of the clauses in ϕ .

- (b) Show that ϕ is *unsatisfiable* if, and only if, there is a literal x such that there is a path in G_ϕ from x to $\neg x$ and a path from $\neg x$ to x .

(c) Explain why it follows that the problem of determining whether a formula in 2-CNF is satisfiable is in **NL**.

7. Show that *Cook's theorem*—that the problem SAT is **NP**-complete—can be obtained as a consequence of Fagin's theorem.
8. A graph $G = (V, E)$ is said to be *Hamiltonian* if it contains a cycle which visits every vertex exactly once. The problem of determining whether a graph is Hamiltonian is known to be **NP**-complete. Write down a sentence of **ESO** that defines this property.
9. We have seen a sentence of **ESO** that defines the structures with an even number of elements (Handout 2, slide 22). Can you define the property in **USO**?
10. We have seen a sentence of **ESO** that defines the 3-colourable graphs (Handout 2, slide 24). We can, of course, write a similar sentence to define the 2-colourable graphs. However, the property of being 2-colourable is in **P**, since a graph is 2-colourable if, and only if, it has no cycles of odd length. Can you write a **USO** sentence that defines the 2-colourable graphs?
11. Recall that a graph is *planar* if it can be drawn in the plane without any crossing edges. It is decidable in polynomial time whether a given graph is planar. Can you write a **USO** sentence that defines the planar graphs? How about an **ESO** sentence?
12. Show that the levels of the polynomial hierarchy are closed under polynomial time reductions. That is to say, if L_1 is a decision problem in Σ_n^1 (or Π_n^1) for some n and $L_2 \leq_P L_1$ then L_2 is also in Σ_n^1 (or Π_n^1 respectively).
13. Recall the definition of *quantified Boolean formulas* (Handout 2, slide 12). We now define the following restricted classes of formulas.
 - A quantified Boolean formula is said to be Σ_1 if it consists of a sequence of existential quantifiers followed by a Boolean formula without quantifiers.
 - A quantified Boolean formula is said to be Π_1 if it consists of a sequence of universal quantifiers followed by a Boolean formula without quantifiers.
 - A quantified Boolean formula is said to be Σ_{n+1} if it consists of a sequence of existential quantifiers followed by a Π_n formula.
 - A quantified Boolean formula is said to be Π_{n+1} if it consists of a sequence of universal quantifiers followed by a Σ_n formula.

For each n define Σ_n -*QBF* to be the problem of determining, given a Σ_n formula without free variables, whether or not it evaluates to true. Π_n -*QBF* is defined similarly for Π_n formulas.

Prove that Σ_n -QBF is complete for the complexity class Σ_n^1 (i.e. the n th existential level of the polynomial hierarchy), and that Π_n -QBF is complete for the complexity class Π_n^1 .

14. If σ is a relational signature (i.e. it contains no function or constant symbols), and \mathbb{A} and \mathbb{B} are σ -structures, write $\mathbb{A} + \mathbb{B}$ for the structure whose universe is the disjoint union of the universes of \mathbb{A} and \mathbb{B} and where each relation symbol R of σ is interpreted by the corresponding union of its interpretations in \mathbb{A} and \mathbb{B} . Similarly, write $n\mathbb{A}$ for the disjoint union of n copies of \mathbb{A} .
 - (a) Show that, if $\mathbb{A} \equiv_q \mathbb{A}'$ and $\mathbb{B} \equiv_q \mathbb{B}'$, then $\mathbb{A} + \mathbb{B} \equiv_q \mathbb{A}' + \mathbb{B}'$.
 - (b) Show that, for $n, m \geq q$, $n\mathbb{A} \equiv_q m\mathbb{A}$.
15. A *clique* in a graph $G = (V, E)$ is a set $X \subseteq V$ of vertices such that for any $u, v \in X$ if $u \neq v$ then (u, v) is an edge in E . The decision problem CLIQUE is the problem of deciding, given a graph G and a positive integer k whether or not G contains a clique with k or more elements. This problem is known to be NP-complete.

We will represent this problem as a class of structures as follows. The vocabulary consists of two binary relations E and $<$ and one constant k . Consider structures $\mathcal{G} = (V, E, <, k)$ in this vocabulary where (V, E) is a graph, $<$ is a linear order on V and k is some element of V . We say that \mathcal{G} is in CLIQUE if there is a set $X \subseteq V$ of vertices which forms a clique in the graph (V, E) and so that the number of elements in X is larger than the number of elements in $\{v \in V \mid v < k\}$, i.e. the number of elements before k in the linear order.

- (a) Give a sentence of existential second-order logic that defines the class of structures CLIQUE.
- (b) Prove that there is no sentence of first-order logic that defines this class of structures.