
1 / 313

Advanced Topics in
Category Theory

Lectured by Marcelo Fiore and Jamie Vicary

Department of Computer Science, University of Cambridge
Lent Term 2023

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.

Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!
Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.

Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!
Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.
Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . .

other languages available!
Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.
Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!

Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.
Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!
Notes. All notes, slides and exercises will go on the website soon.

Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.
Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!
Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).

Class Hand-In. On Moodle by 9am the day before the class.

2 / 313Welcome to ATCT Part I!

Topics. We will cover these topics:

• Monoidal categories
• Higher categories
• Graphical calculus
• Linear structure
• Duality
• Monoids and comonoids
• Frobenius and Hopf structures

Practical. The proof assistant homotopy.io.
Book. The course is based on the book
Categories for Quantum Theory: An Introduction,
by Chris Heunen and Jamie Vicary . . . other languages available!
Notes. All notes, slides and exercises will go on the website soon.
Assessment. By take-home exam (65%) and practical (35%).
Class Hand-In. On Moodle by 9am the day before the class.

3 / 313

Chapter 0
Basic ideas

4 / 313Basic ideas

Chapter 0 of the notes covers some simple topics that are a good
background for the course:

• Section 0.1: Category theory

• Section 0.2: Hilbert spaces

• Section 0.3: Quantum information

We will cover in the lectures everything that we need directly, but
you may find these sections useful if you have not studied these
topics before.

5 / 313

Chapter 1
Monoidal categories

6 / 3131.1 Monoidal structure

Category theory describes systems and processes:

• physical systems, and physical processes governing them;

• data types, and algorithms manipulating them;

• algebraic structures, and structure-preserving functions;

• logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:

• independent physical systems evolve simultaneously;

• running computer algorithms in parallel;

• products or sums of algebraic or geometric structures;

• using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).

6 / 3131.1 Monoidal structure

Category theory describes systems and processes:

• physical systems, and physical processes governing them;

• data types, and algorithms manipulating them;

• algebraic structures, and structure-preserving functions;

• logical propositions, and implications between them.

Monoidal category theory adds the idea of parallelism:

• independent physical systems evolve simultaneously;

• running computer algorithms in parallel;

• products or sums of algebraic or geometric structures;

• using separate proofs of P and Q to construct a proof of the
conjunction (P and Q).

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

7 / 3131.1 Monoidal structure

Why should this theory be interesting?

• Let A, B and C be processes, and let ⊗ be parallel composition

• What relationship should there be between these processes?

(A ⊗ B)⊗ C A ⊗ (B ⊗ C)

• It’s not right to say they’re equal, since even just for sets,

(S × T)× U ̸= S × (T × U).

• Maybe they should be isomorphic — but then what equations
should these isomorphisms satisfy?

• How do we treat trivial systems?

• What should the relationship be between A ⊗ B and B ⊗ A?

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

8 / 3131.1 Monoidal structure
Definition 1.1. A monoidal category is a category C equipped with
the following data:

• a tensor product functor

⊗ : C × C C;

• a unit object
I ∈ Ob(C);

• an associator natural isomorphism

(A ⊗ B)⊗ C
αA,B,C A ⊗ (B ⊗ C);

• a left unitor natural isomorphism

I ⊗ A λA A;

• and a right unitor natural isomorphism

A ⊗ I ρA A.

9 / 3131.1 Monoidal structure
This data must satisfy the triangle and pentagon equations, for all
objects A, B, C and D:

(A ⊗ I)⊗ B A ⊗ (I ⊗ B)

A ⊗ BρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A ⊗ B)⊗ C

)
⊗ D

(
A ⊗ (B ⊗ C)

)
⊗ D A ⊗

(
(B ⊗ C)⊗ D

)
A ⊗

(
B ⊗ (C ⊗ D)

)
(A ⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 1.2 (Coherence for monoidal categories). If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses.

To appreciate this, try to prove λI = ρI (see exercises.)

9 / 3131.1 Monoidal structure
This data must satisfy the triangle and pentagon equations, for all
objects A, B, C and D:

(A ⊗ I)⊗ B A ⊗ (I ⊗ B)

A ⊗ BρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A ⊗ B)⊗ C

)
⊗ D

(
A ⊗ (B ⊗ C)

)
⊗ D A ⊗

(
(B ⊗ C)⊗ D

)
A ⊗

(
B ⊗ (C ⊗ D)

)
(A ⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 1.2 (Coherence for monoidal categories). If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses.

To appreciate this, try to prove λI = ρI (see exercises.)

9 / 3131.1 Monoidal structure
This data must satisfy the triangle and pentagon equations, for all
objects A, B, C and D:

(A ⊗ I)⊗ B A ⊗ (I ⊗ B)

A ⊗ BρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A ⊗ B)⊗ C

)
⊗ D

(
A ⊗ (B ⊗ C)

)
⊗ D A ⊗

(
(B ⊗ C)⊗ D

)
A ⊗

(
B ⊗ (C ⊗ D)

)
(A ⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 1.2 (Coherence for monoidal categories). If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses.

To appreciate this, try to prove λI = ρI (see exercises.)

9 / 3131.1 Monoidal structure
This data must satisfy the triangle and pentagon equations, for all
objects A, B, C and D:

(A ⊗ I)⊗ B A ⊗ (I ⊗ B)

A ⊗ BρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A ⊗ B)⊗ C

)
⊗ D

(
A ⊗ (B ⊗ C)

)
⊗ D A ⊗

(
(B ⊗ C)⊗ D

)
A ⊗

(
B ⊗ (C ⊗ D)

)
(A ⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem 1.2 (Coherence for monoidal categories). If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses.

To appreciate this, try to prove λI = ρI (see exercises.)

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

10 / 3131.1 Monoidal structure

The monoidal structure on Set is given by Cartesian product.

Definition 1.4. The monoidal structure on the category Set, and
also by restriction on FSet, is defined as follows:

• the tensor product is Cartesian product of sets, written ×,
acting on functions A f B and C g D as (f × g)(a, c) =

(
f(a), g(c)

)
;

• the unit object is a chosen singleton set {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the functions

given by
(
(a, b), c

)
7→
(
a, (b, c)

)
;

• left unitors I × A λA A are the functions (•, a) 7→ a;

• right unitors A × I ρA A are the functions (a, •) 7→ a.

Other tensor products exist, but this one plays a canonical role in
our interpretation of classical reality.

11 / 3131.1 Monoidal structure

Monoidal categories satisfy the interchange law, which governs the
interaction between composition and tensor product.

Theorem 1.7 (Interchange). Any morphisms A f B, B g C, D h E
and E j F in a monoidal category satisfy the interchange law:

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

Proof. This holds because of properties of the category C × C, and
from the fact that ⊗ : C × C C is a functor:

(g ◦ f)⊗ (j ◦ h) ≡ ⊗(g ◦ f , j ◦ h)
= ⊗

(
(g, j) ◦ (f , h)

)
(composition in C × C)

=
(
⊗(g, j)

)
◦
(
⊗(f , h)

)
(functoriality of ⊗)

= (g ⊗ j) ◦ (f ⊗ h)

Remember the functoriality property: F(g ◦ f) = F(g) ◦ F(f).

11 / 3131.1 Monoidal structure

Monoidal categories satisfy the interchange law, which governs the
interaction between composition and tensor product.

Theorem 1.7 (Interchange). Any morphisms A f B, B g C, D h E
and E j F in a monoidal category satisfy the interchange law:

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

Proof. This holds because of properties of the category C × C, and
from the fact that ⊗ : C × C C is a functor:

(g ◦ f)⊗ (j ◦ h) ≡ ⊗(g ◦ f , j ◦ h)
= ⊗

(
(g, j) ◦ (f , h)

)
(composition in C × C)

=
(
⊗(g, j)

)
◦
(
⊗(f , h)

)
(functoriality of ⊗)

= (g ⊗ j) ◦ (f ⊗ h)

Remember the functoriality property: F(g ◦ f) = F(g) ◦ F(f).

11 / 3131.1 Monoidal structure

Monoidal categories satisfy the interchange law, which governs the
interaction between composition and tensor product.

Theorem 1.7 (Interchange). Any morphisms A f B, B g C, D h E
and E j F in a monoidal category satisfy the interchange law:

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

Proof. This holds because of properties of the category C × C, and
from the fact that ⊗ : C × C C is a functor:

(g ◦ f)⊗ (j ◦ h) ≡ ⊗(g ◦ f , j ◦ h)
= ⊗

(
(g, j) ◦ (f , h)

)
(composition in C × C)

=
(
⊗(g, j)

)
◦
(
⊗(f , h)

)
(functoriality of ⊗)

= (g ⊗ j) ◦ (f ⊗ h)

Remember the functoriality property: F(g ◦ f) = F(g) ◦ F(f).

12 / 3131.1 Monoidal structure

Monoidal categories have an elegant graphical calculus.

For morphisms A f B and C g D, we draw their tensor product
A ⊗ C f⊗g B ⊗ D like this:

f g
B

A

D

C

The idea is that f and g represent distinct processes taking place at
the same time.

Inputs are drawn at the bottom, and outputs are drawn at the top;
in this sense, “time” runs upwards.

12 / 3131.1 Monoidal structure

Monoidal categories have an elegant graphical calculus.

For morphisms A f B and C g D, we draw their tensor product
A ⊗ C f⊗g B ⊗ D like this:

f g
B

A

D

C

The idea is that f and g represent distinct processes taking place at
the same time.

Inputs are drawn at the bottom, and outputs are drawn at the top;
in this sense, “time” runs upwards.

12 / 3131.1 Monoidal structure

Monoidal categories have an elegant graphical calculus.

For morphisms A f B and C g D, we draw their tensor product
A ⊗ C f⊗g B ⊗ D like this:

f g
B

A

D

C

The idea is that f and g represent distinct processes taking place at
the same time.

Inputs are drawn at the bottom, and outputs are drawn at the top;
in this sense, “time” runs upwards.

13 / 3131.1 Monoidal structure

The monoidal unit object I is drawn as the empty diagram:

The left unitor I ⊗ A λA A, the right unitor A ⊗ I ρA A and the
associator (A ⊗ B)⊗ C

αA,B,C A ⊗ (B ⊗ C) are also not depicted:

A A A B C

λA ρA αA,B,C

The coherence of α, λ and ρ is essential for the graphical calculus to
function. Since there can only be a single morphism built from their
components of any given type, it doesn’t matter that their graphical
calculus encodes no information.

13 / 3131.1 Monoidal structure

The monoidal unit object I is drawn as the empty diagram:

The left unitor I ⊗ A λA A, the right unitor A ⊗ I ρA A and the
associator (A ⊗ B)⊗ C

αA,B,C A ⊗ (B ⊗ C) are also not depicted:

A A A B C

λA ρA αA,B,C

The coherence of α, λ and ρ is essential for the graphical calculus to
function. Since there can only be a single morphism built from their
components of any given type, it doesn’t matter that their graphical
calculus encodes no information.

13 / 3131.1 Monoidal structure

The monoidal unit object I is drawn as the empty diagram:

The left unitor I ⊗ A λA A, the right unitor A ⊗ I ρA A and the
associator (A ⊗ B)⊗ C

αA,B,C A ⊗ (B ⊗ C) are also not depicted:

A A A B C

λA ρA αA,B,C

The coherence of α, λ and ρ is essential for the graphical calculus to
function. Since there can only be a single morphism built from their
components of any given type, it doesn’t matter that their graphical
calculus encodes no information.

14 / 3131.1 Monoidal structure

Now let’s look at the interchange law (1.4):

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D








=         

        
f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.

The apparent complexity of the theory of monoidal categories—
α, λ, ρ, coherence, interchange—was in fact complexity of the
geometry of the plane. So when we use a geometrical notation, the
complexity vanishes.

14 / 3131.1 Monoidal structure

Now let’s look at the interchange law (1.4):

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D








=         

        
f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.

The apparent complexity of the theory of monoidal categories—
α, λ, ρ, coherence, interchange—was in fact complexity of the
geometry of the plane. So when we use a geometrical notation, the
complexity vanishes.

14 / 3131.1 Monoidal structure

Now let’s look at the interchange law (1.4):

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D








=         

        
f

g

h

j

C

B

A

F

E

D

Graphically it’s trivial.

The apparent complexity of the theory of monoidal categories—
α, λ, ρ, coherence, interchange—was in fact complexity of the
geometry of the plane. So when we use a geometrical notation, the
complexity vanishes.

15 / 3131.1 Monoidal structure

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper
boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh iso
=

f

g

h

not
iso
̸=

f

g
h

We will allow heights of the diagrams to change, and allow input
and output wires to slide horizontally along the boundary, although
they must never change order.

15 / 3131.1 Monoidal structure

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper
boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh iso
=

f

g

h

not
iso
̸=

f

g
h

We will allow heights of the diagrams to change, and allow input
and output wires to slide horizontally along the boundary, although
they must never change order.

15 / 3131.1 Monoidal structure

Two diagrams are planar isotopic when one can be deformed
continuously into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper
boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh iso
=

f

g

h

not
iso
̸=

f

g
h

We will allow heights of the diagrams to change, and allow input
and output wires to slide horizontally along the boundary, although
they must never change order.

16 / 3131.1 Monoidal structure

We can now state the correctness theorem.

Theorem 1.8 (Correctness of the graphical calculus for monoidal
categories). A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g) ⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g) ⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.

16 / 3131.1 Monoidal structure

We can now state the correctness theorem.

Theorem 1.8 (Correctness of the graphical calculus for monoidal
categories). A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g) ⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g) ⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.

16 / 3131.1 Monoidal structure

We can now state the correctness theorem.

Theorem 1.8 (Correctness of the graphical calculus for monoidal
categories). A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g) ⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g) ⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.

16 / 3131.1 Monoidal structure

We can now state the correctness theorem.

Theorem 1.8 (Correctness of the graphical calculus for monoidal
categories). A well-formed equation between morphisms in a
monoidal category follows from the axioms if and only if it holds in
the graphical language up to planar isotopy.

Let f and g be morphisms such that the equation f = g is
well-formed, and consider the following statements:

• P(f , g) = ‘under the axioms of a monoidal category, f = g’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g, P(f , g) ⇒ Q(f , g).
It is easy to prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g,
Q(f , g) ⇒ P(f , g). It is hard to prove; one must show that planar
isotopy is generated by a finite set of moves, each being implied by
the monoidal axioms.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

17 / 3131.1 Monoidal structure

The category Hilb has a canonical monoidal structure, given by
quantum theory.

Definition 1.3. The monoidal structure on the category Hilb, and
also by restriction on FHilb, is defined in the following way:

• the tensor product ⊗ : Hilb × Hilb Hilb is the tensor
product of Hilbert spaces, as defined in Section 0.2.5;

• the unit object I is the one-dimensional Hilbert space C;

• associators (H ⊗ J)⊗K
αH,J,K H ⊗ (J ⊗K) are the unique linear

maps satisfying (u ⊗ v)⊗ w 7→ u ⊗ (v ⊗ w) for all u ∈ H, v ∈ J
and w ∈ K;

• left unitors C⊗ H λH H are the unique linear maps satisfying
1 ⊗ u 7→ u for all u ∈ H;

• right unitors H ⊗C ρH H are the unique linear maps satisfying
u ⊗ 1 7→ u for all u ∈ H.

18 / 3131.1 Monoidal structure

Relations give another notion of process between sets.

Definition 0.4. Given sets A and B, a relation A R B is a subset
R ⊆ A × B.

We can think of a relation A R−→ B in a dynamical way, as specifying
how states of A can evolve into states of B:

A B
R

(1)

This is nondeterministic, because an element of A can be related to
more than one element of B, or to none.

18 / 3131.1 Monoidal structure

Relations give another notion of process between sets.

Definition 0.4. Given sets A and B, a relation A R B is a subset
R ⊆ A × B.

We can think of a relation A R−→ B in a dynamical way, as specifying
how states of A can evolve into states of B:

A B
R

(1)

This is nondeterministic, because an element of A can be related to
more than one element of B, or to none.

18 / 3131.1 Monoidal structure

Relations give another notion of process between sets.

Definition 0.4. Given sets A and B, a relation A R B is a subset
R ⊆ A × B.

We can think of a relation A R−→ B in a dynamical way, as specifying
how states of A can evolve into states of B:

A B
R

(1)

This is nondeterministic, because an element of A can be related to
more than one element of B, or to none.

18 / 3131.1 Monoidal structure

Relations give another notion of process between sets.

Definition 0.4. Given sets A and B, a relation A R B is a subset
R ⊆ A × B.

We can think of a relation A R−→ B in a dynamical way, as specifying
how states of A can evolve into states of B:

A B
R

(1)

This is nondeterministic, because an element of A can be related to
more than one element of B, or to none.

19 / 3131.1 Monoidal structure
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

19 / 3131.1 Monoidal structure
Suppose we have a pair of head-to-tail relations:

A B B C
R S

Then our interpretation gives a natural notion of composition:

A C
S ◦ R

20 / 3131.1 Monoidal structure

We can write relations as (0,1)-valued matrices:

A B
R

↭

0 0 0 0
0 1 1 1
0 0 0 1



Composition of relations is then ordinary matrix multiplication,
with logical disjunction (OR) and conjunction (AND) for + and ×.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;

• morphisms are relations R ⊆ A × B,
with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

21 / 3131.1 Monoidal structure
The intuition we have developed leads to the following definition of
the category Rel.

Definition 0.5 (Rel, FRel). The category Rel of sets and relations is
defined as follows:

• objects are sets A,B,C, . . .;
• morphisms are relations R ⊆ A × B,

with (a, b) ∈ R written aRb;

• composition of A R B and B S C is the relation
{(a, c) ∈ A × C | ∃b ∈ B : aRb, bSc};

• the identity morphism on A is the relation
{(a, a) ∈ A × A | a ∈ A}.

Define the category FRel to be the restriction of Rel to finite sets.

While Set is a setting for classical physics, and Hilb is a setting for
quantum physics, Rel is somewhere in the middle.

It seems like Rel should be a lot like Set, but we will discover it
behaves a lot more like Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

22 / 3131.1 Monoidal structure

There is a canonical monoidal structure on the category Rel.

Definition 1.5. The monoidal structure on the category Rel is
defined in the following way:

• the tensor product is Cartesian product of sets, written ×,
acting on relations A R B and C S D by setting
(a, c)(R × S)(b, d) if and only if aRb and cSd;

• the unit object is a chosen singleton set = {•};

• associators (A × B)× C
αA,B,C A × (B × C) are the relations

defined by
(
(a, b), c

)
∼
(
a, (b, c)

)
;

• left unitors I × A λA A are the relations defined by (•, a) ∼ a;

• right unitors A × I ρA A are the relations defined by (a, •) ∼ a.

The Cartesian product is not a categorical product in Rel, so
although this monoidal structure looks like that of Set, it is more
similar to the structure on Hilb.

23 / 3131.1 Monoidal structure

In a category, we cannot ‘look inside’ an object to inspect its
elements. We have do everything using the morphisms.

Definition 1.10. In a monoidal category, a state of an object A is a
morphism I A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A

23 / 3131.1 Monoidal structure

In a category, we cannot ‘look inside’ an object to inspect its
elements. We have do everything using the morphisms.

Definition 1.10. In a monoidal category, a state of an object A is a
morphism I A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A

23 / 3131.1 Monoidal structure

In a category, we cannot ‘look inside’ an object to inspect its
elements. We have do everything using the morphisms.

Definition 1.10. In a monoidal category, a state of an object A is a
morphism I A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A

23 / 3131.1 Monoidal structure

In a category, we cannot ‘look inside’ an object to inspect its
elements. We have do everything using the morphisms.

Definition 1.10. In a monoidal category, a state of an object A is a
morphism I A.

The monoidal unit object represents the trivial system, so a state is
a way for the system A to be ‘brought into existence’.

We draw a state I a A like this:

a

A

24 / 3131.1 Monoidal structure

Example 1.11. Let’s examine the states in our example categories.

• In Hilb, states of a Hilbert space H are linear functions C H,
which correspond to elements of H by considering the image of
1 ∈ C.

• In Set, states of a set A are functions {•} A, which
correspond to elements of A by considering the image of •.

• In Rel, states of a set A are relations {•} R A, which
correspond to subsets by considering all elements related to •.

24 / 3131.1 Monoidal structure

Example 1.11. Let’s examine the states in our example categories.

• In Hilb, states of a Hilbert space H are linear functions C H,
which correspond to elements of H by considering the image of
1 ∈ C.

• In Set, states of a set A are functions {•} A, which
correspond to elements of A by considering the image of •.

• In Rel, states of a set A are relations {•} R A, which
correspond to subsets by considering all elements related to •.

24 / 3131.1 Monoidal structure

Example 1.11. Let’s examine the states in our example categories.

• In Hilb, states of a Hilbert space H are linear functions C H,
which correspond to elements of H by considering the image of
1 ∈ C.

• In Set, states of a set A are functions {•} A, which
correspond to elements of A by considering the image of •.

• In Rel, states of a set A are relations {•} R A, which
correspond to subsets by considering all elements related to •.

25 / 3131.1 Monoidal structure

The dual notion of state is effect.

Definition 1.15. In a monoidal category, an effect on an object A is
a morphism A I.

We can use states, effects and other morphisms to build up
interesting diagrams, which give ‘histories’ for a family of systems:

b

A

a

f

We can interpret an effect as a property observation of a system.
Overall this composite gives a state of A.

25 / 3131.1 Monoidal structure

The dual notion of state is effect.

Definition 1.15. In a monoidal category, an effect on an object A is
a morphism A I.

We can use states, effects and other morphisms to build up
interesting diagrams, which give ‘histories’ for a family of systems:

b

A

a

f

We can interpret an effect as a property observation of a system.
Overall this composite gives a state of A.

26 / 3131.1 Monoidal structure

A morphism I c A ⊗ B is a joint state of A and B. We depict it
graphically in the following way.

c

BA

Definition 1.13. A joint state I c A ⊗ B is a product state when it is
of the form I

λ−1
I I ⊗ I a⊗b A ⊗ B:

c

BA

=
a b

BA

Definition 1.13. A joint state is entangled when it is not a product
state.

26 / 3131.1 Monoidal structure

A morphism I c A ⊗ B is a joint state of A and B. We depict it
graphically in the following way.

c

BA

Definition 1.13. A joint state I c A ⊗ B is a product state when it is
of the form I

λ−1
I I ⊗ I a⊗b A ⊗ B:

c

BA

=
a b

BA

Definition 1.13. A joint state is entangled when it is not a product
state.

26 / 3131.1 Monoidal structure

A morphism I c A ⊗ B is a joint state of A and B. We depict it
graphically in the following way.

c

BA

Definition 1.13. A joint state I c A ⊗ B is a product state when it is
of the form I

λ−1
I I ⊗ I a⊗b A ⊗ B:

c

BA

=
a b

BA

Definition 1.13. A joint state is entangled when it is not a product
state.

27 / 3131.1 Monoidal structure
Example 1.14. Let’s investigate joint states, product states, and
entangled states in our example categories.

• In Hilb:
• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.

• In Set:
• joint states of A and B are elements of A × B;
• product states are elements (a, b) ∈ A × B;
• entangled states don’t exist.

• In Rel:
• joint states of A and B are subsets of A × B;
• product states are subsets U ⊆ A × B such that, for some

V ⊆ A and W ⊆ B, (v,w) ∈ U if and only if v ∈ V, w ∈ W;
• entangled states are subsets that aren’t of this form.

27 / 3131.1 Monoidal structure
Example 1.14. Let’s investigate joint states, product states, and
entangled states in our example categories.

• In Hilb:
• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.

• In Set:
• joint states of A and B are elements of A × B;
• product states are elements (a, b) ∈ A × B;
• entangled states don’t exist.

• In Rel:
• joint states of A and B are subsets of A × B;
• product states are subsets U ⊆ A × B such that, for some

V ⊆ A and W ⊆ B, (v,w) ∈ U if and only if v ∈ V, w ∈ W;
• entangled states are subsets that aren’t of this form.

27 / 3131.1 Monoidal structure
Example 1.14. Let’s investigate joint states, product states, and
entangled states in our example categories.

• In Hilb:
• joint states of H and K are elements of H ⊗ K;
• product states are factorizable states;
• entangled states are elements of H ⊗ K which cannot be

factorized, i.e. entangled states in the quantum sense.

• In Set:
• joint states of A and B are elements of A × B;
• product states are elements (a, b) ∈ A × B;
• entangled states don’t exist.

• In Rel:
• joint states of A and B are subsets of A × B;
• product states are subsets U ⊆ A × B such that, for some

V ⊆ A and W ⊆ B, (v,w) ∈ U if and only if v ∈ V, w ∈ W;
• entangled states are subsets that aren’t of this form.

28 / 3131.2 Braiding and symmetry
In many theories, the systems A ⊗ B and B ⊗ A can be considered
essentially equivalent. Developing this idea gives rise to braided and
symmetric monoidal categories.

Definition 1.17. A braided monoidal category is a monoidal
category equipped with a natural isomorphism

A ⊗ B
σA,B B ⊗ A

satisfying the following hexagon equations:

(A ⊗ B)⊗ C

A ⊗ (B ⊗ C) (B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A ⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A ⊗ (B ⊗ C)

(A ⊗ B)⊗ C C ⊗ (A ⊗ B)

(C ⊗ A)⊗ B

A ⊗ (C ⊗ B) (A ⊗ C)⊗ B

αA,B,C

σA⊗B,C

αC,A,B

idA ⊗ σB,C

α−1
A,C,B

σA,C ⊗ idB

28 / 3131.2 Braiding and symmetry
In many theories, the systems A ⊗ B and B ⊗ A can be considered
essentially equivalent. Developing this idea gives rise to braided and
symmetric monoidal categories.

Definition 1.17. A braided monoidal category is a monoidal
category equipped with a natural isomorphism

A ⊗ B
σA,B B ⊗ A

satisfying the following hexagon equations:

(A ⊗ B)⊗ C

A ⊗ (B ⊗ C) (B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A ⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A ⊗ (B ⊗ C)

(A ⊗ B)⊗ C C ⊗ (A ⊗ B)

(C ⊗ A)⊗ B

A ⊗ (C ⊗ B) (A ⊗ C)⊗ B

αA,B,C

σA⊗B,C

αC,A,B

idA ⊗ σB,C

α−1
A,C,B

σA,C ⊗ idB

28 / 3131.2 Braiding and symmetry
In many theories, the systems A ⊗ B and B ⊗ A can be considered
essentially equivalent. Developing this idea gives rise to braided and
symmetric monoidal categories.

Definition 1.17. A braided monoidal category is a monoidal
category equipped with a natural isomorphism

A ⊗ B
σA,B B ⊗ A

satisfying the following hexagon equations:

(A ⊗ B)⊗ C

A ⊗ (B ⊗ C) (B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A ⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A ⊗ (B ⊗ C)

(A ⊗ B)⊗ C C ⊗ (A ⊗ B)

(C ⊗ A)⊗ B

A ⊗ (C ⊗ B) (A ⊗ C)⊗ B

αA,B,C

σA⊗B,C

αC,A,B

idA ⊗ σB,C

α−1
A,C,B

σA,C ⊗ idB

29 / 3131.2 Braiding and symmetry

We include the braiding in our graphical notation like this:

A ⊗ B
σA,B B ⊗ A B ⊗ A

σ−1
A,B A ⊗ B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional.

Invertibility takes the following graphical form:

= =

29 / 3131.2 Braiding and symmetry

We include the braiding in our graphical notation like this:

A ⊗ B
σA,B B ⊗ A B ⊗ A

σ−1
A,B A ⊗ B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional.

Invertibility takes the following graphical form:

= =

29 / 3131.2 Braiding and symmetry

We include the braiding in our graphical notation like this:

A ⊗ B
σA,B B ⊗ A B ⊗ A

σ−1
A,B A ⊗ B

The strands of a braiding cross over each other, so the diagrams are
not planar; they are inherently 3-dimensional.

Invertibility takes the following graphical form:

= =

30 / 3131.2 Braiding and symmetry

Naturality has the following graphical representation:

f g =
g f

f g =
g f

The hexagon equations look like this:

= =

So braiding with a tensor product of two objects is the same as
braiding with one then the other separately.

30 / 3131.2 Braiding and symmetry

Naturality has the following graphical representation:

f g =
g f

f g =
g f

The hexagon equations look like this:

= =

So braiding with a tensor product of two objects is the same as
braiding with one then the other separately.

31 / 3131.2 Braiding and symmetry
Braided monoidal categories have a sound and complete graphical
calculus, as established by the following theorem.

Theorem 1.18 (Correctness of graphical calculus for braided
monoidal categories). A well-formed equation between morphisms in
a braided monoidal category follows from the axioms if and only if it
holds in the graphical language up to 3-dimensional isotopy.

The coherence theorem is very powerful. Try to show that the
following equations hold (Exercise 1.4.4):

= =

The second equation is called the Yang–Baxter equation, which plays
an important role in the mathematical theory of knots.

31 / 3131.2 Braiding and symmetry
Braided monoidal categories have a sound and complete graphical
calculus, as established by the following theorem.

Theorem 1.18 (Correctness of graphical calculus for braided
monoidal categories). A well-formed equation between morphisms in
a braided monoidal category follows from the axioms if and only if it
holds in the graphical language up to 3-dimensional isotopy.

The coherence theorem is very powerful. Try to show that the
following equations hold (Exercise 1.4.4):

= =

The second equation is called the Yang–Baxter equation, which plays
an important role in the mathematical theory of knots.

31 / 3131.2 Braiding and symmetry
Braided monoidal categories have a sound and complete graphical
calculus, as established by the following theorem.

Theorem 1.18 (Correctness of graphical calculus for braided
monoidal categories). A well-formed equation between morphisms in
a braided monoidal category follows from the axioms if and only if it
holds in the graphical language up to 3-dimensional isotopy.

The coherence theorem is very powerful. Try to show that the
following equations hold (Exercise 1.4.4):

= =

The second equation is called the Yang–Baxter equation, which plays
an important role in the mathematical theory of knots.

32 / 3131.2 Braiding and symmetry

Let’s consider this structure for our example categories.

Definition 1.19. The monoidal categories Hilb, Set and Rel can all
be equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a ⊗ b 7→ b ⊗ a for all a ∈ H and b ∈ K.

• In Set, A × B
σA,B B × A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.

• In Rel, A × B
σA,B B × A is defined by (a, b) ∼ (b, a) for all a ∈ A

and b ∈ B.

32 / 3131.2 Braiding and symmetry

Let’s consider this structure for our example categories.

Definition 1.19. The monoidal categories Hilb, Set and Rel can all
be equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a ⊗ b 7→ b ⊗ a for all a ∈ H and b ∈ K.

• In Set, A × B
σA,B B × A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.

• In Rel, A × B
σA,B B × A is defined by (a, b) ∼ (b, a) for all a ∈ A

and b ∈ B.

32 / 3131.2 Braiding and symmetry

Let’s consider this structure for our example categories.

Definition 1.19. The monoidal categories Hilb, Set and Rel can all
be equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a ⊗ b 7→ b ⊗ a for all a ∈ H and b ∈ K.

• In Set, A × B
σA,B B × A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.

• In Rel, A × B
σA,B B × A is defined by (a, b) ∼ (b, a) for all a ∈ A

and b ∈ B.

32 / 3131.2 Braiding and symmetry

Let’s consider this structure for our example categories.

Definition 1.19. The monoidal categories Hilb, Set and Rel can all
be equipped with a canonical braiding.

• In Hilb, H ⊗ K
σH,K K ⊗ H is the unique linear map extending

a ⊗ b 7→ b ⊗ a for all a ∈ H and b ∈ K.

• In Set, A × B
σA,B B × A is defined by (a, b) 7→ (b, a) for all

a ∈ A and b ∈ B.

• In Rel, A × B
σA,B B × A is defined by (a, b) ∼ (b, a) for all a ∈ A

and b ∈ B.

33 / 3131.2 Braiding and symmetry
In Hilb, Rel and Set, the braidings satisfy an extra property.

Definition 1.20. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 1.21. In a symmetric monoidal category σA,B = σ−1
B,A, with

the following graphical representation:

:= =

33 / 3131.2 Braiding and symmetry
In Hilb, Rel and Set, the braidings satisfy an extra property.

Definition 1.20. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 1.21. In a symmetric monoidal category σA,B = σ−1
B,A, with

the following graphical representation:

:= =

33 / 3131.2 Braiding and symmetry
In Hilb, Rel and Set, the braidings satisfy an extra property.

Definition 1.20. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 1.21. In a symmetric monoidal category σA,B = σ−1
B,A, with

the following graphical representation:

:= =

33 / 3131.2 Braiding and symmetry
In Hilb, Rel and Set, the braidings satisfy an extra property.

Definition 1.20. A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

for all objects A and B, in which case we call σ the symmetry.

The symmetry condition has the following representation:

=

The strings can pass through each other, and knots can’t be formed.

Lemma 1.21. In a symmetric monoidal category σA,B = σ−1
B,A, with

the following graphical representation:

:= =

34 / 3131.3 Coherence

Some monoidal categories have a particularly simple structure.
Definition 1.25. A monoidal category is strict if the morphisms
αA,B,C, λA and ρA are all identities.

Later we will sketch the proof of the following theorem.
Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B)⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 0.10. A category is skeletal when any two isomorphic
objects are equal.
Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.

34 / 3131.3 Coherence

Some monoidal categories have a particularly simple structure.
Definition 1.25. A monoidal category is strict if the morphisms
αA,B,C, λA and ρA are all identities.
Later we will sketch the proof of the following theorem.
Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B)⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 0.10. A category is skeletal when any two isomorphic
objects are equal.
Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.

34 / 3131.3 Coherence

Some monoidal categories have a particularly simple structure.
Definition 1.25. A monoidal category is strict if the morphisms
αA,B,C, λA and ρA are all identities.
Later we will sketch the proof of the following theorem.
Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B)⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 0.10. A category is skeletal when any two isomorphic
objects are equal.
Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.

34 / 3131.3 Coherence

Some monoidal categories have a particularly simple structure.
Definition 1.25. A monoidal category is strict if the morphisms
αA,B,C, λA and ρA are all identities.
Later we will sketch the proof of the following theorem.
Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B)⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 0.10. A category is skeletal when any two isomorphic
objects are equal.

Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.

34 / 3131.3 Coherence

Some monoidal categories have a particularly simple structure.
Definition 1.25. A monoidal category is strict if the morphisms
αA,B,C, λA and ρA are all identities.
Later we will sketch the proof of the following theorem.
Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

This seems like a very useful thing. But beware! This is not enough:
(A ⊗ B)⊗ C = A ⊗ (B ⊗ C) I ⊗ A = A = A ⊗ I

In particular, it does not ensure that (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).
The identity (A ⊗ B)⊗ C id A ⊗ (B ⊗ C) might not be natural!

Definition 0.10. A category is skeletal when any two isomorphic
objects are equal.
Theorem. Not every monoidal category is monoidally equivalent to
a strict monoidal skeletal category.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

35 / 3131.3 Coherence

For the case of FHilb, everything works nicely.

Definition 0.36. The skeletal category MatC is defined as follows:

• objects are natural numbers 0,1,2, . . .;

• morphisms n m are matrices of complex numbers with m
rows and n columns;

• composition is matrix multiplication;

• identities n idn n are identity matrices.

Definition 1.26. The following structure makes MatC strict monoidal:

• tensor product is given on objects by n ⊗ m = nm, and on
morphisms by Kronecker product of matrices (0.32);

• the monoidal unit is the natural number 1;

• associators, left unitors and right unitors are identity matrices.

36 / 3131.3 Coherence
Definition 1.27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A)⊗ F(B) F(A ⊗ B)
F0 : I F(I)

making the following diagrams commute:(
F(A)⊗ F(B)

)
⊗ F(C) F(A)⊗

(
F(B)⊗ F(C)

)
F(A ⊗ B)⊗ F(C) F(A)⊗ F(B ⊗ C)

F
(
(A ⊗ B)⊗ C

)
F
(
A ⊗ (B ⊗ C)

)

αF(A),F(B),F(C)

(F2)A,B ⊗ idF(C) idF(A) ⊗ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)

F(A)⊗ I F(A)

F(A)⊗ F(I) F(A ⊗ I)

ρF(A)

idF(A) ⊗ F0 F(ρ−1
A)

(F2)A,I

I ⊗ F(A) F(A)

F(I)⊗ F(A) F(I ⊗ A)

λF(A)

F0 ⊗ idF(A) F(λ−1
A)

(F2)I,A

36 / 3131.3 Coherence
Definition 1.27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A)⊗ F(B) F(A ⊗ B)
F0 : I F(I)

making the following diagrams commute:(
F(A)⊗ F(B)

)
⊗ F(C) F(A)⊗

(
F(B)⊗ F(C)

)
F(A ⊗ B)⊗ F(C) F(A)⊗ F(B ⊗ C)

F
(
(A ⊗ B)⊗ C

)
F
(
A ⊗ (B ⊗ C)

)

αF(A),F(B),F(C)

(F2)A,B ⊗ idF(C) idF(A) ⊗ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)

F(A)⊗ I F(A)

F(A)⊗ F(I) F(A ⊗ I)

ρF(A)

idF(A) ⊗ F0 F(ρ−1
A)

(F2)A,I

I ⊗ F(A) F(A)

F(I)⊗ F(A) F(I ⊗ A)

λF(A)

F0 ⊗ idF(A) F(λ−1
A)

(F2)I,A

36 / 3131.3 Coherence
Definition 1.27. A monoidal functor F : C D between monoidal
categories is a functor equipped with natural isomorphisms

(F2)A,B : F(A)⊗ F(B) F(A ⊗ B)
F0 : I F(I)

making the following diagrams commute:(
F(A)⊗ F(B)

)
⊗ F(C) F(A)⊗

(
F(B)⊗ F(C)

)
F(A ⊗ B)⊗ F(C) F(A)⊗ F(B ⊗ C)

F
(
(A ⊗ B)⊗ C

)
F
(
A ⊗ (B ⊗ C)

)

αF(A),F(B),F(C)

(F2)A,B ⊗ idF(C) idF(A) ⊗ (F2)B,C

(F2)A⊗B,C (F2)A,B⊗C

F(αA,B,C)

F(A)⊗ I F(A)

F(A)⊗ F(I) F(A ⊗ I)

ρF(A)

idF(A) ⊗ F0 F(ρ−1
A)

(F2)A,I

I ⊗ F(A) F(A)

F(I)⊗ F(A) F(I ⊗ A)

λF(A)

F0 ⊗ idF(A) F(λ−1
A)

(F2)I,A

37 / 3131.3 Coherence

Definition 1.33. A monoidal equivalence is a monoidal functor that
is an equivalence as a functor.

Theorem. There is a monoidal equivalence R : MatC FHilb.

Proof. We define R like this:

R(n) := Cn

R(n f m) := f as a linear map

(R2)m,n : |i⟩ ⊗ |j⟩ 7→ |ni + j⟩
R0 : 1 7→ 1

This is full, faithful and essentially surjective, and satisfies the
monoidal functor conditions.

37 / 3131.3 Coherence

Definition 1.33. A monoidal equivalence is a monoidal functor that
is an equivalence as a functor.

Theorem. There is a monoidal equivalence R : MatC FHilb.

Proof. We define R like this:

R(n) := Cn

R(n f m) := f as a linear map

(R2)m,n : |i⟩ ⊗ |j⟩ 7→ |ni + j⟩
R0 : 1 7→ 1

This is full, faithful and essentially surjective, and satisfies the
monoidal functor conditions.

37 / 3131.3 Coherence

Definition 1.33. A monoidal equivalence is a monoidal functor that
is an equivalence as a functor.

Theorem. There is a monoidal equivalence R : MatC FHilb.

Proof. We define R like this:

R(n) := Cn

R(n f m) := f as a linear map

(R2)m,n : |i⟩ ⊗ |j⟩ 7→ |ni + j⟩
R0 : 1 7→ 1

This is full, faithful and essentially surjective, and satisfies the
monoidal functor conditions.

37 / 3131.3 Coherence

Definition 1.33. A monoidal equivalence is a monoidal functor that
is an equivalence as a functor.

Theorem. There is a monoidal equivalence R : MatC FHilb.

Proof. We define R like this:

R(n) := Cn

R(n f m) := f as a linear map

(R2)m,n : |i⟩ ⊗ |j⟩ 7→ |ni + j⟩
R0 : 1 7→ 1

This is full, faithful and essentially surjective, and satisfies the
monoidal functor conditions.

38 / 3131.3 Coherence

We now prove the strictification theorem.

Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

Proof sketch. Let C be a monoidal category, and define D like this:
• an object is F : C C equipped with a natural isomorphism

F(A)⊗ B
γA,B F(A ⊗ B);

• a morphism (F, γ) (F′, γ′) is θ : F F′ such that:

F(A)⊗ B F(A ⊗ B)

F′(A)⊗ B F′(A ⊗ B)

γA,B

θA ⊗ idB

γ′A,B

θA⊗B

38 / 3131.3 Coherence

We now prove the strictification theorem.

Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

Proof sketch. Let C be a monoidal category, and define D like this:
• an object is F : C C equipped with a natural isomorphism

F(A)⊗ B
γA,B F(A ⊗ B);

• a morphism (F, γ) (F′, γ′) is θ : F F′ such that:

F(A)⊗ B F(A ⊗ B)

F′(A)⊗ B F′(A ⊗ B)

γA,B

θA ⊗ idB

γ′A,B

θA⊗B

38 / 3131.3 Coherence

We now prove the strictification theorem.

Theorem 1.38. Every monoidal category is monoidally equivalent
to a strict monoidal category.

Proof sketch. Let C be a monoidal category, and define D like this:
• an object is F : C C equipped with a natural isomorphism

F(A)⊗ B
γA,B F(A ⊗ B);

• a morphism (F, γ) (F′, γ′) is θ : F F′ such that:

F(A)⊗ B F(A ⊗ B)

F′(A)⊗ B F′(A ⊗ B)

γA,B

θA ⊗ idB

γ′A,B

θA⊗B

39 / 3131.3 Coherence

Proof sketch (continued).

• the tensor product is (F, γ)⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A))⊗ B
γF′(A),B F(F′(A)⊗ B)

F(γ′A,B) F(F′(A ⊗ B)).

We can then calculate these products:(
(F, γ)⊗ (F′, γ′)

)
⊗ (F′′, γ′′)

=

(F, γ)⊗
(
(F′, γ′)⊗ (F′′, γ′′)

)
They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.

39 / 3131.3 Coherence

Proof sketch (continued).

• the tensor product is (F, γ)⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A))⊗ B
γF′(A),B F(F′(A)⊗ B)

F(γ′A,B) F(F′(A ⊗ B)).

We can then calculate these products:(
(F, γ)⊗ (F′, γ′)

)
⊗ (F′′, γ′′)

=

(F, γ)⊗
(
(F′, γ′)⊗ (F′′, γ′′)

)

They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.

39 / 3131.3 Coherence

Proof sketch (continued).

• the tensor product is (F, γ)⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A))⊗ B
γF′(A),B F(F′(A)⊗ B)

F(γ′A,B) F(F′(A ⊗ B)).

We can then calculate these products:(
(F, γ)⊗ (F′, γ′)

)
⊗ (F′′, γ′′) = (F, γ)⊗

(
(F′, γ′)⊗ (F′′, γ′′)

)
They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.

39 / 3131.3 Coherence

Proof sketch (continued).

• the tensor product is (F, γ)⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A))⊗ B
γF′(A),B F(F′(A)⊗ B)

F(γ′A,B) F(F′(A ⊗ B)).

We can then calculate these products:(
(F, γ)⊗ (F′, γ′)

)
⊗ (F′′, γ′′) = (F, γ)⊗

(
(F′, γ′)⊗ (F′′, γ′′)

)
They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.

39 / 3131.3 Coherence

Proof sketch (continued).

• the tensor product is (F, γ)⊗ (F′, γ′) := (F ◦ F′, δ), where δ is

F(F′(A))⊗ B
γF′(A),B F(F′(A)⊗ B)

F(γ′A,B) F(F′(A ⊗ B)).

We can then calculate these products:(
(F, γ)⊗ (F′, γ′)

)
⊗ (F′′, γ′′) = (F, γ)⊗

(
(F′, γ′)⊗ (F′′, γ′′)

)
They are equal, and indeed the category is strict monoidal.

Now build a monoidal functor L : C D in the following way:

L(A) := (A ⊗−, αA,−,−)

You can show that L is full and faithful.

Finally, restrict D to the strict monoidal subcategory containing
objects isomorphic to those in the image of L. Then L is a monoidal
equivalence of C with a strict monoidal category.

40 / 3131.3 Coherence

The final topic in this chapter is coherence: any well-formed
equation built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗ and ◦ holds.

An equation is well-formed when it does not make use of any
‘accidental equalities’ of objects. For example, suppose that
(A ⊗ A)⊗ A = A ⊗ (A ⊗ A) = A. Then

αA,A,A = idA

is not well-formed.

To make this precise, let a bracketing be a fixed way to bracket a list
of objects of a given length, including empty brackets. For example,
we could define the following bracketings v, w:

v(A,B,C,D) = ((A ⊗ B)⊗ ())⊗ (C ⊗ D)
w(A,B,C,D) =

(
()⊗ (A ⊗ (B ⊗ C))

)
⊗ (()⊗ (()⊗ D)))

Then we can consider transformations of bracketings θ, θ′ : ν ⇒ µ.

40 / 3131.3 Coherence

The final topic in this chapter is coherence: any well-formed
equation built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗ and ◦ holds.

An equation is well-formed when it does not make use of any
‘accidental equalities’ of objects. For example, suppose that
(A ⊗ A)⊗ A = A ⊗ (A ⊗ A) = A. Then

αA,A,A = idA

is not well-formed.

To make this precise, let a bracketing be a fixed way to bracket a list
of objects of a given length, including empty brackets. For example,
we could define the following bracketings v, w:

v(A,B,C,D) = ((A ⊗ B)⊗ ())⊗ (C ⊗ D)
w(A,B,C,D) =

(
()⊗ (A ⊗ (B ⊗ C))

)
⊗ (()⊗ (()⊗ D)))

Then we can consider transformations of bracketings θ, θ′ : ν ⇒ µ.

40 / 3131.3 Coherence

The final topic in this chapter is coherence: any well-formed
equation built from α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗ and ◦ holds.

An equation is well-formed when it does not make use of any
‘accidental equalities’ of objects. For example, suppose that
(A ⊗ A)⊗ A = A ⊗ (A ⊗ A) = A. Then

αA,A,A = idA

is not well-formed.

To make this precise, let a bracketing be a fixed way to bracket a list
of objects of a given length, including empty brackets. For example,
we could define the following bracketings v, w:

v(A,B,C,D) = ((A ⊗ B)⊗ ())⊗ (C ⊗ D)
w(A,B,C,D) =

(
()⊗ (A ⊗ (B ⊗ C))

)
⊗ (()⊗ (()⊗ D)))

Then we can consider transformations of bracketings θ, θ′ : ν ⇒ µ.

41 / 3131.3 Coherence
We now give a proof of the coherence theorem.

Theorem 1.39 (Coherence for monoidal categories). Let v,w be
bracketings; then any two transformations θ, θ′ : v ⇒ w built from
α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . ,Z))

using the fact that L is a monoidal functor, and similarly for w.
Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . ,Z)) L(w(A, . . . ,Z))

θ(L(A),...,L(Z))

Lv
-1

L(θ(A,...,Z))

Lw

But θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id! So L(θ(A,...,Z)) = L(θ′(A,...,Z)), and
hence θ(A,...,Z) = θ′(A,...,Z), since L is faithful.

41 / 3131.3 Coherence
We now give a proof of the coherence theorem.

Theorem 1.39 (Coherence for monoidal categories). Let v,w be
bracketings; then any two transformations θ, θ′ : v ⇒ w built from
α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . ,Z))

using the fact that L is a monoidal functor, and similarly for w.

Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . ,Z)) L(w(A, . . . ,Z))

θ(L(A),...,L(Z))

Lv
-1

L(θ(A,...,Z))

Lw

But θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id! So L(θ(A,...,Z)) = L(θ′(A,...,Z)), and
hence θ(A,...,Z) = θ′(A,...,Z), since L is faithful.

41 / 3131.3 Coherence
We now give a proof of the coherence theorem.

Theorem 1.39 (Coherence for monoidal categories). Let v,w be
bracketings; then any two transformations θ, θ′ : v ⇒ w built from
α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . ,Z))

using the fact that L is a monoidal functor, and similarly for w.
Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . ,Z)) L(w(A, . . . ,Z))

θ(L(A),...,L(Z))

Lv
-1

L(θ(A,...,Z))

Lw

But θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id! So L(θ(A,...,Z)) = L(θ′(A,...,Z)), and
hence θ(A,...,Z) = θ′(A,...,Z), since L is faithful.

41 / 3131.3 Coherence
We now give a proof of the coherence theorem.

Theorem 1.39 (Coherence for monoidal categories). Let v,w be
bracketings; then any two transformations θ, θ′ : v ⇒ w built from
α, α−1, λ, λ−1, ρ, ρ−1, id, ⊗, and ◦ are equal.

Proof. We can define a canonical morphism

v(L(A), . . . , L(Z)) Lv L(v(A, . . . ,Z))

using the fact that L is a monoidal functor, and similarly for w.
Then the following diagram commutes, for both θ and θ′:

v(L(A), . . . , L(Z)) w(L(A), . . . , L(Z))

L(v(A, . . . ,Z)) L(w(A, . . . ,Z))

θ(L(A),...,L(Z))

Lv
-1

L(θ(A,...,Z))

Lw

But θ(L(A),...,L(Z)) = θ′(L(A),...,L(Z)) = id! So L(θ(A,...,Z)) = L(θ′(A,...,Z)), and
hence θ(A,...,Z) = θ′(A,...,Z), since L is faithful.

42 / 313

Chapter 2
Linear structure

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

43 / 3132.1 Scalars

From the monoidal structure of Hilb, we can extract some of the
structure of the complex numbers.

• As a set, we can find them as Hilb(C,C) — the endomorphisms
of the unit object.

• Multiplication of complex numbers is given by composition.

• We can verify commutativity, by checking that ab = ba for all
elements of Hilb(C,C).

Using this as inspiration, we make the following definition.

Definition 2.1. In a monoidal category, the scalars are the
morphisms I I.

We can use this to replicate linear algebra in any monoidal category.

44 / 3132.1 Scalars
We start with the following proof.

Lemma 2.3. In a monoidal category, the scalars are commutative.

Proof. Consider the following diagram, for any two scalars I a,b I:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a ⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a ⊗ idI idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI

The four side cells use naturality of λI and ρI, the bottom cell
commutes by the interchange law, and the vertical arrows use
coherence. Hence we have ab = ba.

44 / 3132.1 Scalars
We start with the following proof.

Lemma 2.3. In a monoidal category, the scalars are commutative.

Proof. Consider the following diagram, for any two scalars I a,b I:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a ⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a ⊗ idI idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI

The four side cells use naturality of λI and ρI, the bottom cell
commutes by the interchange law, and the vertical arrows use
coherence. Hence we have ab = ba.

45 / 3132.1 Scalars

We draw a scalar I a I as a circle:

a (2)

Commutativity of scalars then has the following graphical
representation:

a

b

=
b

a

(3)

The diagrams are isotopic, so it follows from correctness of the
graphical calculus that scalars are commutative.

Again, a nontrivial property of monoidal categories follows
straightforwardly from the graphical calculus.

45 / 3132.1 Scalars

We draw a scalar I a I as a circle:

a (2)

Commutativity of scalars then has the following graphical
representation:

a

b

=
b

a

(3)

The diagrams are isotopic, so it follows from correctness of the
graphical calculus that scalars are commutative.

Again, a nontrivial property of monoidal categories follows
straightforwardly from the graphical calculus.

45 / 3132.1 Scalars

We draw a scalar I a I as a circle:

a (2)

Commutativity of scalars then has the following graphical
representation:

a

b

=
b

a

(3)

The diagrams are isotopic, so it follows from correctness of the
graphical calculus that scalars are commutative.

Again, a nontrivial property of monoidal categories follows
straightforwardly from the graphical calculus.

46 / 3132.1 Scalars

For a linear map H f J and a number c ∈ C, we can multiply to
form H c·f J. We can mimic this in any monoidal category.

Definition 2.5. For a scalar I a I and a morphism A f−→ B, the left
scalar multiplication A a•f B is the following composite:

A B

I ⊗ A I ⊗ B

a • f

λ−1
A λB

a ⊗ f

Graphically, it looks like this:

s f

46 / 3132.1 Scalars

For a linear map H f J and a number c ∈ C, we can multiply to
form H c·f J. We can mimic this in any monoidal category.

Definition 2.5. For a scalar I a I and a morphism A f−→ B, the left
scalar multiplication A a•f B is the following composite:

A B

I ⊗ A I ⊗ B

a • f

λ−1
A λB

a ⊗ f

Graphically, it looks like this:

s f

46 / 3132.1 Scalars

For a linear map H f J and a number c ∈ C, we can multiply to
form H c·f J. We can mimic this in any monoidal category.

Definition 2.5. For a scalar I a I and a morphism A f−→ B, the left
scalar multiplication A a•f B is the following composite:

A B

I ⊗ A I ⊗ B

a • f

λ−1
A λB

a ⊗ f

Graphically, it looks like this:

s f

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;

(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;

(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

47 / 3132.1 Scalars
This satisfies many familiar properties.

Lemma 2.6 (Scalar multiplication). In a monoidal category, the
following properties hold for scalars I a,b−−→ I and morphisms A f−→ B,
B g−→ C:

(a) idI • f = f ;
(b) a • b = a ◦ b;

(c) a • (b • f) = (a • b) • f ;
(d) (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f).

Proof. Easy to see using graphical calculus.

Example 2.7. Scalar multiplication looks like this for our examples.

• In Hilb: if a ∈ C is a scalar and H f K a morphism, then
H a•f K is the morphism v 7→ af(v).

• In Set, scalar multiplication is trivial: if A f B is a function,
then id1 • f = f is again the same function.

• In Rel: for any relation A R B, true • R = R, and false • R = ∅.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

48 / 3132.2 Superposition

Given two linear maps H f ,g J, we can construct their sum H f+g J.
This is how we form superpositions of quantum states.

There is also a zero linear map H
0H,J J which is the unit for +.

We will now think about how to model this categorically.

Definition 0.23 (Terminal object, initial object). An object 1 is
terminal if for any A there is a unique morphism A 1. An object 0
is initial if for any A there is a unique morphism 0 A.

Definition 2.8 (Zero object, zero morphism). An object 0 is a zero
object when it is both initial and terminal, a zero morphism A

0A,B B
is the unique morphism A 0 B factoring through a zero object.

Lemma 2.9. Initial, terminal and zero objects are unique up to
unique isomorphism.

49 / 3132.2 Superposition

Lemma 2.10. Composition with a zero morphism always gives a
zero morphism; that is, for any objects A, B and C, and any
morphism A f B, we have the following:

f ◦ 0C,A = 0C,B 0B,C ◦ f = 0A,C

Example 2.11. Of our example categories, Hilb and Rel have zero
objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and
the zero morphisms are the linear maps sending all vectors to
the zero vector.

• In Rel, the empty set is a zero object, and the zero morphisms
are the empty relations.

• In Set, the empty set is an initial object, and the one-element
set is a terminal object. As they are not isomorphic, Set cannot
have a zero object.

49 / 3132.2 Superposition

Lemma 2.10. Composition with a zero morphism always gives a
zero morphism; that is, for any objects A, B and C, and any
morphism A f B, we have the following:

f ◦ 0C,A = 0C,B 0B,C ◦ f = 0A,C

Example 2.11. Of our example categories, Hilb and Rel have zero
objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and
the zero morphisms are the linear maps sending all vectors to
the zero vector.

• In Rel, the empty set is a zero object, and the zero morphisms
are the empty relations.

• In Set, the empty set is an initial object, and the one-element
set is a terminal object. As they are not isomorphic, Set cannot
have a zero object.

49 / 3132.2 Superposition

Lemma 2.10. Composition with a zero morphism always gives a
zero morphism; that is, for any objects A, B and C, and any
morphism A f B, we have the following:

f ◦ 0C,A = 0C,B 0B,C ◦ f = 0A,C

Example 2.11. Of our example categories, Hilb and Rel have zero
objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and
the zero morphisms are the linear maps sending all vectors to
the zero vector.

• In Rel, the empty set is a zero object, and the zero morphisms
are the empty relations.

• In Set, the empty set is an initial object, and the one-element
set is a terminal object. As they are not isomorphic, Set cannot
have a zero object.

49 / 3132.2 Superposition

Lemma 2.10. Composition with a zero morphism always gives a
zero morphism; that is, for any objects A, B and C, and any
morphism A f B, we have the following:

f ◦ 0C,A = 0C,B 0B,C ◦ f = 0A,C

Example 2.11. Of our example categories, Hilb and Rel have zero
objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and
the zero morphisms are the linear maps sending all vectors to
the zero vector.

• In Rel, the empty set is a zero object, and the zero morphisms
are the empty relations.

• In Set, the empty set is an initial object, and the one-element
set is a terminal object. As they are not isomorphic, Set cannot
have a zero object.

49 / 3132.2 Superposition

Lemma 2.10. Composition with a zero morphism always gives a
zero morphism; that is, for any objects A, B and C, and any
morphism A f B, we have the following:

f ◦ 0C,A = 0C,B 0B,C ◦ f = 0A,C

Example 2.11. Of our example categories, Hilb and Rel have zero
objects, whereas Set does not.

• In Hilb, the 0-dimensional vector space is a zero object, and
the zero morphisms are the linear maps sending all vectors to
the zero vector.

• In Rel, the empty set is a zero object, and the zero morphisms
are the empty relations.

• In Set, the empty set is an initial object, and the one-element
set is a terminal object. As they are not isomorphic, Set cannot
have a zero object.

50 / 3132.2 Superposition
Definition 2.12. An operation (f , g) 7→ f + g, that is defined for
morphisms A f ,g B between any objects A and B, is a superposition
rule if it has the following properties:

• Commutativity:
f + g = g + f

• Associativity:
(f + g) + h = f + (g + h)

• Units: for all A, B there is a unit morphism A
uA,B B such that:

f + uA,B = f

• Addition is compatible with composition:
(g + g′) ◦ f = (g ◦ f) + (g′ ◦ f)
g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′)

• Units are compatible with composition:
uB,C ◦ uA,B = uA,C

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.

• In Hilb the superposition rule is addition of linear maps, given
by (f + g)(v) = f(v) + g(v).

• In Rel, the superposition rule is given by union of subsets:
R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).

• In Rel, the superposition rule is given by union of subsets:
R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).
• In Rel, the superposition rule is given by union of subsets:

R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).
• In Rel, the superposition rule is given by union of subsets:

R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).
• In Rel, the superposition rule is given by union of subsets:

R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).
• In Rel, the superposition rule is given by union of subsets:

R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

51 / 3132.2 Superposition
In category theory, a superposition rule is sometimes called an
enrichment in commutative monoids.

Example 2.13. Hilb and Rel have a superposition rule; Set doesn’t.
• In Hilb the superposition rule is addition of linear maps, given

by (f + g)(v) = f(v) + g(v).
• In Rel, the superposition rule is given by union of subsets:

R+ S = R∪ S. In the matrix representation of relations (2), this
corresponds to entrywise disjunction.

• Set cannot be given a superposition rule. If it had one there
would be a unit morphism A

uA,∅ ∅, but there are no such
functions for nonempty sets A.

Lemma 2.14. In a category with a zero object and a superposition
rule, uA,B = 0A,B for any objects A and B.

Proof. Since units are compatible with composition, uA,B = u0,B ◦ uA,0.
But by definition of zero morphisms, this equals 0A,B.

We can see this is true for our example categories.

52 / 3132.2 Superposition

Lemma 2.15. If a monoidal category has a zero object and a
superposition rule, its scalars form a commutative semiring with an
absorbing zero:

(a + b)c = ac + bc
a(b + c) = ab + ac

a + b = b + a
a + 0 = a

a0 = 0 = 0a

Example 2.16. In Hilb and Rel we have the following semirings.

• In Hilb, the scalar semiring is the field C with its usual
multiplication and addition.

• In Rel, it is the Boolean semiring {true, false}, with
multiplication given by logical conjunction (AND) and addition
given by logical disjunction (OR).

52 / 3132.2 Superposition

Lemma 2.15. If a monoidal category has a zero object and a
superposition rule, its scalars form a commutative semiring with an
absorbing zero:

(a + b)c = ac + bc
a(b + c) = ab + ac

a + b = b + a
a + 0 = a

a0 = 0 = 0a

Example 2.16. In Hilb and Rel we have the following semirings.

• In Hilb, the scalar semiring is the field C with its usual
multiplication and addition.

• In Rel, it is the Boolean semiring {true, false}, with
multiplication given by logical conjunction (AND) and addition
given by logical disjunction (OR).

52 / 3132.2 Superposition

Lemma 2.15. If a monoidal category has a zero object and a
superposition rule, its scalars form a commutative semiring with an
absorbing zero:

(a + b)c = ac + bc
a(b + c) = ab + ac

a + b = b + a
a + 0 = a

a0 = 0 = 0a

Example 2.16. In Hilb and Rel we have the following semirings.

• In Hilb, the scalar semiring is the field C with its usual
multiplication and addition.

• In Rel, it is the Boolean semiring {true, false}, with
multiplication given by logical conjunction (AND) and addition
given by logical disjunction (OR).

52 / 3132.2 Superposition

Lemma 2.15. If a monoidal category has a zero object and a
superposition rule, its scalars form a commutative semiring with an
absorbing zero:

(a + b)c = ac + bc
a(b + c) = ab + ac

a + b = b + a
a + 0 = a

a0 = 0 = 0a

Example 2.16. In Hilb and Rel we have the following semirings.

• In Hilb, the scalar semiring is the field C with its usual
multiplication and addition.

• In Rel, it is the Boolean semiring {true, false}, with
multiplication given by logical conjunction (AND) and addition
given by logical disjunction (OR).

53 / 3132.2 Superposition
The ⊗ and + don’t necessarily interact well. But consider this lemma.

Lemma 2.30. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. First note that I ⊗ 0 is a zero object. Consider these maps:

0 I ⊗ 0 0 ⊗ 0
λ-1

0 0I,0 ⊗ id0

0 ⊗ 0 I ⊗ 0 0
00,I ⊗ id0 λ0

Composing in one direction we obtain a morphism of type 0 0,
necessarily the identity. The other composite is also the identity:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

This completes the proof.

53 / 3132.2 Superposition
The ⊗ and + don’t necessarily interact well. But consider this lemma.

Lemma 2.30. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. First note that I ⊗ 0 is a zero object. Consider these maps:

0 I ⊗ 0 0 ⊗ 0
λ-1

0 0I,0 ⊗ id0

0 ⊗ 0 I ⊗ 0 0
00,I ⊗ id0 λ0

Composing in one direction we obtain a morphism of type 0 0,
necessarily the identity. The other composite is also the identity:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

This completes the proof.

53 / 3132.2 Superposition
The ⊗ and + don’t necessarily interact well. But consider this lemma.

Lemma 2.30. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. First note that I ⊗ 0 is a zero object. Consider these maps:

0 I ⊗ 0 0 ⊗ 0
λ-1

0 0I,0 ⊗ id0

0 ⊗ 0 I ⊗ 0 0
00,I ⊗ id0 λ0

Composing in one direction we obtain a morphism of type 0 0,
necessarily the identity. The other composite is also the identity:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

This completes the proof.

53 / 3132.2 Superposition
The ⊗ and + don’t necessarily interact well. But consider this lemma.

Lemma 2.30. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. First note that I ⊗ 0 is a zero object. Consider these maps:

0 I ⊗ 0 0 ⊗ 0
λ-1

0 0I,0 ⊗ id0

0 ⊗ 0 I ⊗ 0 0
00,I ⊗ id0 λ0

Composing in one direction we obtain a morphism of type 0 0,
necessarily the identity.

The other composite is also the identity:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

This completes the proof.

53 / 3132.2 Superposition
The ⊗ and + don’t necessarily interact well. But consider this lemma.

Lemma 2.30. In a monoidal category with a zero object, 0 ⊗ 0 ≃ 0.

Proof. First note that I ⊗ 0 is a zero object. Consider these maps:

0 I ⊗ 0 0 ⊗ 0
λ-1

0 0I,0 ⊗ id0

0 ⊗ 0 I ⊗ 0 0
00,I ⊗ id0 λ0

Composing in one direction we obtain a morphism of type 0 0,
necessarily the identity. The other composite is also the identity:

0 ⊗ 0 I ⊗ 0

0

I ⊗ 00 ⊗ 0

00,I ⊗ id0

λ0

λ−1
0

0I,0 ⊗ id0

idI⊗0

00,0 ⊗ id0

= id0 ⊗ id0

= id0⊗0

This completes the proof.

54 / 3132.2 Superposition

Given Hilbert spaces H and J, we can form their direct sum H ⊕ J.
This comes equipped with canonical maps into and out of H and J.
It forms an instance of a biproduct.

Definition 2.18. In a category with a zero object and a
superposition rule, the biproduct of A and B is an object A ⊕ B
equipped with morphisms

A iA A ⊕ B A ⊕ B pA A
B iB A ⊕ B A ⊕ B pB B

satisfying the following equations:

idA = pA ◦ iA 0A,B = pB ◦ iA
idB = pB ◦ iB 0B,A = pA ◦ iB

idA⊕B = iA ◦ pA + iB ◦ pB

This generalizes to an arbitrary finite number of objects.

54 / 3132.2 Superposition

Given Hilbert spaces H and J, we can form their direct sum H ⊕ J.
This comes equipped with canonical maps into and out of H and J.
It forms an instance of a biproduct.

Definition 2.18. In a category with a zero object and a
superposition rule, the biproduct of A and B is an object A ⊕ B
equipped with morphisms

A iA A ⊕ B A ⊕ B pA A
B iB A ⊕ B A ⊕ B pB B

satisfying the following equations:

idA = pA ◦ iA 0A,B = pB ◦ iA
idB = pB ◦ iB 0B,A = pA ◦ iB

idA⊕B = iA ◦ pA + iB ◦ pB

This generalizes to an arbitrary finite number of objects.

54 / 3132.2 Superposition

Given Hilbert spaces H and J, we can form their direct sum H ⊕ J.
This comes equipped with canonical maps into and out of H and J.
It forms an instance of a biproduct.

Definition 2.18. In a category with a zero object and a
superposition rule, the biproduct of A and B is an object A ⊕ B
equipped with morphisms

A iA A ⊕ B A ⊕ B pA A
B iB A ⊕ B A ⊕ B pB B

satisfying the following equations:

idA = pA ◦ iA 0A,B = pB ◦ iA
idB = pB ◦ iB 0B,A = pA ◦ iB

idA⊕B = iA ◦ pA + iB ◦ pB

This generalizes to an arbitrary finite number of objects.

54 / 3132.2 Superposition

Given Hilbert spaces H and J, we can form their direct sum H ⊕ J.
This comes equipped with canonical maps into and out of H and J.
It forms an instance of a biproduct.

Definition 2.18. In a category with a zero object and a
superposition rule, the biproduct of A and B is an object A ⊕ B
equipped with morphisms

A iA A ⊕ B A ⊕ B pA A
B iB A ⊕ B A ⊕ B pB B

satisfying the following equations:

idA = pA ◦ iA 0A,B = pB ◦ iA
idB = pB ◦ iB 0B,A = pA ◦ iB

idA⊕B = iA ◦ pA + iB ◦ pB

This generalizes to an arbitrary finite number of objects.

55 / 3132.2 Superposition
Lemma 2.19. If A ⊕ B is a biproduct with structure maps

A iA A ⊕ B iB B A pA A ⊕ B pB B

then it is also a product p1, p2, and a coproduct with i1, i2.

Proof. We will verify the universal property for products. Let X f A
and X g B be arbitrary morphisms. Make the following definition:(

f
g

)
:= X iA◦f+iB◦g A ⊕ B

Then we compute as follows (and similarly for pB):

pA ◦
(

f
g

)
= pA ◦ (iA ◦ f + iB ◦ g)

= pA ◦ iA ◦ f + pA ◦ iB ◦ g = f + 0 = f

Now suppose X x A ⊕ B satisfies pA ◦ x = f and pB ◦ x = g:

x = (iA ◦ pA + iB ◦ pB) ◦ x = iA ◦ pA ◦ x + iB ◦ pB ◦ x = iA ◦ f + iB ◦ g

So x is unique satisfying these constraints. The coproduct proof is
the same, just with all the arrows reversed.

55 / 3132.2 Superposition
Lemma 2.19. If A ⊕ B is a biproduct with structure maps

A iA A ⊕ B iB B A pA A ⊕ B pB B

then it is also a product p1, p2, and a coproduct with i1, i2.

Proof. We will verify the universal property for products. Let X f A
and X g B be arbitrary morphisms. Make the following definition:(

f
g

)
:= X iA◦f+iB◦g A ⊕ B

Then we compute as follows (and similarly for pB):

pA ◦
(

f
g

)
= pA ◦ (iA ◦ f + iB ◦ g)

= pA ◦ iA ◦ f + pA ◦ iB ◦ g = f + 0 = f

Now suppose X x A ⊕ B satisfies pA ◦ x = f and pB ◦ x = g:

x = (iA ◦ pA + iB ◦ pB) ◦ x = iA ◦ pA ◦ x + iB ◦ pB ◦ x = iA ◦ f + iB ◦ g

So x is unique satisfying these constraints. The coproduct proof is
the same, just with all the arrows reversed.

55 / 3132.2 Superposition
Lemma 2.19. If A ⊕ B is a biproduct with structure maps

A iA A ⊕ B iB B A pA A ⊕ B pB B

then it is also a product p1, p2, and a coproduct with i1, i2.

Proof. We will verify the universal property for products. Let X f A
and X g B be arbitrary morphisms. Make the following definition:(

f
g

)
:= X iA◦f+iB◦g A ⊕ B

Then we compute as follows (and similarly for pB):

pA ◦
(

f
g

)
= pA ◦ (iA ◦ f + iB ◦ g)

= pA ◦ iA ◦ f + pA ◦ iB ◦ g = f + 0 = f

Now suppose X x A ⊕ B satisfies pA ◦ x = f and pB ◦ x = g:

x = (iA ◦ pA + iB ◦ pB) ◦ x = iA ◦ pA ◦ x + iB ◦ pB ◦ x = iA ◦ f + iB ◦ g

So x is unique satisfying these constraints. The coproduct proof is
the same, just with all the arrows reversed.

55 / 3132.2 Superposition
Lemma 2.19. If A ⊕ B is a biproduct with structure maps

A iA A ⊕ B iB B A pA A ⊕ B pB B

then it is also a product p1, p2, and a coproduct with i1, i2.

Proof. We will verify the universal property for products. Let X f A
and X g B be arbitrary morphisms. Make the following definition:(

f
g

)
:= X iA◦f+iB◦g A ⊕ B

Then we compute as follows (and similarly for pB):

pA ◦
(

f
g

)
= pA ◦ (iA ◦ f + iB ◦ g)

= pA ◦ iA ◦ f + pA ◦ iB ◦ g = f + 0 = f

Now suppose X x A ⊕ B satisfies pA ◦ x = f and pB ◦ x = g:

x = (iA ◦ pA + iB ◦ pB) ◦ x = iA ◦ pA ◦ x + iB ◦ pB ◦ x = iA ◦ f + iB ◦ g

So x is unique satisfying these constraints. The coproduct proof is
the same, just with all the arrows reversed.

55 / 3132.2 Superposition
Lemma 2.19. If A ⊕ B is a biproduct with structure maps

A iA A ⊕ B iB B A pA A ⊕ B pB B

then it is also a product p1, p2, and a coproduct with i1, i2.

Proof. We will verify the universal property for products. Let X f A
and X g B be arbitrary morphisms. Make the following definition:(

f
g

)
:= X iA◦f+iB◦g A ⊕ B

Then we compute as follows (and similarly for pB):

pA ◦
(

f
g

)
= pA ◦ (iA ◦ f + iB ◦ g)

= pA ◦ iA ◦ f + pA ◦ iB ◦ g = f + 0 = f

Now suppose X x A ⊕ B satisfies pA ◦ x = f and pB ◦ x = g:

x = (iA ◦ pA + iB ◦ pB) ◦ x = iA ◦ pA ◦ x + iB ◦ pB ◦ x = iA ◦ f + iB ◦ g

So x is unique satisfying these constraints. The coproduct proof is
the same, just with all the arrows reversed.

56 / 3132.2 Superposition
Since they are a categorical product, biproducts aren’t a good
choice of monoidal product if we want to generalize quantum
theory: all joint states would be product states.

However, biproducts are perfect for modelling classical information.
Later in the course we will see this a lot.

Let’s see what biproducts look like in our example categories.

Example 2.20. Both Hilb and Rel have all finite biproducts; Set
has no superposition rule so can’t have biproducts.

• In Hilb, the direct sum of Hilbert spaces provides biproducts.
Projections pH : H ⊕ K H and pK : H ⊕ K K are given by
(v,w) 7→ v and (v,w) 7→ w. Injections iH : H H ⊕ K and
iK : K H ⊕ K are given by v 7→ (v,0) and w 7→ (0,w).

• In Rel, the disjoint union A ⊔ B of sets provides biproducts.
Projections A ⊔ B A and A ⊔ B B are given by a ∼ a and
b ∼ b. Injections A A ⊔ B and B A ⊔ B are given by a ∼ a
and b ∼ b.

56 / 3132.2 Superposition
Since they are a categorical product, biproducts aren’t a good
choice of monoidal product if we want to generalize quantum
theory: all joint states would be product states.

However, biproducts are perfect for modelling classical information.
Later in the course we will see this a lot.

Let’s see what biproducts look like in our example categories.

Example 2.20. Both Hilb and Rel have all finite biproducts; Set
has no superposition rule so can’t have biproducts.

• In Hilb, the direct sum of Hilbert spaces provides biproducts.
Projections pH : H ⊕ K H and pK : H ⊕ K K are given by
(v,w) 7→ v and (v,w) 7→ w. Injections iH : H H ⊕ K and
iK : K H ⊕ K are given by v 7→ (v,0) and w 7→ (0,w).

• In Rel, the disjoint union A ⊔ B of sets provides biproducts.
Projections A ⊔ B A and A ⊔ B B are given by a ∼ a and
b ∼ b. Injections A A ⊔ B and B A ⊔ B are given by a ∼ a
and b ∼ b.

56 / 3132.2 Superposition
Since they are a categorical product, biproducts aren’t a good
choice of monoidal product if we want to generalize quantum
theory: all joint states would be product states.

However, biproducts are perfect for modelling classical information.
Later in the course we will see this a lot.

Let’s see what biproducts look like in our example categories.

Example 2.20. Both Hilb and Rel have all finite biproducts; Set
has no superposition rule so can’t have biproducts.

• In Hilb, the direct sum of Hilbert spaces provides biproducts.
Projections pH : H ⊕ K H and pK : H ⊕ K K are given by
(v,w) 7→ v and (v,w) 7→ w. Injections iH : H H ⊕ K and
iK : K H ⊕ K are given by v 7→ (v,0) and w 7→ (0,w).

• In Rel, the disjoint union A ⊔ B of sets provides biproducts.
Projections A ⊔ B A and A ⊔ B B are given by a ∼ a and
b ∼ b. Injections A A ⊔ B and B A ⊔ B are given by a ∼ a
and b ∼ b.

56 / 3132.2 Superposition
Since they are a categorical product, biproducts aren’t a good
choice of monoidal product if we want to generalize quantum
theory: all joint states would be product states.

However, biproducts are perfect for modelling classical information.
Later in the course we will see this a lot.

Let’s see what biproducts look like in our example categories.

Example 2.20. Both Hilb and Rel have all finite biproducts; Set
has no superposition rule so can’t have biproducts.

• In Hilb, the direct sum of Hilbert spaces provides biproducts.
Projections pH : H ⊕ K H and pK : H ⊕ K K are given by
(v,w) 7→ v and (v,w) 7→ w. Injections iH : H H ⊕ K and
iK : K H ⊕ K are given by v 7→ (v,0) and w 7→ (0,w).

• In Rel, the disjoint union A ⊔ B of sets provides biproducts.
Projections A ⊔ B A and A ⊔ B B are given by a ∼ a and
b ∼ b. Injections A A ⊔ B and B A ⊔ B are given by a ∼ a
and b ∼ b.

56 / 3132.2 Superposition
Since they are a categorical product, biproducts aren’t a good
choice of monoidal product if we want to generalize quantum
theory: all joint states would be product states.

However, biproducts are perfect for modelling classical information.
Later in the course we will see this a lot.

Let’s see what biproducts look like in our example categories.

Example 2.20. Both Hilb and Rel have all finite biproducts; Set
has no superposition rule so can’t have biproducts.

• In Hilb, the direct sum of Hilbert spaces provides biproducts.
Projections pH : H ⊕ K H and pK : H ⊕ K K are given by
(v,w) 7→ v and (v,w) 7→ w. Injections iH : H H ⊕ K and
iK : K H ⊕ K are given by v 7→ (v,0) and w 7→ (0,w).

• In Rel, the disjoint union A ⊔ B of sets provides biproducts.
Projections A ⊔ B A and A ⊔ B B are given by a ∼ a and
b ∼ b. Injections A A ⊔ B and B A ⊔ B are given by a ∼ a
and b ∼ b.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g

= (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)

=
(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)

=
(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)

=
(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)

=
(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)

= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)

= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

57 / 3132.2 Superposition
The definition of biproducts seemed to rely on a chosen rule +.
But in fact, biproducts make superpositions unique.

Lemma 2.21 (Unique superposition). If a category has biproducts
and a zero object, then it has a unique superposition rule.

Proof. Write + and ⊞ for the two superposition rules, and use a
biproduct structure A i1,i2 A ⊕ A p1,p2 A. Then for A f ,g B:

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)
=

(
(f ◦ p1 ◦ i1)⊞ (f ◦ p1 ◦ i2)

)
+
(
(g ◦ p2 ◦ i1)⊞ (g ◦ p2 ◦ i2)

)
=

(
(f ◦ p1) ◦ (i1 ⊞ i2)

)
+
(
(g ◦ p2) ◦ (i1 ⊞ i2)

)
=

(
(f ◦ p1) + (g ◦ p2)

)
◦ (i1 ⊞ i2)

=
(
((f ◦ p1) + (g ◦ p2)) ◦ i1

)
⊞
(
((f ◦ p1) + (g ◦ p2)) ◦ i2

)
=

(
(f ◦ p1 ◦ i1) + (g ◦ p2 ◦ i1)

)
⊞
(
(f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i2)

)
= (f + 0A,B)⊞ (0A,B + g)
= f ⊞ g

Note we don’t actually use the full biproduct structure.

58 / 3132.2 Superposition

In a category with biproducts, we can use a matrix notation. For
example, given A f C, A g D, B h C and B j D, we can write

A ⊕ B C ⊕ D

(
f h
g j

)

as shorthand for the following map:

A ⊕ B
(iC ◦ f ◦ pA) + (iD ◦ g ◦ pA) + (iC ◦ h ◦ pB) + (iD ◦ j ◦ pB) C ⊕ D

Matrices with any finite number of rows and columns are defined in
a similar way.

59 / 3132.2 Superposition

Lemma 2.26 (Matrix representation). Every morphism⊕M
m=1 Am

f ⊕N
n=1 Bn has a matrix representation.

Proof. We construct a matrix representation explicitly, for clarity
just in the case when the source and target are biproducts of two
objects only:

f = idC⊕D ◦ f ◦ idA⊕B

=
(
(iC ◦ pC) + (iD ◦ pD)

)
◦ f ◦

(
(iA ◦ pA) + (iB ◦ pB)

)
= iC ◦ (pC ◦ f ◦ iA) ◦ pA + iC ◦ (pC ◦ f ◦ iB) ◦ pB

+ iD ◦ (pD ◦ f ◦ iA) ◦ pA + iD ◦ (pD ◦ f ◦ iB) ◦ pB

=

(
pC ◦ f ◦ iA pC ◦ f ◦ iB
pD ◦ f ◦ iA pD ◦ f ◦ iB

)
This gives an explicit matrix representation for f . The general case
is similar.

59 / 3132.2 Superposition

Lemma 2.26 (Matrix representation). Every morphism⊕M
m=1 Am

f ⊕N
n=1 Bn has a matrix representation.

Proof. We construct a matrix representation explicitly, for clarity
just in the case when the source and target are biproducts of two
objects only:

f = idC⊕D ◦ f ◦ idA⊕B

=
(
(iC ◦ pC) + (iD ◦ pD)

)
◦ f ◦

(
(iA ◦ pA) + (iB ◦ pB)

)
= iC ◦ (pC ◦ f ◦ iA) ◦ pA + iC ◦ (pC ◦ f ◦ iB) ◦ pB

+ iD ◦ (pD ◦ f ◦ iA) ◦ pA + iD ◦ (pD ◦ f ◦ iB) ◦ pB

=

(
pC ◦ f ◦ iA pC ◦ f ◦ iB
pD ◦ f ◦ iA pD ◦ f ◦ iB

)
This gives an explicit matrix representation for f . The general case
is similar.

59 / 3132.2 Superposition

Lemma 2.26 (Matrix representation). Every morphism⊕M
m=1 Am

f ⊕N
n=1 Bn has a matrix representation.

Proof. We construct a matrix representation explicitly, for clarity
just in the case when the source and target are biproducts of two
objects only:

f = idC⊕D ◦ f ◦ idA⊕B

=
(
(iC ◦ pC) + (iD ◦ pD)

)
◦ f ◦

(
(iA ◦ pA) + (iB ◦ pB)

)
= iC ◦ (pC ◦ f ◦ iA) ◦ pA + iC ◦ (pC ◦ f ◦ iB) ◦ pB

+ iD ◦ (pD ◦ f ◦ iA) ◦ pA + iD ◦ (pD ◦ f ◦ iB) ◦ pB

=

(
pC ◦ f ◦ iA pC ◦ f ◦ iB
pD ◦ f ◦ iA pD ◦ f ◦ iB

)
This gives an explicit matrix representation for f . The general case
is similar.

60 / 3132.2 Superposition

Composition of matrices is just like ordinary matrix composition,
except with morphism composition instead of multiplication:(

s p
q r

)
◦
(

f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)

Identities have a predictable matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)
Example 2.29. Consider matrices in our example categories.

• In Hilb, the matrix notation gives block matrices between
direct sums of Hilbert spaces, and ordinary matrix
multiplication.

• In Rel, we can think of relations as {false, true}–valued
matrices, as explored in Section 0.1.3.

60 / 3132.2 Superposition

Composition of matrices is just like ordinary matrix composition,
except with morphism composition instead of multiplication:(

s p
q r

)
◦
(

f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)
Identities have a predictable matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)

Example 2.29. Consider matrices in our example categories.

• In Hilb, the matrix notation gives block matrices between
direct sums of Hilbert spaces, and ordinary matrix
multiplication.

• In Rel, we can think of relations as {false, true}–valued
matrices, as explored in Section 0.1.3.

60 / 3132.2 Superposition

Composition of matrices is just like ordinary matrix composition,
except with morphism composition instead of multiplication:(

s p
q r

)
◦
(

f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)
Identities have a predictable matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)
Example 2.29. Consider matrices in our example categories.

• In Hilb, the matrix notation gives block matrices between
direct sums of Hilbert spaces, and ordinary matrix
multiplication.

• In Rel, we can think of relations as {false, true}–valued
matrices, as explored in Section 0.1.3.

60 / 3132.2 Superposition

Composition of matrices is just like ordinary matrix composition,
except with morphism composition instead of multiplication:(

s p
q r

)
◦
(

f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)
Identities have a predictable matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)
Example 2.29. Consider matrices in our example categories.

• In Hilb, the matrix notation gives block matrices between
direct sums of Hilbert spaces, and ordinary matrix
multiplication.

• In Rel, we can think of relations as {false, true}–valued
matrices, as explored in Section 0.1.3.

60 / 3132.2 Superposition

Composition of matrices is just like ordinary matrix composition,
except with morphism composition instead of multiplication:(

s p
q r

)
◦
(

f g
h j

)
=

(
(s ◦ f) + (p ◦ h) (s ◦ g) + (p ◦ j)
(q ◦ f) + (r ◦ h) (q ◦ g) + (r ◦ j)

)
Identities have a predictable matrix representation:

idA⊕B =

(
idA 0B,A
0A,B idB

)
Example 2.29. Consider matrices in our example categories.

• In Hilb, the matrix notation gives block matrices between
direct sums of Hilbert spaces, and ordinary matrix
multiplication.

• In Rel, we can think of relations as {false, true}–valued
matrices, as explored in Section 0.1.3.

61 / 3132.3 Dagger structure

In the definition of FHilb, something was a bit strange: we didn’t
use the inner products of the Hilbert space at all.

Inner products allow us to construct adjoint linear maps, with nice
properties:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

So taking the adjoint has the following properties:

• it’s contravariant and functorial;

• it’s the identity on objects;

• it’s involutive.

Also, we can recover the inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = ⟨1|v†(w(1))⟩ = ⟨v|w⟩

So † and ⟨−|−⟩ encode equivalent information.

61 / 3132.3 Dagger structure

In the definition of FHilb, something was a bit strange: we didn’t
use the inner products of the Hilbert space at all.

Inner products allow us to construct adjoint linear maps, with nice
properties:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

So taking the adjoint has the following properties:

• it’s contravariant and functorial;

• it’s the identity on objects;

• it’s involutive.

Also, we can recover the inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = ⟨1|v†(w(1))⟩ = ⟨v|w⟩

So † and ⟨−|−⟩ encode equivalent information.

61 / 3132.3 Dagger structure

In the definition of FHilb, something was a bit strange: we didn’t
use the inner products of the Hilbert space at all.

Inner products allow us to construct adjoint linear maps, with nice
properties:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

So taking the adjoint has the following properties:

• it’s contravariant and functorial;

• it’s the identity on objects;

• it’s involutive.

Also, we can recover the inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = ⟨1|v†(w(1))⟩ = ⟨v|w⟩

So † and ⟨−|−⟩ encode equivalent information.

61 / 3132.3 Dagger structure

In the definition of FHilb, something was a bit strange: we didn’t
use the inner products of the Hilbert space at all.

Inner products allow us to construct adjoint linear maps, with nice
properties:

(g ◦ f)† = f † ◦ g† idH
† = idH (f †)† = f

So taking the adjoint has the following properties:

• it’s contravariant and functorial;

• it’s the identity on objects;

• it’s involutive.

Also, we can recover the inner products from this functor:

(C w H v† C) ≡ v†(w(1)) = ⟨1|v†(w(1))⟩ = ⟨v|w⟩

So † and ⟨−|−⟩ encode equivalent information.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.

• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.

• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.

• Rel can be given a dagger functor by relational converse: for
S R T, define T R†

S by setting t R† s if and only if s R t.
• Set cannot be made into a dagger category: Set(A,B) has size

|B||A|, while Set(B,A) has size |A||B|.
• Vect cannot be given a dagger functor: Vect(C,V) has a smaller

cardinality than Vect(V,C) when V is infinite-dimensional.
• FVect can be equipped with a dagger functor (e.g. by assigning

an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

62 / 3132.3 Dagger structure
This inspires the following abstract definition.

Definition 2.32. A dagger functor on a category C is an involutive
contravariant functor † : C C that is the identity on objects. A
dagger category is a category equipped with a dagger functor.

Let’s consider our examples.
• Hilb is a dagger category using adjoint linear maps.
• MatC is a dagger category using the conjugate transpose.
• Rel can be given a dagger functor by relational converse: for

S R T, define T R†
S by setting t R† s if and only if s R t.

• Set cannot be made into a dagger category: Set(A,B) has size
|B||A|, while Set(B,A) has size |A||B|.

• Vect cannot be given a dagger functor: Vect(C,V) has a smaller
cardinality than Vect(V,C) when V is infinite-dimensional.

• FVect can be equipped with a dagger functor (e.g. by assigning
an inner product to objects and constructing adjoints.) But
there is no canonical dagger functor.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);
• composition is composition of probability distributions as

matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);
• composition is composition of probability distributions as

matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);
• composition is composition of probability distributions as

matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);

• composition is composition of probability distributions as
matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);
• composition is composition of probability distributions as

matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

63 / 3132.3 Dagger structure

A different use of daggers is in classical probability theory, to
construct the Bayesian converse of conditional distributions.

Definition. The dagger category Bayes is defined as follows:

• objects (A, p) are finite sets A equipped with prior probability
distributions, functions p : A R+ such that

∑
a∈A p(a) = 1;

• morphisms (A, p) f
(B, q) are conditional probability

distributions, functions f : A × B R≥0 such that
∀a
∑

b∈B f(a, b) = 1 and ∀b
∑

a∈A p(a)f(a, b) = q(b);
• composition is composition of probability distributions as

matrices of real numbers;

• the dagger functor is the Bayesian converse, acting on
f : A × B R≥0 to give f † : B × A R≥0, defined as
f †(b, a) := f(a, b)p(a)/q(b).

The Bayesian converse is always well-defined since we require our
prior probability distributions to be nonzero at every point.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;

• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;

• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;

• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

64 / 3132.3 Dagger structure

In a dagger category we give special names to some basic properties
of morphisms. These generalize terms usually reserved for bounded
linear maps between Hilbert spaces.

Definition 2.34. A morphism A f B in a dagger category is:

• the adjoint of B g A when g = f †;
• self-adjoint when f = f †;
• a projection when f = f † and f ◦ f = f ;
• unitary when both f † ◦ f = idA and f ◦ f † = idB;

• an isometry when f † ◦ f = idA;

• a partial isometry when f † ◦ f is a projector;

• positive when f = g† ◦ g for some morphism H g K.

65 / 3132.3 Dagger structure

We depict taking daggers in the graphical calculus by flipping the
graphical representation about a horizontal axis.

A

B

f †7→

B

A

f †

To help differentiate between these morphisms, we draw
morphisms in a way that breaks their symmetry.

We also drop the label † from the morphism box.

65 / 3132.3 Dagger structure

We depict taking daggers in the graphical calculus by flipping the
graphical representation about a horizontal axis.

A

B

f †7→

B

A

f

To help differentiate between these morphisms, we draw
morphisms in a way that breaks their symmetry.

We also drop the label † from the morphism box.

66 / 3132.3 Dagger structure
We use this notation for states:

v

A

7→
v

A

A dagger functor gives a correspondence between states and effects.

We can apply this notation to compute the inner product between
two states:

⟨v|w⟩ =

w

v

= w
v

The right-hand side is a rotated form of Dirac’s bra-ket notation.
So the graphical calculus for dagger categories can be seen as a
generalized Dirac notation.

66 / 3132.3 Dagger structure
We use this notation for states:

v

A

7→
v

A

A dagger functor gives a correspondence between states and effects.

We can apply this notation to compute the inner product between
two states:

⟨v|w⟩ =

w

v

= w
v

The right-hand side is a rotated form of Dirac’s bra-ket notation.
So the graphical calculus for dagger categories can be seen as a
generalized Dirac notation.

66 / 3132.3 Dagger structure
We use this notation for states:

v

A

7→
v

A

A dagger functor gives a correspondence between states and effects.

We can apply this notation to compute the inner product between
two states:

⟨v|w⟩ =

w

v

= w
v

The right-hand side is a rotated form of Dirac’s bra-ket notation.
So the graphical calculus for dagger categories can be seen as a
generalized Dirac notation.

67 / 3132.3 Dagger structure

The adjoint of a matrix is the conjugate transpose. This follows
abstractly given the existence of dagger biproducts.

Definition 2.39. In a dagger category with biproducts, a dagger
biproduct is a biproduct A ⊕ B satisfying i†A = pA and i†B = pB.

While ordinary biproducts are unique up to isomorphism, dagger
biproducts are unique up to unitary isomorphism.

Example 2.40. Let’s investigate dagger biproducts in our examples.

• In Rel, every biproduct is a dagger biproduct.

• In Hilb, dagger biproducts are orthogonal direct sums. The
notion of orthogonality relies on the inner product.

67 / 3132.3 Dagger structure

The adjoint of a matrix is the conjugate transpose. This follows
abstractly given the existence of dagger biproducts.

Definition 2.39. In a dagger category with biproducts, a dagger
biproduct is a biproduct A ⊕ B satisfying i†A = pA and i†B = pB.

While ordinary biproducts are unique up to isomorphism, dagger
biproducts are unique up to unitary isomorphism.

Example 2.40. Let’s investigate dagger biproducts in our examples.

• In Rel, every biproduct is a dagger biproduct.

• In Hilb, dagger biproducts are orthogonal direct sums. The
notion of orthogonality relies on the inner product.

67 / 3132.3 Dagger structure

The adjoint of a matrix is the conjugate transpose. This follows
abstractly given the existence of dagger biproducts.

Definition 2.39. In a dagger category with biproducts, a dagger
biproduct is a biproduct A ⊕ B satisfying i†A = pA and i†B = pB.

While ordinary biproducts are unique up to isomorphism, dagger
biproducts are unique up to unitary isomorphism.

Example 2.40. Let’s investigate dagger biproducts in our examples.

• In Rel, every biproduct is a dagger biproduct.

• In Hilb, dagger biproducts are orthogonal direct sums. The
notion of orthogonality relies on the inner product.

67 / 3132.3 Dagger structure

The adjoint of a matrix is the conjugate transpose. This follows
abstractly given the existence of dagger biproducts.

Definition 2.39. In a dagger category with biproducts, a dagger
biproduct is a biproduct A ⊕ B satisfying i†A = pA and i†B = pB.

While ordinary biproducts are unique up to isomorphism, dagger
biproducts are unique up to unitary isomorphism.

Example 2.40. Let’s investigate dagger biproducts in our examples.

• In Rel, every biproduct is a dagger biproduct.

• In Hilb, dagger biproducts are orthogonal direct sums. The
notion of orthogonality relies on the inner product.

68 / 3132.3 Dagger structure
Lemma 2.41. In a dagger category with dagger biproducts, the
adjoint of a matrix is its conjugate transpose:

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fm1 fm2 · · · fmn


†

=


f †11 f †21 · · · f †m1
f †12 f †22 · · · f †m2
...

...
. . .

...
f †1n f †2n · · · f †mn



Lemma 2.42. In a dagger category with dagger biproducts, daggers
distribute over addition:

(f + g)† = f † + g†

Proof. We perform the following calculation:

(f + g)† =
((

f g
)
◦
(

idB
idB

))†
=

(
idB
idB

)†
◦
(
f g

)†
=
(
idB idB

)
◦
(

f †

g†

)
= f † + g†

68 / 3132.3 Dagger structure
Lemma 2.41. In a dagger category with dagger biproducts, the
adjoint of a matrix is its conjugate transpose:

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fm1 fm2 · · · fmn


†

=


f †11 f †21 · · · f †m1
f †12 f †22 · · · f †m2
...

...
. . .

...
f †1n f †2n · · · f †mn


Lemma 2.42. In a dagger category with dagger biproducts, daggers
distribute over addition:

(f + g)† = f † + g†

Proof. We perform the following calculation:

(f + g)† =
((

f g
)
◦
(

idB
idB

))†
=

(
idB
idB

)†
◦
(
f g

)†
=
(
idB idB

)
◦
(

f †

g†

)
= f † + g†

68 / 3132.3 Dagger structure
Lemma 2.41. In a dagger category with dagger biproducts, the
adjoint of a matrix is its conjugate transpose:

f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fm1 fm2 · · · fmn


†

=


f †11 f †21 · · · f †m1
f †12 f †22 · · · f †m2
...

...
. . .

...
f †1n f †2n · · · f †mn


Lemma 2.42. In a dagger category with dagger biproducts, daggers
distribute over addition:

(f + g)† = f † + g†

Proof. We perform the following calculation:

(f + g)† =
((

f g
)
◦
(

idB
idB

))†
=

(
idB
idB

)†
◦
(
f g

)†
=
(
idB idB

)
◦
(

f †

g†

)
= f † + g†

69 / 3132.3 Dagger structure

We can require a dagger functor to be compatible with the
monoidal structure.

Definition 2.37. A monoidal dagger category is a dagger category
that is also monoidal, such that:

• (f ⊗ g)† = f † ⊗ g† for all morphisms f and g;

• the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry.

69 / 3132.3 Dagger structure

We can require a dagger functor to be compatible with the
monoidal structure.

Definition 2.37. A monoidal dagger category is a dagger category
that is also monoidal, such that:

• (f ⊗ g)† = f † ⊗ g† for all morphisms f and g;

• the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry.

69 / 3132.3 Dagger structure

We can require a dagger functor to be compatible with the
monoidal structure.

Definition 2.37. A monoidal dagger category is a dagger category
that is also monoidal, such that:

• (f ⊗ g)† = f † ⊗ g† for all morphisms f and g;

• the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry.

69 / 3132.3 Dagger structure

We can require a dagger functor to be compatible with the
monoidal structure.

Definition 2.37. A monoidal dagger category is a dagger category
that is also monoidal, such that:

• (f ⊗ g)† = f † ⊗ g† for all morphisms f and g;

• the natural isomorphisms α, λ and ρ are unitary at every stage.

A braided monoidal dagger category is a monoidal dagger category
equipped with a unitary braiding.

A symmetric monoidal dagger category is a braided monoidal dagger
category for which the braiding is a symmetry.

70 / 3132.4 Measurements

Suppose we have a family of n effects A ek I.

We can equivalently encode them as a biproduct effect A e ⊕
n I:

⊕
n I

A

e =
∑

k

A

ek

⊕
n I

ik
∀k

A

pk

e =

A

ek

This is a process that ‘observes’ a system, and converts it into
classical information.

To ensure that some effect always takes place, we can require e to
have zero kernel.

70 / 3132.4 Measurements

Suppose we have a family of n effects A ek I.

We can equivalently encode them as a biproduct effect A e ⊕
n I:

⊕
n I

A

e =
∑

k

A

ek

⊕
n I

ik
∀k

A

pk

e =

A

ek

This is a process that ‘observes’ a system, and converts it into
classical information.

To ensure that some effect always takes place, we can require e to
have zero kernel.

70 / 3132.4 Measurements

Suppose we have a family of n effects A ek I.

We can equivalently encode them as a biproduct effect A e ⊕
n I:

⊕
n I

A

e =
∑

k

A

ek

⊕
n I

ik
∀k

A

pk

e =

A

ek

This is a process that ‘observes’ a system, and converts it into
classical information.

To ensure that some effect always takes place, we can require e to
have zero kernel.

71 / 313

Chapter 3
Dual objects

72 / 3133.1 Dual objects
Dual objects have two basic interpretations:

• Topologically, they allow wires to bend
• Quantum mechanically, they model full-rank entangled states

Definition 3.1 (Dual object). An object L is left-dual to an object R,
and R is right-dual to L, written L ⊣ R, when there is a unit
morphism I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R ⊗ L)⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

72 / 3133.1 Dual objects
Dual objects have two basic interpretations:

• Topologically, they allow wires to bend

• Quantum mechanically, they model full-rank entangled states

Definition 3.1 (Dual object). An object L is left-dual to an object R,
and R is right-dual to L, written L ⊣ R, when there is a unit
morphism I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R ⊗ L)⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

72 / 3133.1 Dual objects
Dual objects have two basic interpretations:

• Topologically, they allow wires to bend
• Quantum mechanically, they model full-rank entangled states

Definition 3.1 (Dual object). An object L is left-dual to an object R,
and R is right-dual to L, written L ⊣ R, when there is a unit
morphism I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R ⊗ L)⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

72 / 3133.1 Dual objects
Dual objects have two basic interpretations:

• Topologically, they allow wires to bend
• Quantum mechanically, they model full-rank entangled states

Definition 3.1 (Dual object). An object L is left-dual to an object R,
and R is right-dual to L, written L ⊣ R, when there is a unit
morphism I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R ⊗ L)⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

72 / 3133.1 Dual objects
Dual objects have two basic interpretations:

• Topologically, they allow wires to bend
• Quantum mechanically, they model full-rank entangled states

Definition 3.1 (Dual object). An object L is left-dual to an object R,
and R is right-dual to L, written L ⊣ R, when there is a unit
morphism I η R ⊗ L and a counit morphism L ⊗ R ε I such that:

L L ⊗ I L ⊗ (R ⊗ L)

L I ⊗ L (L ⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R ⊗ L)⊗ R

R R ⊗ I R ⊗ (L ⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR

73 / 3133.1 Dual objects
We draw an object L as a wire with an upward-pointing arrow, and
a right dual R as a wire with a downward-pointing arrow.

L R

The unit I η R ⊗ L and counit L ⊗ R ε I are drawn as bent wires:

R L

L R

This notation is chosen because of the attractive form it gives to the
duality equations:

= =

They are also called the snake equations.

73 / 3133.1 Dual objects
We draw an object L as a wire with an upward-pointing arrow, and
a right dual R as a wire with a downward-pointing arrow.

L R

The unit I η R ⊗ L and counit L ⊗ R ε I are drawn as bent wires:

R L

L R

This notation is chosen because of the attractive form it gives to the
duality equations:

= =

They are also called the snake equations.

74 / 3133.1 Dual objects
The monoidal category FHilb has all duals. Every finite-
dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.

The counit H ⊗ H∗ ε C is defined like this:

ε : |ϕ⟩ ⊗ ⟨ψ| 7→ ⟨ψ|ϕ⟩

The unit C η H∗⊗H is defined like so, for any orthonormal basis |i⟩:

η : 1 7→
∑

i

⟨i| ⊗ |i⟩

These definitions sit together rather oddly: η seems basis-dependent,
while ε is clearly not.

In fact the same value of η is obtained whatever orthonormal basis
is used, as we will see in Lemma 3.5 below.

Infinite-dimensional spaces do not have duals. We will prove this later.

74 / 3133.1 Dual objects
The monoidal category FHilb has all duals. Every finite-
dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.

The counit H ⊗ H∗ ε C is defined like this:

ε : |ϕ⟩ ⊗ ⟨ψ| 7→ ⟨ψ|ϕ⟩

The unit C η H∗⊗H is defined like so, for any orthonormal basis |i⟩:

η : 1 7→
∑

i

⟨i| ⊗ |i⟩

These definitions sit together rather oddly: η seems basis-dependent,
while ε is clearly not.

In fact the same value of η is obtained whatever orthonormal basis
is used, as we will see in Lemma 3.5 below.

Infinite-dimensional spaces do not have duals. We will prove this later.

74 / 3133.1 Dual objects
The monoidal category FHilb has all duals. Every finite-
dimensional Hilbert space H is both right dual and left dual to its
dual Hilbert space H∗, in a canonical way.

Of course, this is the origin of the terminology.

The counit H ⊗ H∗ ε C is defined like this:

ε : |ϕ⟩ ⊗ ⟨ψ| 7→ ⟨ψ|ϕ⟩

The unit C η H∗⊗H is defined like so, for any orthonormal basis |i⟩:

η : 1 7→
∑

i

⟨i| ⊗ |i⟩

These definitions sit together rather oddly: η seems basis-dependent,
while ε is clearly not.

In fact the same value of η is obtained whatever orthonormal basis
is used, as we will see in Lemma 3.5 below.

Infinite-dimensional spaces do not have duals. We will prove this later.

75 / 3133.1 Dual objects

In Rel, every object is its own dual, even sets of infinite cardinality.
The unit 1 η S × S and counit S × S ε 1 can be defined like this:

• ∼η (s, s) for all s ∈ S
(s, s) ∼ε • for all s ∈ S

In MatC, every object n is its own dual, with a canonical choice of η
and ε given as follows:

η : 1 7→
∑

i

|i⟩ ⊗ |i⟩ ε : |i⟩ ⊗ |j⟩ 7→ δij1

75 / 3133.1 Dual objects

In Rel, every object is its own dual, even sets of infinite cardinality.
The unit 1 η S × S and counit S × S ε 1 can be defined like this:

• ∼η (s, s) for all s ∈ S
(s, s) ∼ε • for all s ∈ S

In MatC, every object n is its own dual, with a canonical choice of η
and ε given as follows:

η : 1 7→
∑

i

|i⟩ ⊗ |i⟩ ε : |i⟩ ⊗ |j⟩ 7→ δij1

76 / 3133.1 Dual objects
The category Set only has duals for sets of size 1. Let’s see why.

Definition 3.3. In a monoidal category with dualities A ⊣ A∗ and
B ⊣ B∗, given a morphism A f B, we define its name I ⌜f⌝ A∗ ⊗ B
and coname A ⊗ B∗ ⌞f⌟ I as the following morphisms:

BA∗

f

A B∗

f

Morphisms can be recovered from their names or conames:

A

B

f =

B

A

f

In Set 1 is terminal, and so all conames A ⊗ B∗ ⌞f⌟ 1 must be equal.
If Set had duals this would imply all functions A B were equal.

77 / 3133.1 Dual objects

We first show duals are well-defined up to canonical isomorphism.

Lemma 3.4. In a monoidal category with L ⊣ R, then L ⊣ R′ if and
only if R ≃ R′. Similarly, if L ⊣ R, then L′ ⊣ R if and only if L ≃ L′.

Proof. If L ⊣ R and L ⊣ R′, define maps R R′ and R′ R as follows:

R

L

R′

R′

L

R

The snake equations imply that these are inverse. Conversely, if
L ⊣ R and R f R′ is invertible, we can construct a duality L ⊣ R′:

L R′

R
f -1

LR′

R
f

An isomorphism L ≃ L′ allows us to produce a duality L′ ⊣ R in a
similar way.

77 / 3133.1 Dual objects

We first show duals are well-defined up to canonical isomorphism.

Lemma 3.4. In a monoidal category with L ⊣ R, then L ⊣ R′ if and
only if R ≃ R′. Similarly, if L ⊣ R, then L′ ⊣ R if and only if L ≃ L′.

Proof. If L ⊣ R and L ⊣ R′, define maps R R′ and R′ R as follows:

R

L

R′

R′

L

R

The snake equations imply that these are inverse.

Conversely, if
L ⊣ R and R f R′ is invertible, we can construct a duality L ⊣ R′:

L R′

R
f -1

LR′

R
f

An isomorphism L ≃ L′ allows us to produce a duality L′ ⊣ R in a
similar way.

77 / 3133.1 Dual objects

We first show duals are well-defined up to canonical isomorphism.

Lemma 3.4. In a monoidal category with L ⊣ R, then L ⊣ R′ if and
only if R ≃ R′. Similarly, if L ⊣ R, then L′ ⊣ R if and only if L ≃ L′.

Proof. If L ⊣ R and L ⊣ R′, define maps R R′ and R′ R as follows:

R

L

R′

R′

L

R

The snake equations imply that these are inverse. Conversely, if
L ⊣ R and R f R′ is invertible, we can construct a duality L ⊣ R′:

L R′

R
f -1

LR′

R
f

An isomorphism L ≃ L′ allows us to produce a duality L′ ⊣ R in a
similar way.

78 / 3133.1 Dual objects

Given a duality, the unit determines the counit, and vice-versa.

Lemma 3.5. In a monoidal category, if (L,R, η, ε) and (L,R, η, ε′)
both exhibit a duality, then ε = ε′. Similarly, if (L,R, η, ε) and
(L,R, η′, ε) both exhibit a duality, then η = η′.

Proof. For the first case, we use the following graphical argument.

ε

=

ε

ε′
iso
=

ε′

ε =

ε′

The second case is similar.

78 / 3133.1 Dual objects

Given a duality, the unit determines the counit, and vice-versa.

Lemma 3.5. In a monoidal category, if (L,R, η, ε) and (L,R, η, ε′)
both exhibit a duality, then ε = ε′. Similarly, if (L,R, η, ε) and
(L,R, η′, ε) both exhibit a duality, then η = η′.

Proof. For the first case, we use the following graphical argument.

ε

=

ε

ε′
iso
=

ε′

ε =

ε′

The second case is similar.

78 / 3133.1 Dual objects

Given a duality, the unit determines the counit, and vice-versa.

Lemma 3.5. In a monoidal category, if (L,R, η, ε) and (L,R, η, ε′)
both exhibit a duality, then ε = ε′. Similarly, if (L,R, η, ε) and
(L,R, η′, ε) both exhibit a duality, then η = η′.

Proof. For the first case, we use the following graphical argument.

ε

=

ε

ε′
iso
=

ε′

ε =

ε′

The second case is similar.

79 / 3133.1 Dual objects
The following lemma shows that dual objects interact well with the
monoidal structure.

Lemma 3.6. In a monoidal category, I ⊣ I.

Proof. Taking η = λ−1
I : I I ⊗ I and ε = λI : I ⊗ I I shows that

I ⊣ I. The snake equations follow from the coherence theorem.

Lemma 3.7. In a monoidal category,
L ⊣ R, L′ ⊣ R′ ⇒ L ⊗ L′ ⊣ R′ ⊗ R.

Proof. Suppose that L ⊣ R and L′ ⊣ R′. We make the new unit and
counit maps from the old ones, and compute as follows:

L

R

L′

R′ iso
=

L L′

=

L L′

The other snake equation follows similarly.

79 / 3133.1 Dual objects
The following lemma shows that dual objects interact well with the
monoidal structure.

Lemma 3.6. In a monoidal category, I ⊣ I.

Proof. Taking η = λ−1
I : I I ⊗ I and ε = λI : I ⊗ I I shows that

I ⊣ I. The snake equations follow from the coherence theorem.

Lemma 3.7. In a monoidal category,
L ⊣ R, L′ ⊣ R′ ⇒ L ⊗ L′ ⊣ R′ ⊗ R.

Proof. Suppose that L ⊣ R and L′ ⊣ R′. We make the new unit and
counit maps from the old ones, and compute as follows:

L

R

L′

R′ iso
=

L L′

=

L L′

The other snake equation follows similarly.

79 / 3133.1 Dual objects
The following lemma shows that dual objects interact well with the
monoidal structure.

Lemma 3.6. In a monoidal category, I ⊣ I.

Proof. Taking η = λ−1
I : I I ⊗ I and ε = λI : I ⊗ I I shows that

I ⊣ I. The snake equations follow from the coherence theorem.

Lemma 3.7. In a monoidal category,
L ⊣ R, L′ ⊣ R′ ⇒ L ⊗ L′ ⊣ R′ ⊗ R.

Proof. Suppose that L ⊣ R and L′ ⊣ R′. We make the new unit and
counit maps from the old ones, and compute as follows:

L

R

L′

R′ iso
=

L L′

=

L L′

The other snake equation follows similarly.

80 / 3133.1 Dual objects
If the monoidal category has a braiding then a duality L ⊣ R gives
rise to a duality R ⊣ L, as the next lemma investigates.

Lemma 3.8. In a braided monoidal category, L ⊣ R ⇒ R ⊣ L.

Proof. Construct a new duality as follows:

I η′ L ⊗ R R ⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.

80 / 3133.1 Dual objects
If the monoidal category has a braiding then a duality L ⊣ R gives
rise to a duality R ⊣ L, as the next lemma investigates.

Lemma 3.8. In a braided monoidal category, L ⊣ R ⇒ R ⊣ L.

Proof. Construct a new duality as follows:

I η′ L ⊗ R R ⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.

80 / 3133.1 Dual objects
If the monoidal category has a braiding then a duality L ⊣ R gives
rise to a duality R ⊣ L, as the next lemma investigates.

Lemma 3.8. In a braided monoidal category, L ⊣ R ⇒ R ⊣ L.

Proof. Construct a new duality as follows:

I η′ L ⊗ R R ⊗ L ε′ I

We can then test the snake equations:

= =

The other snake equation can be proved in a similar way.

81 / 3133.1 Dual objects

Next we will prove some nice theorems showing the relationship
between duals and monoidal functors.

To understand them, we will need to develop a graphical calculus
for monoidal functors.

We depict a monoidal functor F : C D and the isomorphisms
(F2)A,B : F(A)⊗ F(B) F(A ⊗ B) and F0 : I F(I) like this:

F(A)

F(A)

F(A)⊗ F(B)

F(A ⊗ B) F(I)

I

81 / 3133.1 Dual objects

Next we will prove some nice theorems showing the relationship
between duals and monoidal functors.

To understand them, we will need to develop a graphical calculus
for monoidal functors.

We depict a monoidal functor F : C D and the isomorphisms
(F2)A,B : F(A)⊗ F(B) F(A ⊗ B) and F0 : I F(I) like this:

F(A)

F(A)

F(A)⊗ F(B)

F(A ⊗ B) F(I)

I

82 / 3133.1 Dual objects

Naturality means that morphisms can pass through the gaps:

f g
=

f g

The coherence equations look like this:

= = =

They have a nice topological flavour.

82 / 3133.1 Dual objects

Naturality means that morphisms can pass through the gaps:

f g
=

f g

The coherence equations look like this:

= = =

They have a nice topological flavour.

83 / 3133.1 Dual objects

Let’s prove our first theorem using these techniques.

Theorem 3.14. Monoidal functors preserve duals.

Proof. If we apply our monoidal functor to the unit and counit, we
can show that the duality equations are still satisfied:

= =

The other duality equation can be proved in a similar way.

83 / 3133.1 Dual objects

Let’s prove our first theorem using these techniques.

Theorem 3.14. Monoidal functors preserve duals.

Proof. If we apply our monoidal functor to the unit and counit, we
can show that the duality equations are still satisfied:

= =

The other duality equation can be proved in a similar way.

84 / 3133.1 Dual objects
Given two functors F,G : C D and a natural transformation
µ : F G, we can denote it like this:

G(A)

F(A)

µA

G(B)

F(A)

µB

f
=

G(B)

F(A)

µA

f

If C, D, F,G and µ are monoidal, then we have following extra
properties:

G(I)

I

µI =

G(I)

I F(A)⊗ F(B)

G(A ⊗ B)

µA µB
=

F(A)⊗ F(B)

G(A ⊗ B)

µA⊗B

85 / 3133.1 Dual objects
Theorem 3.15. Let µ : F G be a monoidal natural transformation.
If A ∈ Ob(C) has a left or a right dual, F(A) µA G(A) is invertible.

Proof. Choose A = L with L ⊣ R in C. Then we perform the
following computation:

µL µR =
µL⊗R

=

µI

= = =

The rest of the proof uses similar techniques.

86 / 3133.1 Dual objects

Choosing duals for objects extends functorially to morphisms.

Definition 3.9. For a morphism A f B and chosen dualities A ⊣ A∗,
B ⊣ B∗, the right dual B∗ f∗ A∗ is defined in the following way:

A∗

B∗

f∗ :=

A∗

B∗

f =:

A∗

B∗

f

We represent this graphically by rotating the box representing f , as
shown in the third image above.

86 / 3133.1 Dual objects

Choosing duals for objects extends functorially to morphisms.

Definition 3.9. For a morphism A f B and chosen dualities A ⊣ A∗,
B ⊣ B∗, the right dual B∗ f∗ A∗ is defined in the following way:

A∗

B∗

f∗ :=

A∗

B∗

f =:

A∗

B∗

f

We represent this graphically by rotating the box representing f , as
shown in the third image above.

87 / 3133.1 Dual objects

The dual can ‘slide’ along the unit and counit.

Lemma 3.12. In a monoidal category with chosen dualities A ⊣ A∗

and B ⊣ B∗, the following equations hold for all morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.

88 / 3133.1 Dual objects

Lemma 3.11. If a monoidal category has assigned right duals, the
right-duals construction (−)∗ defines a functor.

Proof. Let A f B and B g C. Then we perform the following
calculation:

(g ◦ f)∗ =
f

g

= f g =

f∗

g∗

Similarly, (idA)
∗ = idA∗ follows from the snake equations.

89 / 3133.1 Dual objects

Example 3.13. Let’s see how the right duals functor acts for our
example categories, with chosen right duals as given by
Example 3.2.

• In FVect and FHilb, the right dual of a morphism V f W is
W∗ f∗ V∗, acting as f∗(e) := e ◦ f , where W e C is an arbitrary
element of W∗.

• In MatC, the dual of a matrix is its transpose.

• In Rel, the dual of a relation is its converse. So the right duals
functor and the dagger functor have the same action: R∗ = R†

for all relations R.

89 / 3133.1 Dual objects

Example 3.13. Let’s see how the right duals functor acts for our
example categories, with chosen right duals as given by
Example 3.2.

• In FVect and FHilb, the right dual of a morphism V f W is
W∗ f∗ V∗, acting as f∗(e) := e ◦ f , where W e C is an arbitrary
element of W∗.

• In MatC, the dual of a matrix is its transpose.

• In Rel, the dual of a relation is its converse. So the right duals
functor and the dagger functor have the same action: R∗ = R†

for all relations R.

89 / 3133.1 Dual objects

Example 3.13. Let’s see how the right duals functor acts for our
example categories, with chosen right duals as given by
Example 3.2.

• In FVect and FHilb, the right dual of a morphism V f W is
W∗ f∗ V∗, acting as f∗(e) := e ◦ f , where W e C is an arbitrary
element of W∗.

• In MatC, the dual of a matrix is its transpose.

• In Rel, the dual of a relation is its converse. So the right duals
functor and the dagger functor have the same action: R∗ = R†

for all relations R.

89 / 3133.1 Dual objects

Example 3.13. Let’s see how the right duals functor acts for our
example categories, with chosen right duals as given by
Example 3.2.

• In FVect and FHilb, the right dual of a morphism V f W is
W∗ f∗ V∗, acting as f∗(e) := e ◦ f , where W e C is an arbitrary
element of W∗.

• In MatC, the dual of a matrix is its transpose.

• In Rel, the dual of a relation is its converse. So the right duals
functor and the dagger functor have the same action: R∗ = R†

for all relations R.

90 / 3133.1 Dual objects

Lemma 3.16. For a monoidal category with chosen right duals for
objects, the double duals functor (−)∗∗ : C C is monoidal.

Proof. The isomorphism A∗∗ ⊗ B∗∗ ≃ (A ⊗ B)∗∗ looks like this:

A∗∗ B∗∗

(A ⊗ B)∗∗

εA⊗B

η(A⊗B)∗

Showing this satisfies the monoidal functor axioms is a monster!

91 / 3133.1 Dual objects

Dual objects give a nice way to model quantum teleportation.

Definition. In a monoidal category with biproducts and right duals,
a teleportation procedure is a finite family of effects ei : A ⊗ A∗ I
and unitaries Ui : A A such that:

• the biproduct effect
∑N

k=1 ik ◦ ek : A⊗ A∗ I⊕N has zero kernel;

• the following equation holds for each i:

A

A

ei

Ui

=

A

A

This can be solved to give
ei

= Ui .

92 / 3133.1 Dual objects

We can use the graphical calculus to simplify the history:

L

L

Ui

Ui

=

L

L

Ui

Ui

=

L

L

=

L

L

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.

If the biproduct effect has zero kernel, then it will always succeed:
there is no prior history which yields the null process.

92 / 3133.1 Dual objects

We can use the graphical calculus to simplify the history:

L

L

Ui

Ui

=

L

L

Ui

Ui

=

L

L

=

L

L

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.

If the biproduct effect has zero kernel, then it will always succeed:
there is no prior history which yields the null process.

92 / 3133.1 Dual objects

We can use the graphical calculus to simplify the history:

L

L

Ui

Ui

=

L

L

Ui

Ui

=

L

L

=

L

L

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.

If the biproduct effect has zero kernel, then it will always succeed:
there is no prior history which yields the null process.

92 / 3133.1 Dual objects

We can use the graphical calculus to simplify the history:

L

L

Ui

Ui

=

L

L

Ui

Ui

=

L

L

=

L

L

So if the original history occurs, the result is for the state of the
original system to be transmitted faithfully.

If the biproduct effect has zero kernel, then it will always succeed:
there is no prior history which yields the null process.

93 / 3133.1 Dual objects

Let’s examine this in Hilb. Choose L = R = C2 and
η† = ε =

(
1 0 0 1

)
, and the following unitaries Ui:(

1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

)
This gives rise to the following family of effects:(

1 0 0 1
) (

1 0 0 −1
) (

0 1 1 0
) (

0 1 −1 0
)

This is a complete set of effects, since it forms a basis for the vector
space Hilb(C2 ⊗ C2,C). So it is guaranteed to be successful.

This is traditional qubit teleportation.

93 / 3133.1 Dual objects

Let’s examine this in Hilb. Choose L = R = C2 and
η† = ε =

(
1 0 0 1

)
, and the following unitaries Ui:(

1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

)
This gives rise to the following family of effects:(

1 0 0 1
) (

1 0 0 −1
) (

0 1 1 0
) (

0 1 −1 0
)

This is a complete set of effects, since it forms a basis for the vector
space Hilb(C2 ⊗ C2,C). So it is guaranteed to be successful.

This is traditional qubit teleportation.

94 / 3133.1 Dual objects

We can also implement teleportation in Rel. Choose L = R = {0,1}
and η† = ε =

(
1 0 0 1

)
, and the following unitaries:(

1 0
0 1

) (
0 1
1 0

)
This gives rise to the following family of effects:(

1 0 0 1
) (

0 1 1 0
)

These form a complete set of effects.

This is classical encrypted communication with a one-time pad.

94 / 3133.1 Dual objects

We can also implement teleportation in Rel. Choose L = R = {0,1}
and η† = ε =

(
1 0 0 1

)
, and the following unitaries:(

1 0
0 1

) (
0 1
1 0

)
This gives rise to the following family of effects:(

1 0 0 1
) (

0 1 1 0
)

These form a complete set of effects.

This is classical encrypted communication with a one-time pad.

95 / 3133.1 Dual objects
We now investigate interaction between duals and linear structure.

Lemma 3.19. In a monoidal category with a zero object 0:

(a) 0 ⊣ 0;

(b) if L ⊣ R, then L ⊗ 0 ≃ R ⊗ 0 ≃ 0 ≃ 0 ⊗ L ≃ 0 ⊗ R.

Proof. For (a), because 0 ⊗ 0 ≃ 0, there are unique morphisms
I η 0 ⊗ 0 and 0 ⊗ 0 ε I. It also follows that 0 ⊗ (0 ⊗ 0) ≃ 0, so that
both sides of the snake equation must equal 0 0.

For (b), let R ⊗ 0 f R ⊗ 0 be an arbitrary morphism. Then:

0R

0R

f =

0R

0R

f =

0R

0R

0L⊗R⊗0,0

So there is only one morphism R ⊗ 0 R ⊗ 0, hence R ⊗ 0 ≃ 0. The
other claims follow similarly.

95 / 3133.1 Dual objects
We now investigate interaction between duals and linear structure.

Lemma 3.19. In a monoidal category with a zero object 0:

(a) 0 ⊣ 0;

(b) if L ⊣ R, then L ⊗ 0 ≃ R ⊗ 0 ≃ 0 ≃ 0 ⊗ L ≃ 0 ⊗ R.

Proof. For (a), because 0 ⊗ 0 ≃ 0, there are unique morphisms
I η 0 ⊗ 0 and 0 ⊗ 0 ε I. It also follows that 0 ⊗ (0 ⊗ 0) ≃ 0, so that
both sides of the snake equation must equal 0 0.

For (b), let R ⊗ 0 f R ⊗ 0 be an arbitrary morphism. Then:

0R

0R

f =

0R

0R

f =

0R

0R

0L⊗R⊗0,0

So there is only one morphism R ⊗ 0 R ⊗ 0, hence R ⊗ 0 ≃ 0. The
other claims follow similarly.

95 / 3133.1 Dual objects
We now investigate interaction between duals and linear structure.

Lemma 3.19. In a monoidal category with a zero object 0:

(a) 0 ⊣ 0;

(b) if L ⊣ R, then L ⊗ 0 ≃ R ⊗ 0 ≃ 0 ≃ 0 ⊗ L ≃ 0 ⊗ R.

Proof. For (a), because 0 ⊗ 0 ≃ 0, there are unique morphisms
I η 0 ⊗ 0 and 0 ⊗ 0 ε I. It also follows that 0 ⊗ (0 ⊗ 0) ≃ 0, so that
both sides of the snake equation must equal 0 0.

For (b), let R ⊗ 0 f R ⊗ 0 be an arbitrary morphism. Then:

0R

0R

f =

0R

0R

f =

0R

0R

0L⊗R⊗0,0

So there is only one morphism R ⊗ 0 R ⊗ 0, hence R ⊗ 0 ≃ 0. The
other claims follow similarly.

96 / 3133.1 Dual objects

This lets us prove the following lemma.

Lemma 3.20. In a monoidal category with A f B a morphism, if
one of A or B has either a left or a right dual, then:

f ⊗ 0C,D = 0A⊗C,B⊗D

0C,D ⊗ f = 0C⊗A,D⊗B

Proof. Suppose A has a left or a right dual; then A ⊗ 0 ≃ 0, and so
f ⊗ 0C,D is a zero morphism. A similar argument holds for B.

The next result is harder to prove.

Theorem 3.22. In a monoidal category with biproducts and a zero
object, let A f B and C g,h D be morphisms. If A has a left or a right
dual, then:

(f ⊗ g) + (f ⊗ h) = f ⊗ (g + h)
(g ⊗ f) + (h ⊗ f) = (g + h)⊗ f

Proof. See the notes!

96 / 3133.1 Dual objects

This lets us prove the following lemma.

Lemma 3.20. In a monoidal category with A f B a morphism, if
one of A or B has either a left or a right dual, then:

f ⊗ 0C,D = 0A⊗C,B⊗D

0C,D ⊗ f = 0C⊗A,D⊗B

Proof. Suppose A has a left or a right dual; then A ⊗ 0 ≃ 0, and so
f ⊗ 0C,D is a zero morphism. A similar argument holds for B.

The next result is harder to prove.

Theorem 3.22. In a monoidal category with biproducts and a zero
object, let A f B and C g,h D be morphisms. If A has a left or a right
dual, then:

(f ⊗ g) + (f ⊗ h) = f ⊗ (g + h)
(g ⊗ f) + (h ⊗ f) = (g + h)⊗ f

Proof. See the notes!

96 / 3133.1 Dual objects

This lets us prove the following lemma.

Lemma 3.20. In a monoidal category with A f B a morphism, if
one of A or B has either a left or a right dual, then:

f ⊗ 0C,D = 0A⊗C,B⊗D

0C,D ⊗ f = 0C⊗A,D⊗B

Proof. Suppose A has a left or a right dual; then A ⊗ 0 ≃ 0, and so
f ⊗ 0C,D is a zero morphism. A similar argument holds for B.

The next result is harder to prove.

Theorem 3.22. In a monoidal category with biproducts and a zero
object, let A f B and C g,h D be morphisms. If A has a left or a right
dual, then:

(f ⊗ g) + (f ⊗ h) = f ⊗ (g + h)
(g ⊗ f) + (h ⊗ f) = (g + h)⊗ f

Proof. See the notes!

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof.

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. Define the following candidates for the duality L ⊕ L′ ⊣ R ⊕ R′:

µ

:=

η

iR iL
+

η′

iR′ iL′

ν

:=

ε

pL pR
+

ε′

pL′ pR′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

=

η

ε

iR

pR

iL

pL

+

η

ε

iR′

pR

iL′

pL

+

η

ε

iR

pR′

iL

pL′

+

η

ε

iR′

pR′

iL′

pL′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

=

η

ε

iR

pR

iL

pL

+

η

ε

iR′

pR

iL′

pL

+

η

ε

iR

pR′

iL

pL′

+

η

ε

iR′

pR′

iL′

pL′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

=

η

ε iL

pL

+

η

ε

0 iL′pL +

η

ε

0 iLpL′ +

η

ε iL′

pL′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

=

iL

pL

+ 0 + 0 +

iL′

pL′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

= idL⊕L′

The second snake equation can be proved similarly.

97 / 3133.1 Dual objects

Finally, we show that taking biproducts preserves dual objects.

Lemma 3.23. In a monoidal category with duals and biproducts,
L ⊣ R and L′ ⊣ R′ imply L ⊕ L′ ⊣ R ⊕ R′.

Proof. The first snake equation can then be established like this:

µ

ν

= idL⊕L′

The second snake equation can be proved similarly.

98 / 3133.2 Pivotality
Definition 3.24. A monoidal category with right duals is pivotal
when it is equipped with a monoidal natural transformation A pA A∗∗.

By Theorem 3.15, this will necessarily be invertible.

In a pivotal category, we extend the graphical calculus:

:= πA
:=

π-1
A

We can use this to rotate boxes arbitrarily.

Lemma. In a pivotal category, the following equations hold for all
morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.

98 / 3133.2 Pivotality
Definition 3.24. A monoidal category with right duals is pivotal
when it is equipped with a monoidal natural transformation A pA A∗∗.

By Theorem 3.15, this will necessarily be invertible.

In a pivotal category, we extend the graphical calculus:

:= πA
:=

π-1
A

We can use this to rotate boxes arbitrarily.

Lemma. In a pivotal category, the following equations hold for all
morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.

98 / 3133.2 Pivotality
Definition 3.24. A monoidal category with right duals is pivotal
when it is equipped with a monoidal natural transformation A pA A∗∗.

By Theorem 3.15, this will necessarily be invertible.

In a pivotal category, we extend the graphical calculus:

:= πA
:=

π-1
A

We can use this to rotate boxes arbitrarily.

Lemma. In a pivotal category, the following equations hold for all
morphisms A f B:

f = f
f

=
f

Proof. Let’s write it out on the board.

99 / 3133.2 Pivotality

We can formalize this as follows.

Theorem 3.28. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f = f = f = f

99 / 3133.2 Pivotality

We can formalize this as follows.

Theorem 3.28. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f

= f = f = f

99 / 3133.2 Pivotality

We can formalize this as follows.

Theorem 3.28. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f = f

= f = f

99 / 3133.2 Pivotality

We can formalize this as follows.

Theorem 3.28. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f = f = f

= f

99 / 3133.2 Pivotality

We can formalize this as follows.

Theorem 3.28. A well-formed equation between morphisms in a
pivotal category follows from the axioms if and only if it holds in
the graphical language up to planar oriented isotopy.

The new feature is the word oriented. The wires of our diagram
have arrows, and an isotopy must preserve them:

f = f = f = f

100 / 3133.2 Pivotality

Definition 3.29. A braided monoidal category is balanced when it is
equipped with a natural isomorphism θA : A A called a twist,
satisfying the following equations:

θA⊗B =

θA θB

θI =

The second equation here says θI = idI.

These equations look strange—we will see later what they mean!

100 / 3133.2 Pivotality

Definition 3.29. A braided monoidal category is balanced when it is
equipped with a natural isomorphism θA : A A called a twist,
satisfying the following equations:

θA⊗B =

θA θB

θI =

The second equation here says θI = idI.

These equations look strange—we will see later what they mean!

101 / 3133.2 Pivotality

Theorem 3.33. For a braided monoidal category with duals, a
pivotal structure uniquely induces a twist structure, and vice versa.

Proof. Suppose we have a twist structure θA : A A. Then define a
pivotal structure as follows:

A

A∗∗

πA :=

A

A∗∗

A∗

θ-1
A

We must verify that it is a monoidal natural transformation, and
that it is natural.

101 / 3133.2 Pivotality

Theorem 3.33. For a braided monoidal category with duals, a
pivotal structure uniquely induces a twist structure, and vice versa.

Proof. Suppose we have a twist structure θA : A A. Then define a
pivotal structure as follows:

A

A∗∗

πA :=

A

A∗∗

A∗

θ-1
A

We must verify that it is a monoidal natural transformation, and
that it is natural.

102 / 3133.2 Pivotality

For the monoidal property, perform the following calculation:

πA⊗B =

θ-1
A⊗B

= θ-1
Bθ-1

A

iso
=

θ-1
B θ-1

A

iso
=

θ-1
A θ-1

B

= πA⊗πB

For simplicity we have ignored the isomorphism (A ⊗ B)∗∗ ≃ A∗∗ ⊗ B∗∗.

103 / 3133.2 Pivotality

To check naturality, we perform the following calculation:

f∗∗

θA

=

f

θA

iso
= f

θA

nat
= θB

f

Conversely, we can use a pivotal structure to define a twist.

104 / 3133.2 Pivotality

A symmetric monoidal category with duals has a canonical twist.

Definition 3.34. A compact category is a pivotal symmetric
monoidal category with duals where the canonical twist is the
identity θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.

An example is SuperHilb, where θF = −idF.

In general the twist is nontrivial extra data: for Fib, θτ = e4πi/5 · idτ .

104 / 3133.2 Pivotality

A symmetric monoidal category with duals has a canonical twist.

Definition 3.34. A compact category is a pivotal symmetric
monoidal category with duals where the canonical twist is the
identity θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.

An example is SuperHilb, where θF = −idF.

In general the twist is nontrivial extra data: for Fib, θτ = e4πi/5 · idτ .

104 / 3133.2 Pivotality

A symmetric monoidal category with duals has a canonical twist.

Definition 3.34. A compact category is a pivotal symmetric
monoidal category with duals where the canonical twist is the
identity θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.

An example is SuperHilb, where θF = −idF.

In general the twist is nontrivial extra data: for Fib, θτ = e4πi/5 · idτ .

104 / 3133.2 Pivotality

A symmetric monoidal category with duals has a canonical twist.

Definition 3.34. A compact category is a pivotal symmetric
monoidal category with duals where the canonical twist is the
identity θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.

An example is SuperHilb, where θF = −idF.

In general the twist is nontrivial extra data: for Fib, θτ = e4πi/5 · idτ .

104 / 3133.2 Pivotality

A symmetric monoidal category with duals has a canonical twist.

Definition 3.34. A compact category is a pivotal symmetric
monoidal category with duals where the canonical twist is the
identity θA = idA.

Our example categories FHilb, FVect and Rel are all compact
categories.

Note that in general, other balancings may exist: that is, it is
possible for a symmetric monoidal category with duals and a twist
not to be a compact category.

An example is SuperHilb, where θF = −idF.

In general the twist is nontrivial extra data: for Fib, θτ = e4πi/5 · idτ .

105 / 3133.2 Pivotality
Lemma 3.37. In a compact category, the following equations hold:

= =

= = = =

Proof. Let’s prove the second equation in the top row:

=

εA∗

πA
=

εA∗

ηA∗

εA

iso
=

εA∗

ηA∗

εA

=

εA

The others can be proved in a similar way.

105 / 3133.2 Pivotality
Lemma 3.37. In a compact category, the following equations hold:

= =

= = = =

Proof. Let’s prove the second equation in the top row:

=

εA∗

πA
=

εA∗

ηA∗

εA

iso
=

εA∗

ηA∗

εA

=

εA

The others can be proved in a similar way.

106 / 3133.2 Pivotality

In a braided pivotal category, we must be careful with loops:

̸=

In fact, a loop on a single strand is directly related to the twist.

Lemma 3.38. In a braided pivotal category, the following hold:

θ = θ-1 = θ = θ-1 =

106 / 3133.2 Pivotality

In a braided pivotal category, we must be careful with loops:

̸=

In fact, a loop on a single strand is directly related to the twist.

Lemma 3.38. In a braided pivotal category, the following hold:

θ = θ-1 = θ = θ-1 =

107 / 3133.2 Pivotality

Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=

The equation θ ◦ θ-1 = id can be checked in a similar way. Since
inverses in a category are unique, this proves θ-1 is correct.

We demonstrate the graphical form of θ∗ as follows:

θ = θ =
iso
=

iso
=

The rest of the theorem can be proved similarly.

107 / 3133.2 Pivotality

Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=

The equation θ ◦ θ-1 = id can be checked in a similar way. Since
inverses in a category are unique, this proves θ-1 is correct.

We demonstrate the graphical form of θ∗ as follows:

θ = θ =
iso
=

iso
=

The rest of the theorem can be proved similarly.

107 / 3133.2 Pivotality

Proof. Let’s verify the expression for θ-1:

θ-1

θ

=
iso
=

iso
=

The equation θ ◦ θ-1 = id can be checked in a similar way. Since
inverses in a category are unique, this proves θ-1 is correct.

We demonstrate the graphical form of θ∗ as follows:

θ = θ =
iso
=

iso
=

The rest of the theorem can be proved similarly.

108 / 3133.2 Pivotality
Thinking about ribbons inspires the following definition.

Definition 3.39. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)

∗ = θA∗ .

This is equivalent to either of these graphical equations:

= =

Lemma 3.41. A compact category is a ribbon category.

Lemma ??. In a ribbon category, the following equations hold:

= = = =

108 / 3133.2 Pivotality
Thinking about ribbons inspires the following definition.

Definition 3.39. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)

∗ = θA∗ .

This is equivalent to either of these graphical equations:

= =

Lemma 3.41. A compact category is a ribbon category.

Lemma ??. In a ribbon category, the following equations hold:

= = = =

108 / 3133.2 Pivotality
Thinking about ribbons inspires the following definition.

Definition 3.39. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)

∗ = θA∗ .

This is equivalent to either of these graphical equations:

= =

Lemma 3.41. A compact category is a ribbon category.

Lemma ??. In a ribbon category, the following equations hold:

= = = =

108 / 3133.2 Pivotality
Thinking about ribbons inspires the following definition.

Definition 3.39. A ribbon or tortile category is a balanced monoidal
category with duals, such that (θA)

∗ = θA∗ .

This is equivalent to either of these graphical equations:

= =

Lemma 3.41. A compact category is a ribbon category.

Lemma ??. In a ribbon category, the following equations hold:

= = = =

109 / 3133.2 Pivotality
These are the equations we would expect to be satisfied by ribbons.

Theorem 3.28. A well-formed equation between morphisms in a
ribbon category follows from the axioms if and only if it holds in
the graphical language up to framed isotopy in three dimensions.

‘Framed isotopy’ is the name for the version of isotopy where the
strands are thought of as ribbons, rather than just wires.

To get a feeling for framed isotopy, find some ribbons, or make
some by cutting long, thin strips from a piece of paper. Verify (109)
and (3.31), and also (3.24) specialized to ribbon categories:

=

109 / 3133.2 Pivotality
These are the equations we would expect to be satisfied by ribbons.

Theorem 3.28. A well-formed equation between morphisms in a
ribbon category follows from the axioms if and only if it holds in
the graphical language up to framed isotopy in three dimensions.

‘Framed isotopy’ is the name for the version of isotopy where the
strands are thought of as ribbons, rather than just wires.

To get a feeling for framed isotopy, find some ribbons, or make
some by cutting long, thin strips from a piece of paper. Verify (109)
and (3.31), and also (3.24) specialized to ribbon categories:

=

109 / 3133.2 Pivotality
These are the equations we would expect to be satisfied by ribbons.

Theorem 3.28. A well-formed equation between morphisms in a
ribbon category follows from the axioms if and only if it holds in
the graphical language up to framed isotopy in three dimensions.

‘Framed isotopy’ is the name for the version of isotopy where the
strands are thought of as ribbons, rather than just wires.

To get a feeling for framed isotopy, find some ribbons, or make
some by cutting long, thin strips from a piece of paper. Verify (109)
and (3.31), and also (3.24) specialized to ribbon categories:

=

110 / 3133.2 Pivotality

Lemma 3.45. In a monoidal dagger category, L ⊣ R ⇔ R ⊣ L.

Proof. Follows directly from the axiom (f ⊗ g)† = f † ⊗ g† of a
monoidal dagger category.

Definition 3.46. In a dagger category with a pivotal structure, a
dagger dual is a duality A ⊣ A∗ witnessed by morphisms I η A∗ ⊗ A
and A ⊗ A∗ ε I, satisfying the following condition:

η
= ε

110 / 3133.2 Pivotality

Lemma 3.45. In a monoidal dagger category, L ⊣ R ⇔ R ⊣ L.

Proof. Follows directly from the axiom (f ⊗ g)† = f † ⊗ g† of a
monoidal dagger category.

Definition 3.46. In a dagger category with a pivotal structure, a
dagger dual is a duality A ⊣ A∗ witnessed by morphisms I η A∗ ⊗ A
and A ⊗ A∗ ε I, satisfying the following condition:

η
= ε

110 / 3133.2 Pivotality

Lemma 3.45. In a monoidal dagger category, L ⊣ R ⇔ R ⊣ L.

Proof. Follows directly from the axiom (f ⊗ g)† = f † ⊗ g† of a
monoidal dagger category.

Definition 3.46. In a dagger category with a pivotal structure, a
dagger dual is a duality A ⊣ A∗ witnessed by morphisms I η A∗ ⊗ A
and A ⊗ A∗ ε I, satisfying the following condition:

η
= ε

111 / 3133.2 Pivotality
We can describe maximally entangled states like this.

Definition 3.47. In a dagger category with a pivotal structure, a
maximally entangled state is a bipartite state with this property:

η

η =
η

η =

Lemma 3.48. In a dagger category with a pivotal structure, a state
is maximally entangled if and only if it is part of a dagger duality.

Proof. We give the following graphical argument:

η

η =
ε

η

iso
=

ε

η

=

The rest of the proof is similar.

111 / 3133.2 Pivotality
We can describe maximally entangled states like this.

Definition 3.47. In a dagger category with a pivotal structure, a
maximally entangled state is a bipartite state with this property:

η

η =
η

η =

Lemma 3.48. In a dagger category with a pivotal structure, a state
is maximally entangled if and only if it is part of a dagger duality.

Proof. We give the following graphical argument:

η

η =
ε

η

iso
=

ε

η

=

The rest of the proof is similar.

111 / 3133.2 Pivotality
We can describe maximally entangled states like this.

Definition 3.47. In a dagger category with a pivotal structure, a
maximally entangled state is a bipartite state with this property:

η

η =
η

η =

Lemma 3.48. In a dagger category with a pivotal structure, a state
is maximally entangled if and only if it is part of a dagger duality.

Proof. We give the following graphical argument:

η

η =
ε

η

iso
=

ε

η

=

The rest of the proof is similar.

112 / 3133.2 Pivotality
Lemma 3.49. In a dagger category with a pivotal structure, dagger
duals are unique up to unique unitary isomorphism.

Proof. Given dagger duals (L ⊢ R, η, ε) and (L ⊢ R′, η′, ε′), we
construct an isomorphism R ≃ R′ as for Lemma 3.4 as follows:

η

ε′

To establish the first part of the unitarity condition, we perform the
following calculation:

η

ε′

ε′

η =

η

ε′

η′

η
iso
=

η

ε′

η′η =
η

η =

The rest is similar.

112 / 3133.2 Pivotality
Lemma 3.49. In a dagger category with a pivotal structure, dagger
duals are unique up to unique unitary isomorphism.

Proof. Given dagger duals (L ⊢ R, η, ε) and (L ⊢ R′, η′, ε′), we
construct an isomorphism R ≃ R′ as for Lemma 3.4 as follows:

η

ε′

To establish the first part of the unitarity condition, we perform the
following calculation:

η

ε′

ε′

η =

η

ε′

η′

η
iso
=

η

ε′

η′η =
η

η =

The rest is similar.

113 / 3133.2 Pivotality

We can use this to prove an important result about
maximally-entangled states.

Theorem 3.50. In a dagger category with a pivotal structure, for
any two maximally entangled states I η,η′ A ⊗ B there is a unique
unitary A f A satisfying the following equation:

η

f
=

η′

The proof follows from what we have just seen.

So maximally-entangled states are unique up to a unique unitary.

113 / 3133.2 Pivotality

We can use this to prove an important result about
maximally-entangled states.

Theorem 3.50. In a dagger category with a pivotal structure, for
any two maximally entangled states I η,η′ A ⊗ B there is a unique
unitary A f A satisfying the following equation:

η

f
=

η′

The proof follows from what we have just seen.

So maximally-entangled states are unique up to a unique unitary.

113 / 3133.2 Pivotality

We can use this to prove an important result about
maximally-entangled states.

Theorem 3.50. In a dagger category with a pivotal structure, for
any two maximally entangled states I η,η′ A ⊗ B there is a unique
unitary A f A satisfying the following equation:

η

f
=

η′

The proof follows from what we have just seen.

So maximally-entangled states are unique up to a unique unitary.

114 / 3133.2 Pivotality

Definition 3.51. A dagger pivotal category is a dagger monoidal
category with a pivotal structure, such that the chosen duals are all
dagger duals.

Lemma 3.52. In a pivotal dagger category, the pivotal structure is this:

πA =
ηA∗

ηA

Proof. See notes.

Theorem. In a dagger pivotal category, πA is unitary.

114 / 3133.2 Pivotality

Definition 3.51. A dagger pivotal category is a dagger monoidal
category with a pivotal structure, such that the chosen duals are all
dagger duals.

Lemma 3.52. In a pivotal dagger category, the pivotal structure is this:

πA =
ηA∗

ηA

Proof. See notes.

Theorem. In a dagger pivotal category, πA is unitary.

114 / 3133.2 Pivotality

Definition 3.51. A dagger pivotal category is a dagger monoidal
category with a pivotal structure, such that the chosen duals are all
dagger duals.

Lemma 3.52. In a pivotal dagger category, the pivotal structure is this:

πA =
ηA∗

ηA

Proof. See notes.

Theorem. In a dagger pivotal category, πA is unitary.

115 / 3133.2 Pivotality

Dagger pivotal categories have a good graphical calculus.

Lemma 3.54. In a dagger pivotal category, the following equations
hold: ()

†
=

()
†

=

Proof. We prove the first of these in the following way:()
†

=

(
ηA

)
†

=
ηA

=

ηA

ηA∗

εA∗

= πA

εA∗

=

The second then follows by uniqueness of counits.

115 / 3133.2 Pivotality

Dagger pivotal categories have a good graphical calculus.

Lemma 3.54. In a dagger pivotal category, the following equations
hold: ()

†
=

()
†

=

Proof. We prove the first of these in the following way:()
†

=

(
ηA

)
†

=
ηA

=

ηA

ηA∗

εA∗

= πA

εA∗

=

The second then follows by uniqueness of counits.

115 / 3133.2 Pivotality

Dagger pivotal categories have a good graphical calculus.

Lemma 3.54. In a dagger pivotal category, the following equations
hold: ()

†
=

()
†

=

Proof. We prove the first of these in the following way:()
†

=

(
ηA

)
†

=
ηA

=

ηA

ηA∗

εA∗

= πA

εA∗

=

The second then follows by uniqueness of counits.

115 / 3133.2 Pivotality

Dagger pivotal categories have a good graphical calculus.

Lemma 3.54. In a dagger pivotal category, the following equations
hold: ()

†
=

()
†

=

Proof. We prove the first of these in the following way:()
†

=

(
ηA

)
†

=
ηA

=

ηA

ηA∗

εA∗

= πA

εA∗

=

The second then follows by uniqueness of counits.

116 / 3133.2 Pivotality
Lemma 3.55. In a dagger pivotal category, every morphism satisfies
the following equation:

(f∗)† = (f †)∗

Proof. We compute both sides as follows:

(f∗)† =

 f


†

= f

(f †)∗ = f

These are isotopic, and hence equal by correctness of the graphical
calculus for pivotal categories.

116 / 3133.2 Pivotality
Lemma 3.55. In a dagger pivotal category, every morphism satisfies
the following equation:

(f∗)† = (f †)∗

Proof. We compute both sides as follows:

(f∗)† =

 f


†

= f

(f †)∗ = f

These are isotopic, and hence equal by correctness of the graphical
calculus for pivotal categories.

117 / 3133.2 Pivotality

Definition 3.56. On a dagger pivotal category, conjugation (−)∗ is
defined as the composite of the dagger functor and the right-duals
functor:

(−)∗ := (−)∗† = (−)†∗

Since taking daggers is the identity on objects we have A∗ := A∗.

We denote conjugation by flipping the morphism about a vertical axis:

f := f∗

Since (−)∗ and † are contravariant, (−)∗ is covariant.

117 / 3133.2 Pivotality

Definition 3.56. On a dagger pivotal category, conjugation (−)∗ is
defined as the composite of the dagger functor and the right-duals
functor:

(−)∗ := (−)∗† = (−)†∗

Since taking daggers is the identity on objects we have A∗ := A∗.

We denote conjugation by flipping the morphism about a vertical axis:

f := f∗

Since (−)∗ and † are contravariant, (−)∗ is covariant.

117 / 3133.2 Pivotality

Definition 3.56. On a dagger pivotal category, conjugation (−)∗ is
defined as the composite of the dagger functor and the right-duals
functor:

(−)∗ := (−)∗† = (−)†∗

Since taking daggers is the identity on objects we have A∗ := A∗.

We denote conjugation by flipping the morphism about a vertical axis:

f := f∗

Since (−)∗ and † are contravariant, (−)∗ is covariant.

118 / 3133.2 Pivotality

Definition 3.57. A dagger compact category is a symmetric dagger
pivotal category with unitary symmetry, and θ = id.

Example 3.58. Our example categories FHilb, MatC and Rel are all
dagger compact categories.

• On FHilb, the conjugation functor gives the conjugate of a
linear map.

• On MatC, the conjugation functor gives the conjugate of a
matrix, with each matrix entry replaced by its conjugate as a
complex number.

• On Rel, the conjugation functor is the identity.

118 / 3133.2 Pivotality

Definition 3.57. A dagger compact category is a symmetric dagger
pivotal category with unitary symmetry, and θ = id.

Example 3.58. Our example categories FHilb, MatC and Rel are all
dagger compact categories.

• On FHilb, the conjugation functor gives the conjugate of a
linear map.

• On MatC, the conjugation functor gives the conjugate of a
matrix, with each matrix entry replaced by its conjugate as a
complex number.

• On Rel, the conjugation functor is the identity.

119 / 3133.2 Pivotality

Definition 3.59. In a pivotal category, the trace of a morphism
A f A, denoted TrA(f), is the following scalar:

f

A trace can also be defined for a braided monoidal category with
duals, but we focus on the pivotal notion here.

Definition 3.60. In a pivotal category, the dimension of an object A
is the scalar dim(A) := TrA(idA).

The trace in FHilb is the ordinary matrix trace.

119 / 3133.2 Pivotality

Definition 3.59. In a pivotal category, the trace of a morphism
A f A, denoted TrA(f), is the following scalar:

f

A trace can also be defined for a braided monoidal category with
duals, but we focus on the pivotal notion here.

Definition 3.60. In a pivotal category, the dimension of an object A
is the scalar dim(A) := TrA(idA).

The trace in FHilb is the ordinary matrix trace.

119 / 3133.2 Pivotality

Definition 3.59. In a pivotal category, the trace of a morphism
A f A, denoted TrA(f), is the following scalar:

f

A trace can also be defined for a braided monoidal category with
duals, but we focus on the pivotal notion here.

Definition 3.60. In a pivotal category, the dimension of an object A
is the scalar dim(A) := TrA(idA).

The trace in FHilb is the ordinary matrix trace.

120 / 3133.2 Pivotality

We can prove the cyclic property abstractly.

Lemma 3.61. In a pivotal category, TrA(g ◦ f) = TrB(f ◦ g).

Proof. We can show this graphically in the following way:

f

g

= f g =
g

f

The morphism g slides around the circle, and ends up underneath
the morphism f .

120 / 3133.2 Pivotality

We can prove the cyclic property abstractly.

Lemma 3.61. In a pivotal category, TrA(g ◦ f) = TrB(f ◦ g).

Proof. We can show this graphically in the following way:

f

g

= f g =
g

f

The morphism g slides around the circle, and ends up underneath
the morphism f .

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

121 / 3133.2 Pivotality

Many more properties also follow.

Lemma 3.63. In a pivotal category, the trace has the following
properties:

(a) TrA(f + g) = TrA(f) + TrA(g);

(b) TrA⊕B

(
f g
h j

)
= TrA(f) + TrB(j);

(c) TrI(s) = s;

(d) TrA(0A,A) = 0I,I;

(e) TrA⊗B(f ⊗ g) = TrA(f) ◦ TrB(g) in a braided pivotal category;

(f)
(
TrA(f)

)†
= TrA(f †) in a dagger pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

122 / 3133.2 Pivotality

This immediately yields some properties of dimensions of objects.

Lemma 3.64. In a braided pivotal category, the following
properties hold:

(a) dim(A ⊕ B) = dim(A) + dim(B) if there are biproducts;

(b) dim(I) = idI;

(c) dim(0) = 0I,I if there is a zero object;

(d) A ≃ B ⇒ dim(A) = dim(B);

(e) dim(A ⊗ B) = dim(A) ◦ dim(B) in a braided pivotal category.

Proof. See notes.

123 / 3133.2 Pivotality

Using these results, we can give a simple argument that
infinite-dimensional Hilbert spaces cannot have duals.

Lemma 3.65. Infinite-dimensional Hilbert spaces do not have duals.

Proof. Suppose H is an infinite-dimensional Hilbert space. Then
there is an isomorphism H ⊕ C ≃ H.

If H had a dual, then since dim(A ⊕ B) = dim(A) + dim(B) and
A ≃ B ⇒ dim(A) = dim(B), we conclude dim(H) + 1 = dim(H).

But this is a contradiction, since there is no complex number with
that property.

This argument would not apply in Rel, since we have id1 + id1 = id1
in that category. And indeed, every set has a dual in Rel, even those
of infinite cardinality.

123 / 3133.2 Pivotality

Using these results, we can give a simple argument that
infinite-dimensional Hilbert spaces cannot have duals.

Lemma 3.65. Infinite-dimensional Hilbert spaces do not have duals.

Proof. Suppose H is an infinite-dimensional Hilbert space. Then
there is an isomorphism H ⊕ C ≃ H.

If H had a dual, then since dim(A ⊕ B) = dim(A) + dim(B) and
A ≃ B ⇒ dim(A) = dim(B), we conclude dim(H) + 1 = dim(H).

But this is a contradiction, since there is no complex number with
that property.

This argument would not apply in Rel, since we have id1 + id1 = id1
in that category. And indeed, every set has a dual in Rel, even those
of infinite cardinality.

123 / 3133.2 Pivotality

Using these results, we can give a simple argument that
infinite-dimensional Hilbert spaces cannot have duals.

Lemma 3.65. Infinite-dimensional Hilbert spaces do not have duals.

Proof. Suppose H is an infinite-dimensional Hilbert space. Then
there is an isomorphism H ⊕ C ≃ H.

If H had a dual, then since dim(A ⊕ B) = dim(A) + dim(B) and
A ≃ B ⇒ dim(A) = dim(B), we conclude dim(H) + 1 = dim(H).

But this is a contradiction, since there is no complex number with
that property.

This argument would not apply in Rel, since we have id1 + id1 = id1
in that category. And indeed, every set has a dual in Rel, even those
of infinite cardinality.

123 / 3133.2 Pivotality

Using these results, we can give a simple argument that
infinite-dimensional Hilbert spaces cannot have duals.

Lemma 3.65. Infinite-dimensional Hilbert spaces do not have duals.

Proof. Suppose H is an infinite-dimensional Hilbert space. Then
there is an isomorphism H ⊕ C ≃ H.

If H had a dual, then since dim(A ⊕ B) = dim(A) + dim(B) and
A ≃ B ⇒ dim(A) = dim(B), we conclude dim(H) + 1 = dim(H).

But this is a contradiction, since there is no complex number with
that property.

This argument would not apply in Rel, since we have id1 + id1 = id1
in that category. And indeed, every set has a dual in Rel, even those
of infinite cardinality.

123 / 3133.2 Pivotality

Using these results, we can give a simple argument that
infinite-dimensional Hilbert spaces cannot have duals.

Lemma 3.65. Infinite-dimensional Hilbert spaces do not have duals.

Proof. Suppose H is an infinite-dimensional Hilbert space. Then
there is an isomorphism H ⊕ C ≃ H.

If H had a dual, then since dim(A ⊕ B) = dim(A) + dim(B) and
A ≃ B ⇒ dim(A) = dim(B), we conclude dim(H) + 1 = dim(H).

But this is a contradiction, since there is no complex number with
that property.

This argument would not apply in Rel, since we have id1 + id1 = id1
in that category. And indeed, every set has a dual in Rel, even those
of infinite cardinality.

124 / 313

Chapter 4
Monoids and comonoids

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d
=

d

d

d

=
d

d e

d
= =

e

d

cocommutativity

coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d
=

d d

d

=
d

d

e

d
= =

e

d

cocommutativity coassociativity

counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d
=

d d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d
=

d d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.

It is cocommutative when it satisfies the extra axiom.

125 / 3134.1 Monoids and comonoids

Consider how to formalize a ‘copying’ operation on an object A.

Type should be A d A ⊗ A. What does it mean for d to copy?

• Shouldn’t matter if we switch both output copies.

• If copying twice, shouldn’t matter if take first or second copy.

• Output should equal input: uses deletion A e I.

d
=

d d

d

=
d

d e

d
= =

e

d

cocommutativity coassociativity counitality

Definition 4.1. In a monoidal category, a comonoid is a triple
(A, d : A A ⊗ A, e : A I) satisfying coassociativity and counitality.
It is cocommutative when it satisfies the extra axiom.

126 / 3134.1 Monoids and comonoids

Example 4.2. Here are some comonoids in our example categories.

• In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

• In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

• In FHilb, a basis choice {ei} for a Hilbert space gives a
cocommutative comonoid, with comultiplication ei 7→ ei ⊗ ei
and counit ei 7→ 1.

126 / 3134.1 Monoids and comonoids

Example 4.2. Here are some comonoids in our example categories.

• In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

• In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

• In FHilb, a basis choice {ei} for a Hilbert space gives a
cocommutative comonoid, with comultiplication ei 7→ ei ⊗ ei
and counit ei 7→ 1.

126 / 3134.1 Monoids and comonoids

Example 4.2. Here are some comonoids in our example categories.

• In Set, the tensor product is a Cartesian product.
Every object carries a unique comonoid with comultiplication
a 7→ (a, a) and counit a 7→ •, which is cocommutative.

• In Rel, any group G forms a comonoid with
comultiplication g ∼ (h, h−1g) and counit 1 ∼ •.
Counitality: LHS is g ∼ h where h−1g = 1, RHS is g ∼ 1−1g.
The comonoid is cocommutative iff the group is abelian.
Cocommutativity: LHS is g ∼ (h−1g, h), RHS is g ∼ (k, k−1g).

• In FHilb, a basis choice {ei} for a Hilbert space gives a
cocommutative comonoid, with comultiplication ei 7→ ei ⊗ ei
and counit ei 7→ 1.

127 / 3134.1 Monoids and comonoids
We can dualize these concepts:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Definition 4.3. In a monoidal category, a monoid is a triple (A,m, u)
satisfying associativity and unitality. It is commutative when it
satisfies the corresponding extra axiom.

Example 4.4. There are many examples of monoids:
• The tensor unit I, with multiplication ρI = λI and unit idI.
• A monoid in Set is just an ordinary monoid; e.g. any group.
• A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.

127 / 3134.1 Monoids and comonoids
We can dualize these concepts:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Definition 4.3. In a monoidal category, a monoid is a triple (A,m, u)
satisfying associativity and unitality. It is commutative when it
satisfies the corresponding extra axiom.

Example 4.4. There are many examples of monoids:
• The tensor unit I, with multiplication ρI = λI and unit idI.
• A monoid in Set is just an ordinary monoid; e.g. any group.
• A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.

127 / 3134.1 Monoids and comonoids
We can dualize these concepts:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Definition 4.3. In a monoidal category, a monoid is a triple (A,m, u)
satisfying associativity and unitality. It is commutative when it
satisfies the corresponding extra axiom.

Example 4.4. There are many examples of monoids:
• The tensor unit I, with multiplication ρI = λI and unit idI.

• A monoid in Set is just an ordinary monoid; e.g. any group.
• A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.

127 / 3134.1 Monoids and comonoids
We can dualize these concepts:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Definition 4.3. In a monoidal category, a monoid is a triple (A,m, u)
satisfying associativity and unitality. It is commutative when it
satisfies the corresponding extra axiom.

Example 4.4. There are many examples of monoids:
• The tensor unit I, with multiplication ρI = λI and unit idI.
• A monoid in Set is just an ordinary monoid; e.g. any group.

• A monoid in Vect is an algebra: a set where we can add vectors
and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.

127 / 3134.1 Monoids and comonoids
We can dualize these concepts:

m

=

m m

m
=

m

m u

m
= =

u

m

commutativity associativity unitality

Definition 4.3. In a monoidal category, a monoid is a triple (A,m, u)
satisfying associativity and unitality. It is commutative when it
satisfies the corresponding extra axiom.

Example 4.4. There are many examples of monoids:
• The tensor unit I, with multiplication ρI = λI and unit idI.
• A monoid in Set is just an ordinary monoid; e.g. any group.
• A monoid in Vect is an algebra: a set where we can add vectors

and multiply with scalars, and also multiply vectors bilinearly.
E.g. Cn under pointwise multiplication and unit (1,1, . . . ,1).
E.g. vector space of n-by-n matrices with matrix multiplication.

128 / 3134.1 Monoids and comonoids

Will abbreviate comultiplication to , counit to ,
and multiplication to , unit to . Use colour to differentiate.

Choice of bases {di} and {ej} for H and K in FHilb makes them into
comonoids. The functions f : {di} {ej} play a special role: they
respect the comultiplication and counit.

Definition 4.5. A comonoid homomorphism from a comonoid
(A, ,) to a comonoid (B, ,) is a morphism A f B such that:

f
=

f f

f
=

Dual notion: monoid homomorphism.

Given a monoidal category, we can build new category with objects
(co)monoids, and morphisms (co)monoid homomorphisms.

128 / 3134.1 Monoids and comonoids

Will abbreviate comultiplication to , counit to ,
and multiplication to , unit to . Use colour to differentiate.

Choice of bases {di} and {ej} for H and K in FHilb makes them into
comonoids. The functions f : {di} {ej} play a special role: they
respect the comultiplication and counit.

Definition 4.5. A comonoid homomorphism from a comonoid
(A, ,) to a comonoid (B, ,) is a morphism A f B such that:

f
=

f f

f
=

Dual notion: monoid homomorphism.

Given a monoidal category, we can build new category with objects
(co)monoids, and morphisms (co)monoid homomorphisms.

128 / 3134.1 Monoids and comonoids

Will abbreviate comultiplication to , counit to ,
and multiplication to , unit to . Use colour to differentiate.

Choice of bases {di} and {ej} for H and K in FHilb makes them into
comonoids. The functions f : {di} {ej} play a special role: they
respect the comultiplication and counit.

Definition 4.5. A comonoid homomorphism from a comonoid
(A, ,) to a comonoid (B, ,) is a morphism A f B such that:

f
=

f f

f
=

Dual notion: monoid homomorphism.

Given a monoidal category, we can build new category with objects
(co)monoids, and morphisms (co)monoid homomorphisms.

128 / 3134.1 Monoids and comonoids

Will abbreviate comultiplication to , counit to ,
and multiplication to , unit to . Use colour to differentiate.

Choice of bases {di} and {ej} for H and K in FHilb makes them into
comonoids. The functions f : {di} {ej} play a special role: they
respect the comultiplication and counit.

Definition 4.5. A comonoid homomorphism from a comonoid
(A, ,) to a comonoid (B, ,) is a morphism A f B such that:

f
=

f f

f
=

Dual notion: monoid homomorphism.

Given a monoidal category, we can build new category with objects
(co)monoids, and morphisms (co)monoid homomorphisms.

128 / 3134.1 Monoids and comonoids

Will abbreviate comultiplication to , counit to ,
and multiplication to , unit to . Use colour to differentiate.

Choice of bases {di} and {ej} for H and K in FHilb makes them into
comonoids. The functions f : {di} {ej} play a special role: they
respect the comultiplication and counit.

Definition 4.5. A comonoid homomorphism from a comonoid
(A, ,) to a comonoid (B, ,) is a morphism A f B such that:

f
=

f f

f
=

Dual notion: monoid homomorphism.

Given a monoidal category, we can build new category with objects
(co)monoids, and morphisms (co)monoid homomorphisms.

129 / 3134.1 Monoids and comonoids

Example 4.6. Consider again our examples of comonoids.

• In Set, any function A f B is a comonoid homomorphism:
(f × f)(a, a) =

(
f(a), f(a)

)
, and f(a) = •.

• In Rel, any surjective homomorphism G f H of groups is a
comonoid homomorphism. Preservation of comultiplication:
LHS is g ∼ (h, h−1f(g)), RHS is g ∼ (f(g′), f(g′)−1f(g)).

• In FHilb, any function {ai}
f {bj} between bases extends

linearly to a comonoid homomorphism:
d′(f(ai)) = f(ai)⊗ f(ai) and e′(f(ai)) = 1 = e(ai).

129 / 3134.1 Monoids and comonoids

Example 4.6. Consider again our examples of comonoids.

• In Set, any function A f B is a comonoid homomorphism:
(f × f)(a, a) =

(
f(a), f(a)

)
, and f(a) = •.

• In Rel, any surjective homomorphism G f H of groups is a
comonoid homomorphism. Preservation of comultiplication:
LHS is g ∼ (h, h−1f(g)), RHS is g ∼ (f(g′), f(g′)−1f(g)).

• In FHilb, any function {ai}
f {bj} between bases extends

linearly to a comonoid homomorphism:
d′(f(ai)) = f(ai)⊗ f(ai) and e′(f(ai)) = 1 = e(ai).

129 / 3134.1 Monoids and comonoids

Example 4.6. Consider again our examples of comonoids.

• In Set, any function A f B is a comonoid homomorphism:
(f × f)(a, a) =

(
f(a), f(a)

)
, and f(a) = •.

• In Rel, any surjective homomorphism G f H of groups is a
comonoid homomorphism. Preservation of comultiplication:
LHS is g ∼ (h, h−1f(g)), RHS is g ∼ (f(g′), f(g′)−1f(g)).

• In FHilb, any function {ai}
f {bj} between bases extends

linearly to a comonoid homomorphism:
d′(f(ai)) = f(ai)⊗ f(ai) and e′(f(ai)) = 1 = e(ai).

130 / 3134.1 Monoids and comonoids
Can combine two (co)monoids to single one on tensor product.

Lemma 4.8. In a braided monoidal category, given a pair of
comonoids, we can produce a new comonoid:

When braiding is symmetry, this gives a categorical product in the
category of comonoids.

Example 4.9. Products of our example comonoids:
• In Set, the product comonoid on sets A and B is the unique

comonoid on A × B.

• In Rel, the product comonoid of groups G and H is comonoid
of G × H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

• In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.

130 / 3134.1 Monoids and comonoids
Can combine two (co)monoids to single one on tensor product.

Lemma 4.8. In a braided monoidal category, given a pair of
comonoids, we can produce a new comonoid:

When braiding is symmetry, this gives a categorical product in the
category of comonoids.

Example 4.9. Products of our example comonoids:
• In Set, the product comonoid on sets A and B is the unique

comonoid on A × B.

• In Rel, the product comonoid of groups G and H is comonoid
of G × H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

• In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.

130 / 3134.1 Monoids and comonoids
Can combine two (co)monoids to single one on tensor product.

Lemma 4.8. In a braided monoidal category, given a pair of
comonoids, we can produce a new comonoid:

When braiding is symmetry, this gives a categorical product in the
category of comonoids.

Example 4.9. Products of our example comonoids:
• In Set, the product comonoid on sets A and B is the unique

comonoid on A × B.

• In Rel, the product comonoid of groups G and H is comonoid
of G × H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

• In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.

130 / 3134.1 Monoids and comonoids
Can combine two (co)monoids to single one on tensor product.

Lemma 4.8. In a braided monoidal category, given a pair of
comonoids, we can produce a new comonoid:

When braiding is symmetry, this gives a categorical product in the
category of comonoids.

Example 4.9. Products of our example comonoids:
• In Set, the product comonoid on sets A and B is the unique

comonoid on A × B.

• In Rel, the product comonoid of groups G and H is comonoid
of G × H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

• In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.

130 / 3134.1 Monoids and comonoids
Can combine two (co)monoids to single one on tensor product.

Lemma 4.8. In a braided monoidal category, given a pair of
comonoids, we can produce a new comonoid:

When braiding is symmetry, this gives a categorical product in the
category of comonoids.

Example 4.9. Products of our example comonoids:
• In Set, the product comonoid on sets A and B is the unique

comonoid on A × B.

• In Rel, the product comonoid of groups G and H is comonoid
of G × H with multiplication (g1, h1)(g2, h2) = (g1g2, h1h2).

• In FHilb, the product of comonoids on H and K that copy bases
{di} and {ej} is the comonoid copying basis {di ⊗ ej} of H ⊗ K.

131 / 3134.1 Monoids and comonoids

In a monoidal dagger category there is duality between monoids
and comonoids.

Lemma 4.10. In a monoidal dagger category, (A, d, e) is a comonoid
if and only if (A, d†, e†) is a monoid.

This relates our previous examples in Rel:

• Dagger in Rel constructs converse relation. Comultiplication
g ∼ (h, h−1g) for group G turns into multiplication (g, h) ∼ gh.

131 / 3134.1 Monoids and comonoids

In a monoidal dagger category there is duality between monoids
and comonoids.

Lemma 4.10. In a monoidal dagger category, (A, d, e) is a comonoid
if and only if (A, d†, e†) is a monoid.

This relates our previous examples in Rel:

• Dagger in Rel constructs converse relation. Comultiplication
g ∼ (h, h−1g) for group G turns into multiplication (g, h) ∼ gh.

132 / 3134.1 Monoids and comonoids

Lemma 4.11. If A ⊣ A∗ are dual objects in a monoidal category,
then A∗ ⊗ A is a monoid as follows:

A

A

A A A

A

A A

Proof.

= =

=

132 / 3134.1 Monoids and comonoids

Lemma 4.11. If A ⊣ A∗ are dual objects in a monoidal category,
then A∗ ⊗ A is a monoid as follows:

A

A

A A A

A

A A

Proof.

= =

=

133 / 3134.1 Monoids and comonoids

Example 4.12. The pair of pants algebra on Cn in FHilb is the
algebra Mn of n-by-n matrices under matrix multiplication.

Proof. Fix basis {|i⟩} for A = Cn, so A∗ ⊗ A has basis {⟨j| ⊗ |i⟩}.

Define map A∗ ⊗ A Mn by mapping ⟨j| ⊗ |i⟩ to the matrix eij, with
a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
⟨i| ⊗ |l⟩ if j = k
0 if j ̸= k

]
7−→

[
eil if j = k
0 if j ̸= k

]
= eijekl

This completes the proof.

133 / 3134.1 Monoids and comonoids

Example 4.12. The pair of pants algebra on Cn in FHilb is the
algebra Mn of n-by-n matrices under matrix multiplication.

Proof. Fix basis {|i⟩} for A = Cn, so A∗ ⊗ A has basis {⟨j| ⊗ |i⟩}.

Define map A∗ ⊗ A Mn by mapping ⟨j| ⊗ |i⟩ to the matrix eij, with
a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
⟨i| ⊗ |l⟩ if j = k
0 if j ̸= k

]
7−→

[
eil if j = k
0 if j ̸= k

]
= eijekl

This completes the proof.

133 / 3134.1 Monoids and comonoids

Example 4.12. The pair of pants algebra on Cn in FHilb is the
algebra Mn of n-by-n matrices under matrix multiplication.

Proof. Fix basis {|i⟩} for A = Cn, so A∗ ⊗ A has basis {⟨j| ⊗ |i⟩}.

Define map A∗ ⊗ A Mn by mapping ⟨j| ⊗ |i⟩ to the matrix eij, with
a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
⟨i| ⊗ |l⟩ if j = k
0 if j ̸= k

]
7−→

[
eil if j = k
0 if j ̸= k

]
= eijekl

This completes the proof.

133 / 3134.1 Monoids and comonoids

Example 4.12. The pair of pants algebra on Cn in FHilb is the
algebra Mn of n-by-n matrices under matrix multiplication.

Proof. Fix basis {|i⟩} for A = Cn, so A∗ ⊗ A has basis {⟨j| ⊗ |i⟩}.

Define map A∗ ⊗ A Mn by mapping ⟨j| ⊗ |i⟩ to the matrix eij, with
a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
⟨i| ⊗ |l⟩ if j = k
0 if j ̸= k

]
7−→

[
eil if j = k
0 if j ̸= k

]
= eijekl

This completes the proof.

133 / 3134.1 Monoids and comonoids

Example 4.12. The pair of pants algebra on Cn in FHilb is the
algebra Mn of n-by-n matrices under matrix multiplication.

Proof. Fix basis {|i⟩} for A = Cn, so A∗ ⊗ A has basis {⟨j| ⊗ |i⟩}.

Define map A∗ ⊗ A Mn by mapping ⟨j| ⊗ |i⟩ to the matrix eij, with
a single entry 1 on row i and column j and zeroes elsewhere.

This bijection respects multiplication:

i j k l

=

[
⟨i| ⊗ |l⟩ if j = k
0 if j ̸= k

]
7−→

[
eil if j = k
0 if j ̸= k

]
= eijekl

This completes the proof.

134 / 3134.1 Monoids and comonoids
Proposition 4.13. Any monoid (A, ,) in a monoidal category
with A ⊣ A∗ has retractable monoid homomorphism to (A∗ ⊗ A, ,).

R =

Proof. R preserves units:

R (4.13)
=

(4.5)
=

R preserves multiplication:

R
(4.13)
=

(4.4)
(3.4)
=

(4.13)
=

R R

Finally, R has a retraction given by .

134 / 3134.1 Monoids and comonoids
Proposition 4.13. Any monoid (A, ,) in a monoidal category
with A ⊣ A∗ has retractable monoid homomorphism to (A∗ ⊗ A, ,).

R =

Proof. R preserves units:

R (4.13)
=

(4.5)
=

R preserves multiplication:

R
(4.13)
=

(4.4)
(3.4)
=

(4.13)
=

R R

Finally, R has a retraction given by .

134 / 3134.1 Monoids and comonoids
Proposition 4.13. Any monoid (A, ,) in a monoidal category
with A ⊣ A∗ has retractable monoid homomorphism to (A∗ ⊗ A, ,).

R =

Proof. R preserves units:

R (4.13)
=

(4.5)
=

R preserves multiplication:

R
(4.13)
=

(4.4)
(3.4)
=

(4.13)
=

R R

Finally, R has a retraction given by .

135 / 3134.2 Uniform deleting and copying

Counit A e I tells us we can ‘delete’ A if we want to.

What does it mean to have deletion systematically on every object?

Definition 4.14. A monoidal category has uniform deleting if there
is a natural transformation A eA−→ I with eI = idI, such that:

A ⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Proposition 4.15. A monoidal category has uniform deleting just
when I is a terminal object.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.

135 / 3134.2 Uniform deleting and copying

Counit A e I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

Definition 4.14. A monoidal category has uniform deleting if there
is a natural transformation A eA−→ I with eI = idI, such that:

A ⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Proposition 4.15. A monoidal category has uniform deleting just
when I is a terminal object.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.

135 / 3134.2 Uniform deleting and copying

Counit A e I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

Definition 4.14. A monoidal category has uniform deleting if there
is a natural transformation A eA−→ I with eI = idI, such that:

A ⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Proposition 4.15. A monoidal category has uniform deleting just
when I is a terminal object.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.

135 / 3134.2 Uniform deleting and copying

Counit A e I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

Definition 4.14. A monoidal category has uniform deleting if there
is a natural transformation A eA−→ I with eI = idI, such that:

A ⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Proposition 4.15. A monoidal category has uniform deleting just
when I is a terminal object.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.

135 / 3134.2 Uniform deleting and copying

Counit A e I tells us we can ‘delete’ A if we want to.
What does it mean to have deletion systematically on every object?

Definition 4.14. A monoidal category has uniform deleting if there
is a natural transformation A eA−→ I with eI = idI, such that:

A ⊗ B

I ⊗ I I

eA ⊗ eB eA⊗B

λI

Proposition 4.15. A monoidal category has uniform deleting just
when I is a terminal object.

Proof. Uniform deleting gives a morphism A eA I for each object A.
Naturality and eI = idI then show any morphism A f I equals eA.
Conversely, if I is terminal, choose eA : A I uniquely.

136 / 3134.2 Uniform deleting and copying

Uniform deleting makes compact categories collapse.

Definition 4.19. A preorder is a category that has at most one
morphism A B for any pair of objects A,B.

Preorders are degenerate, with only one process of each type.

Theorem 4.20. If a monoidal category with duals has uniform
deleting, then it is a preorder.

Proof. Let A f ,g−→ B be morphisms. Naturality of e gives:

A ⊗ B∗ I

I I

eA⊗B∗

⌞f⌟ idI
eI = idI

So ⌞f⌟ = eA⊗B∗ , and similarly ⌞g⌟ = eA⊗B∗ . Hence f = g.

136 / 3134.2 Uniform deleting and copying

Uniform deleting makes compact categories collapse.

Definition 4.19. A preorder is a category that has at most one
morphism A B for any pair of objects A,B.

Preorders are degenerate, with only one process of each type.

Theorem 4.20. If a monoidal category with duals has uniform
deleting, then it is a preorder.

Proof. Let A f ,g−→ B be morphisms. Naturality of e gives:

A ⊗ B∗ I

I I

eA⊗B∗

⌞f⌟ idI
eI = idI

So ⌞f⌟ = eA⊗B∗ , and similarly ⌞g⌟ = eA⊗B∗ . Hence f = g.

136 / 3134.2 Uniform deleting and copying

Uniform deleting makes compact categories collapse.

Definition 4.19. A preorder is a category that has at most one
morphism A B for any pair of objects A,B.

Preorders are degenerate, with only one process of each type.

Theorem 4.20. If a monoidal category with duals has uniform
deleting, then it is a preorder.

Proof. Let A f ,g−→ B be morphisms. Naturality of e gives:

A ⊗ B∗ I

I I

eA⊗B∗

⌞f⌟ idI
eI = idI

So ⌞f⌟ = eA⊗B∗ , and similarly ⌞g⌟ = eA⊗B∗ . Hence f = g.

136 / 3134.2 Uniform deleting and copying

Uniform deleting makes compact categories collapse.

Definition 4.19. A preorder is a category that has at most one
morphism A B for any pair of objects A,B.

Preorders are degenerate, with only one process of each type.

Theorem 4.20. If a monoidal category with duals has uniform
deleting, then it is a preorder.

Proof. Let A f ,g−→ B be morphisms. Naturality of e gives:

A ⊗ B∗ I

I I

eA⊗B∗

⌞f⌟ idI
eI = idI

So ⌞f⌟ = eA⊗B∗ , and similarly ⌞g⌟ = eA⊗B∗ . Hence f = g.

137 / 3134.2 Uniform deleting and copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

Definition 4.21. A braided monoidal category has uniform copying
if there is a natural transformation A dA A ⊗ A with dI = ρI,
satisfying cocommutativity and coassociativity, and:

A B

A BB A

dA dB =

A B BA

BA

dA⊗B

Naturality and dI = ρI look like this for arbitrary A f B:

A

B B

dA

f f
=

A

B B

f

dB
dI =

137 / 3134.2 Uniform deleting and copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

Definition 4.21. A braided monoidal category has uniform copying
if there is a natural transformation A dA A ⊗ A with dI = ρI,
satisfying cocommutativity and coassociativity, and:

A B

A BB A

dA dB =

A B BA

BA

dA⊗B

Naturality and dI = ρI look like this for arbitrary A f B:

A

B B

dA

f f
=

A

B B

f

dB
dI =

137 / 3134.2 Uniform deleting and copying
Question: what does it mean to copy objects systematically?
Answer: copying must respect composition, tensor products.

Definition 4.21. A braided monoidal category has uniform copying
if there is a natural transformation A dA A ⊗ A with dI = ρI,
satisfying cocommutativity and coassociativity, and:

A B

A BB A

dA dB =

A B BA

BA

dA⊗B

Naturality and dI = ρI look like this for arbitrary A f B:

A

B B

dA

f f
=

A

B B

f

dB
dI =

138 / 3134.2 Uniform deleting and copying

Example 4.22. The monoidal category Set has uniform copying,
with maps a 7→ (a, a). We see that d1(•) = (•, •) = ρ1(•), and both
maps A × B A × B × A × B are (a, b) 7→ (a, b, a, b).

Definition 4.23. In a braided monoidal category, a state I u A is
copyable with respect to a map A dA A ⊗ A when:

u

dA
=

u u

Proposition 4.24. In a braided monoidal category with uniform
copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the
copying maps, we have dA ◦ u = (u⊗ u) ◦ ρI for each state I u A.

138 / 3134.2 Uniform deleting and copying

Example 4.22. The monoidal category Set has uniform copying,
with maps a 7→ (a, a). We see that d1(•) = (•, •) = ρ1(•), and both
maps A × B A × B × A × B are (a, b) 7→ (a, b, a, b).

Definition 4.23. In a braided monoidal category, a state I u A is
copyable with respect to a map A dA A ⊗ A when:

u

dA
=

u u

Proposition 4.24. In a braided monoidal category with uniform
copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the
copying maps, we have dA ◦ u = (u⊗ u) ◦ ρI for each state I u A.

138 / 3134.2 Uniform deleting and copying

Example 4.22. The monoidal category Set has uniform copying,
with maps a 7→ (a, a). We see that d1(•) = (•, •) = ρ1(•), and both
maps A × B A × B × A × B are (a, b) 7→ (a, b, a, b).

Definition 4.23. In a braided monoidal category, a state I u A is
copyable with respect to a map A dA A ⊗ A when:

u

dA
=

u u

Proposition 4.24. In a braided monoidal category with uniform
copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the
copying maps, we have dA ◦ u = (u⊗ u) ◦ ρI for each state I u A.

138 / 3134.2 Uniform deleting and copying

Example 4.22. The monoidal category Set has uniform copying,
with maps a 7→ (a, a). We see that d1(•) = (•, •) = ρ1(•), and both
maps A × B A × B × A × B are (a, b) 7→ (a, b, a, b).

Definition 4.23. In a braided monoidal category, a state I u A is
copyable with respect to a map A dA A ⊗ A when:

u

dA
=

u u

Proposition 4.24. In a braided monoidal category with uniform
copying, any state is copyable.

Proof. If there is uniform copying, then, by naturality of the
copying maps, we have dA ◦ u = (u⊗ u) ◦ ρI for each state I u A.

139 / 3134.2 Uniform deleting and copying
We now investigate braided monoidal categories with duals and
uniform copying.

Lemma 4.25. If a braided monoidal category with duals has
uniform copying, then:

A∗ A A∗ A =

A∗ A A∗ A

Proof. First, consider the following equality (∗):

A∗ A A∗ A (4.16)
=

A∗ A A∗ A

dI

(4.16)
= dA∗⊗A

(4.15)
= dA∗ dA

Then:

A∗ A A∗ A (∗)
= dA∗ dA

(4.1)
=

dA∗ dA

(∗)
=

A∗ A A∗ A

139 / 3134.2 Uniform deleting and copying
We now investigate braided monoidal categories with duals and
uniform copying.

Lemma 4.25. If a braided monoidal category with duals has
uniform copying, then:

A∗ A A∗ A =

A∗ A A∗ A

Proof. First, consider the following equality (∗):

A∗ A A∗ A (4.16)
=

A∗ A A∗ A

dI

(4.16)
= dA∗⊗A

(4.15)
= dA∗ dA

Then:

A∗ A A∗ A (∗)
= dA∗ dA

(4.1)
=

dA∗ dA

(∗)
=

A∗ A A∗ A

139 / 3134.2 Uniform deleting and copying
We now investigate braided monoidal categories with duals and
uniform copying.

Lemma 4.25. If a braided monoidal category with duals has
uniform copying, then:

A∗ A A∗ A =

A∗ A A∗ A

Proof. First, consider the following equality (∗):

A∗ A A∗ A (4.16)
=

A∗ A A∗ A

dI

(4.16)
= dA∗⊗A

(4.15)
= dA∗ dA

Then:

A∗ A A∗ A (∗)
= dA∗ dA

(4.1)
=

dA∗ dA

(∗)
=

A∗ A A∗ A

139 / 3134.2 Uniform deleting and copying
We now investigate braided monoidal categories with duals and
uniform copying.

Lemma 4.25. If a braided monoidal category with duals has
uniform copying, then:

A∗ A A∗ A =

A∗ A A∗ A

Proof. First, consider the following equality (∗):

A∗ A A∗ A (4.16)
=

A∗ A A∗ A

dI

(4.16)
= dA∗⊗A

(4.15)
= dA∗ dA

Then:

A∗ A A∗ A (∗)
= dA∗ dA

(4.1)
=

dA∗ dA

(∗)
=

A∗ A A∗ A

140 / 3134.2 Uniform deleting and copying

Theorem 4.27. In a braided monoidal category with duals and
uniform copying, the braiding is the identity:

A A

A A

=
A A

A A

(∗)

Proof. We show this as follows:

A A

A A

iso
=

(4.18)
=

iso
=

A A

A A

This completes the proof.

140 / 3134.2 Uniform deleting and copying

Theorem 4.27. In a braided monoidal category with duals and
uniform copying, the braiding is the identity:

A A

A A

=
A A

A A

(∗)

Proof. We show this as follows:

A A

A A

iso
=

(4.18)
=

iso
=

A A

A A

This completes the proof.

141 / 3134.2 Uniform deleting and copying
Theorem 4.27. If a braided monoidal category with duals has
uniform copying, every endomorphism is a multiple of the identity:

f =
f

Proof. We perform the following calculation:

f
(3.4)
=

A

A

f iso
=

A

A

f
(∗)
=

f

This completes the proof.

141 / 3134.2 Uniform deleting and copying
Theorem 4.27. If a braided monoidal category with duals has
uniform copying, every endomorphism is a multiple of the identity:

f =
f

Proof. We perform the following calculation:

f
(3.4)
=

A

A

f iso
=

A

A

f
(∗)
=

f

This completes the proof.

142 / 3134.4 Products

Theorem 4.28. The following are equivalent for a symmetric
monoidal category:

• tensor products are products and the tensor unit is terminal;

• it has uniform copying and deleting, satisfying counitality.

Proof. If category is cartesian, the unique morphism A eA I and
dA =

(
idA
idA

)
provide uniform copying and deleting.

For the converse, need to prove A ⊗ B is a product of A,B. For C f A
and C g B, define(

f
g

)
= (f ⊗ g) ◦ d

pA = ρA ◦ (idA ⊗ eB) : A ⊗ B A
pB = λB ◦ (eA ⊗ idB) : A ⊗ B B

142 / 3134.4 Products

Theorem 4.28. The following are equivalent for a symmetric
monoidal category:

• tensor products are products and the tensor unit is terminal;

• it has uniform copying and deleting, satisfying counitality.

Proof. If category is cartesian, the unique morphism A eA I and
dA =

(
idA
idA

)
provide uniform copying and deleting.

For the converse, need to prove A ⊗ B is a product of A,B. For C f A
and C g B, define(

f
g

)
= (f ⊗ g) ◦ d

pA = ρA ◦ (idA ⊗ eB) : A ⊗ B A
pB = λB ◦ (eA ⊗ idB) : A ⊗ B B

142 / 3134.4 Products

Theorem 4.28. The following are equivalent for a symmetric
monoidal category:

• tensor products are products and the tensor unit is terminal;

• it has uniform copying and deleting, satisfying counitality.

Proof. If category is cartesian, the unique morphism A eA I and
dA =

(
idA
idA

)
provide uniform copying and deleting.

For the converse, need to prove A ⊗ B is a product of A,B. For C f A
and C g B, define(

f
g

)
= (f ⊗ g) ◦ d

pA = ρA ◦ (idA ⊗ eB) : A ⊗ B A
pB = λB ◦ (eA ⊗ idB) : A ⊗ B B

143 / 3134.4 Products
Proof. (continued) Suppose C m A ⊗ B satisfies pA ◦ m = f and
pB ◦ m = g.

Then:

(
f
g

)
=

f

dC

g

=

eAeB

m

dC

m =

eAeB

dA⊗B

m

(4.15)
=

eAeB

dA

m

dB

(4.3)
= m

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

pB ◦
(

f
g

)
=

eA

f

dC

g =

eC

dC

g

= g

A similar result holds for g.

143 / 3134.4 Products
Proof. (continued) Suppose C m A ⊗ B satisfies pA ◦ m = f and
pB ◦ m = g. Then:

(
f
g

)
=

f

dC

g

=

eAeB

m

dC

m =

eAeB

dA⊗B

m

(4.15)
=

eAeB

dA

m

dB

(4.3)
= m

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

pB ◦
(

f
g

)
=

eA

f

dC

g =

eC

dC

g

= g

A similar result holds for g.

143 / 3134.4 Products
Proof. (continued) Suppose C m A ⊗ B satisfies pA ◦ m = f and
pB ◦ m = g. Then:

(
f
g

)
=

f

dC

g

=

eAeB

m

dC

m =

eAeB

dA⊗B

m

(4.15)
=

eAeB

dA

m

dB

(4.3)
= m

Hence mediating morphisms, if they exist, are unique.

Finally, we show the universal morphism has the right properties:

pB ◦
(

f
g

)
=

eA

f

dC

g =

eC

dC

g

= g

A similar result holds for g.

144 / 313

Chapter 5
Frobenius structures

145 / 3135.1 Frobenius structures

Orthonormal basis {ei} for H in FHilb gives comonoid : ei 7→ ei ⊗ ei.
Its adjoint is comparison: ei ⊗ ei 7→ ei and ei ⊗ ej 7→ 0 if i ̸= j.

These cooperate:

ei ej

=

 ei ej if i = j

0 if i ̸= j

 =

ejei

This monoid/comonoid interaction is called the Frobenius law.

145 / 3135.1 Frobenius structures

Orthonormal basis {ei} for H in FHilb gives comonoid : ei 7→ ei ⊗ ei.
Its adjoint is comparison: ei ⊗ ei 7→ ei and ei ⊗ ej 7→ 0 if i ̸= j.

These cooperate:

ei ej

=

 ei ej if i = j

0 if i ̸= j

 =

ejei

This monoid/comonoid interaction is called the Frobenius law.

145 / 3135.1 Frobenius structures

Orthonormal basis {ei} for H in FHilb gives comonoid : ei 7→ ei ⊗ ei.
Its adjoint is comparison: ei ⊗ ei 7→ ei and ei ⊗ ej 7→ 0 if i ̸= j.

These cooperate:

ei ej

=

 ei ej if i = j

0 if i ̸= j

 =

ejei

This monoid/comonoid interaction is called the Frobenius law.

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.

Adjoint: :
∑

h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.
Frobenius law: LHS(g ⊗ h) =

∑
k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .

Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

146 / 3135.1 Frobenius structures

Definition 5.1. In a monoidal category, a Frobenius structure is a
comonoid (A, ,) and monoid (A, ,) satisfying the Frobenius law:

=

If = , this is called dagger Frobenius structure.

Examples of dagger Frobenius structures:

• In FHilb: a Hilbert space equipped with an orthogonal basis

• In FHilb: let G be finite group, spanning Hilbert space A.
Define group algebra : g ⊗ h 7→ gh, and : z 7→ z · 1G.
Adjoint: :

∑
h∈G gh−1 ⊗ h, and : 1G 7→ g and 1G ̸= g 7→ 0.

Frobenius law: LHS(g ⊗ h) =
∑

k∈G gk−1 ⊗ kh = RHS(g ⊗ h).

• In Rel: let G be groupoid.
Monoid in Rel: : (g, h) ∼ g ◦ h, and : • ∼ idX .
Frobenius law: (g, h) ∼ (a, b ◦ h) for g = a ◦ b, t(h) = s(b).

147 / 3135.1 Frobenius structures

Lemma 5.9. In a dagger pivotal category, if A ⊣ A∗, the pair of
pants monoid A∗ ⊗ A carries a dagger Frobenius structure.

Proof. The adjunction properties follow from the graphical calculus
for dagger pivotal categories.

The Frobenius law is verified as follows:

=

147 / 3135.1 Frobenius structures

Lemma 5.9. In a dagger pivotal category, if A ⊣ A∗, the pair of
pants monoid A∗ ⊗ A carries a dagger Frobenius structure.

Proof. The adjunction properties follow from the graphical calculus
for dagger pivotal categories.

The Frobenius law is verified as follows:

=

148 / 3135.1 Frobenius structures

Lemma 5.4. Any Frobenius structure satisfies:

= =

Proof. Let’s prove the first equality:

(4.3)
=

(5.1)
=

(4.2)
=

(5.1)
=

(4.3)
=

.

148 / 3135.1 Frobenius structures

Lemma 5.4. Any Frobenius structure satisfies:

= =

Proof. Let’s prove the first equality:

(4.3)
=

(5.1)
=

(4.2)
=

(5.1)
=

(4.3)
=

.

149 / 3135.1 Frobenius structures

Theorem 5.15. If (A, , , ,) Frobenius structure in monoidal
category, then A ⊣ A is self-dual with:

A A

=

A A

A A

=

A A

Proof. Snake equation:

(5.7)
=

(5.1)
= =

149 / 3135.1 Frobenius structures

Theorem 5.15. If (A, , , ,) Frobenius structure in monoidal
category, then A ⊣ A is self-dual with:

A A

=

A A

A A

=

A A

Proof. Snake equation:

(5.7)
=

(5.1)
= =

150 / 3135.1 Frobenius structures

Proposition 5.16. Monoid (A, ,) forms Frobenius structure with
comonoid (A, ,) iff allows nondegenerate form: map : A I with

part of self-duality A ⊣ A.

Proof. One direction is the previous theorem.

Conversely, suppose I η A ⊗ A satisfies:

η
= =

η

Then define the comultiplication as follows:

:= η

150 / 3135.1 Frobenius structures

Proposition 5.16. Monoid (A, ,) forms Frobenius structure with
comonoid (A, ,) iff allows nondegenerate form: map : A I with

part of self-duality A ⊣ A.

Proof. One direction is the previous theorem.

Conversely, suppose I η A ⊗ A satisfies:

η
= =

η

Then define the comultiplication as follows:

:= η

150 / 3135.1 Frobenius structures

Proposition 5.16. Monoid (A, ,) forms Frobenius structure with
comonoid (A, ,) iff allows nondegenerate form: map : A I with

part of self-duality A ⊣ A.

Proof. One direction is the previous theorem.

Conversely, suppose I η A ⊗ A satisfies:

η
= =

η

Then define the comultiplication as follows:

:= η

150 / 3135.1 Frobenius structures

Proposition 5.16. Monoid (A, ,) forms Frobenius structure with
comonoid (A, ,) iff allows nondegenerate form: map : A I with

part of self-duality A ⊣ A.

Proof. One direction is the previous theorem.

Conversely, suppose I η A ⊗ A satisfies:

η
= =

η

Then define the comultiplication as follows:

:= η

151 / 3135.1 Frobenius structures

Proof (continued.)

Could have defined the comultiplication with η left or right:

η

(5.10)
=

η
η

(4.4)
=

η
η

(5.10)
=

η

We can verify counitality:

(5.11)
=

η

(5.12)
=

η

(5.10)
=

(5.10)
=

η

(5.11)
=

151 / 3135.1 Frobenius structures

Proof (continued.)

Could have defined the comultiplication with η left or right:

η

(5.10)
=

η
η

(4.4)
=

η
η

(5.10)
=

η

We can verify counitality:

(5.11)
=

η

(5.12)
=

η

(5.10)
=

(5.10)
=

η

(5.11)
=

152 / 3135.1 Frobenius structures

Proof (continued.)

Coassociativity is verified as follows:

(5.11)
= η η

(5.12)
=

η

η

(4.4)
=

η

η (5.11)
=

Finally, we can verify the Frobenius law:

(5.11)
=

η

(5.12)
= η

(5.11)
=

This completes the proof.

152 / 3135.1 Frobenius structures

Proof (continued.)

Coassociativity is verified as follows:

(5.11)
= η η

(5.12)
=

η

η

(4.4)
=

η

η (5.11)
=

Finally, we can verify the Frobenius law:

(5.11)
=

η

(5.12)
= η

(5.11)
=

This completes the proof.

153 / 3135.1 Frobenius structures

Definition 5.18. In a monoidal category, a homomorphism of
Frobenius structures is morphism which is both a monoid
homomorphism and a comonoid homomorphism.

Lemma 5.19. In a monoidal category, a homomorphism of
Frobenius structures is invertible.

Proof. Given homomorphism A f B, construct inverse as follows:

f−1 := f

Let’s verify that this is the inverse of f :

f

f
(4.7)
=

f

(4.10)
= =

153 / 3135.1 Frobenius structures

Definition 5.18. In a monoidal category, a homomorphism of
Frobenius structures is morphism which is both a monoid
homomorphism and a comonoid homomorphism.

Lemma 5.19. In a monoidal category, a homomorphism of
Frobenius structures is invertible.

Proof. Given homomorphism A f B, construct inverse as follows:

f−1 := f

Let’s verify that this is the inverse of f :

f

f
(4.7)
=

f

(4.10)
= =

153 / 3135.1 Frobenius structures

Definition 5.18. In a monoidal category, a homomorphism of
Frobenius structures is morphism which is both a monoid
homomorphism and a comonoid homomorphism.

Lemma 5.19. In a monoidal category, a homomorphism of
Frobenius structures is invertible.

Proof. Given homomorphism A f B, construct inverse as follows:

f−1 := f

Let’s verify that this is the inverse of f :

f

f
(4.7)
=

f

(4.10)
= =

153 / 3135.1 Frobenius structures

Definition 5.18. In a monoidal category, a homomorphism of
Frobenius structures is morphism which is both a monoid
homomorphism and a comonoid homomorphism.

Lemma 5.19. In a monoidal category, a homomorphism of
Frobenius structures is invertible.

Proof. Given homomorphism A f B, construct inverse as follows:

f−1 := f

Let’s verify that this is the inverse of f :

f

f
(4.7)
=

f

(4.10)
= =

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:

• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group

• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal

• Groupoid Frobenius structure in Rel is always special

154 / 3135.1 Frobenius structures
If copies orthogonal basis {ei}, can find (squared) norm of ei:

ei

ei

and

ei

ei

=

ei ei

ei ei

So can characterize orthonormality via Frobenius structure.

Definition 5.5. In a monoidal category, a Frobenius structure is
special when the following equation holds:

=

We can consider this for the dagger Frobenius structures we know:
• Group algebra in FHilb is only special for trivial group
• Orthogonal basis in FHilb is special just when basis is orthonormal
• Groupoid Frobenius structure in Rel is always special

155 / 3135.1 Frobenius structures
Definition 5.10. In a braided monoidal dagger category, a classical
structure is a special commutative dagger Frobenius structure.

Examples:
• In FHilb: an orthonormal basis
• In Rel: abelian group

Definition of classical structure redundant:
• (Co)commutativity implies half of (co)unitality
• Speciality and Frobenius law imply (co)associativity
• Dual object and Frobenius law imply (co)unitality

To check that (A, ,) is classical structure, only need:

(4.1)
=

(5.5)
=

(5.1)
=

155 / 3135.1 Frobenius structures
Definition 5.10. In a braided monoidal dagger category, a classical
structure is a special commutative dagger Frobenius structure.

Examples:
• In FHilb: an orthonormal basis
• In Rel: abelian group

Definition of classical structure redundant:
• (Co)commutativity implies half of (co)unitality
• Speciality and Frobenius law imply (co)associativity
• Dual object and Frobenius law imply (co)unitality

To check that (A, ,) is classical structure, only need:

(4.1)
=

(5.5)
=

(5.1)
=

155 / 3135.1 Frobenius structures
Definition 5.10. In a braided monoidal dagger category, a classical
structure is a special commutative dagger Frobenius structure.

Examples:
• In FHilb: an orthonormal basis
• In Rel: abelian group

Definition of classical structure redundant:
• (Co)commutativity implies half of (co)unitality
• Speciality and Frobenius law imply (co)associativity
• Dual object and Frobenius law imply (co)unitality

To check that (A, ,) is classical structure, only need:

(4.1)
=

(5.5)
=

(5.1)
=

155 / 3135.1 Frobenius structures
Definition 5.10. In a braided monoidal dagger category, a classical
structure is a special commutative dagger Frobenius structure.

Examples:
• In FHilb: an orthonormal basis
• In Rel: abelian group

Definition of classical structure redundant:
• (Co)commutativity implies half of (co)unitality
• Speciality and Frobenius law imply (co)associativity
• Dual object and Frobenius law imply (co)unitality

To check that (A, ,) is classical structure, only need:

(4.1)
=

(5.5)
=

(5.1)
=

156 / 3135.1 Frobenius structures
Pair of pants hardly ever commutative. However:

Definition 5.12. In a braided monoidal category, a Frobenius
structure is symmetric when:

=

In a compact category, this is equivalent to the following:

=

Examples:

• Pair of pants: in FHilb this says Tr(ab) = Tr(ba)
• Group algebras: inverses in groups are two-sided inverses

• Groupoid Frobenius structure: inverses are two-sided

156 / 3135.1 Frobenius structures
Pair of pants hardly ever commutative. However:

Definition 5.12. In a braided monoidal category, a Frobenius
structure is symmetric when:

=

In a compact category, this is equivalent to the following:

=

Examples:

• Pair of pants: in FHilb this says Tr(ab) = Tr(ba)
• Group algebras: inverses in groups are two-sided inverses

• Groupoid Frobenius structure: inverses are two-sided

156 / 3135.1 Frobenius structures
Pair of pants hardly ever commutative. However:

Definition 5.12. In a braided monoidal category, a Frobenius
structure is symmetric when:

=

In a compact category, this is equivalent to the following:

=

Examples:

• Pair of pants: in FHilb this says Tr(ab) = Tr(ba)
• Group algebras: inverses in groups are two-sided inverses

• Groupoid Frobenius structure: inverses are two-sided

157 / 3135.2 Normal forms

Lemma 5.20. In a monoidal category, let (A, , , ,) be a special
Frobenius structure. Any connected morphism A⊗m A⊗n built out
of finitely many pieces , , , , and id, using ◦ and ⊗, equals:

n

m

Proof. Strategy is induction on the number of dots.

157 / 3135.2 Normal forms

Lemma 5.20. In a monoidal category, let (A, , , ,) be a special
Frobenius structure. Any connected morphism A⊗m A⊗n built out
of finitely many pieces , , , , and id, using ◦ and ⊗, equals:

n

m

Proof. Strategy is induction on the number of dots.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

158 / 3135.2 Normal forms

Proof. (continued.)

Base case. Trivial, as the diagram must be one of , , , .

Induction step. Assume all diagrams with at most n dots can be
brought in normal form, and consider a diagram with n + 1 dots.

Use naturality to write the diagram in a form where there is a
topmost dot.

• Topmost dot is : use counitality to eliminate it.

• Topmost dot is : use coassociativity to reach normal form.

• Topmost dot is : impossible by connectedness.

• Topmost dot is : the most interesting case.

Is the diagram underneath the connected?
If so, use coassociativity and speciality.

159 / 3135.2 Normal forms
Proof. (continued.)

Suppose instead the rest of the diagram is disconnected:

(5.4)
=

(5.4)
= · · · (5.4)

=
(5.4)
=

This completes the proof.

160 / 3135.2 Normal forms
There are normal forms for other sorts of Frobenius structures.

Theorem 5.21. In a monoidal category, let (A, , , ,) be a
Frobenius structure. Any connected morphism A⊗m A⊗n built out
of finitely many pieces , , , , and id, using ◦ and ⊗, equals (∗).

(∗)

Theorem 5.22. In a symmetric monoidal category, let (A, , , ,)
be a commutative Frobenius structure. Any connected morphism
A⊗m A⊗n built out of finitely many pieces , , , , id, and ,
using ◦ and ⊗, equals (∗).

160 / 3135.2 Normal forms
There are normal forms for other sorts of Frobenius structures.

Theorem 5.21. In a monoidal category, let (A, , , ,) be a
Frobenius structure. Any connected morphism A⊗m A⊗n built out
of finitely many pieces , , , , and id, using ◦ and ⊗, equals (∗).

(∗)

Theorem 5.22. In a symmetric monoidal category, let (A, , , ,)
be a commutative Frobenius structure. Any connected morphism
A⊗m A⊗n built out of finitely many pieces , , , , id, and ,
using ◦ and ⊗, equals (∗).

161 / 3135.2 Normal forms

Proposition 5.23. In a braided non-symmetric monoidal category,
there is no normal form for commutative Frobenius structures.

Proof. Regard the following diagram as a piece of string on which
an overhand knot is tied:

The Frobenius structure axioms induce homotopy equivalences
(‘deformations’) of the corresponding graph. Such moves are
clearly not able to untie the knot.

161 / 3135.2 Normal forms

Proposition 5.23. In a braided non-symmetric monoidal category,
there is no normal form for commutative Frobenius structures.

Proof. Regard the following diagram as a piece of string on which
an overhand knot is tied:

The Frobenius structure axioms induce homotopy equivalences
(‘deformations’) of the corresponding graph. Such moves are
clearly not able to untie the knot.

161 / 3135.2 Normal forms

Proposition 5.23. In a braided non-symmetric monoidal category,
there is no normal form for commutative Frobenius structures.

Proof. Regard the following diagram as a piece of string on which
an overhand knot is tied:

The Frobenius structure axioms induce homotopy equivalences
(‘deformations’) of the corresponding graph. Such moves are
clearly not able to untie the knot.

162 / 3135.3 Involutive monoids

Lemma 5.24. In a dagger pivotal category, if (A,m, u) is a monoid,
then (A∗,m∗, u∗) is monoid.

Definition 5.25. In a dagger pivotal category, an involution for a
monoid (A, ,) is a monoid homomorphism A i A∗ satisfying
i∗ ◦ i = idA.

A

A

i

i

=

A

A

B

A

f

iB

=

A

B

iA

f

A morphism of involutive monoids is monoid homomorphism A f B
satisfying iB ◦ f = f∗ ◦ iA.

162 / 3135.3 Involutive monoids

Lemma 5.24. In a dagger pivotal category, if (A,m, u) is a monoid,
then (A∗,m∗, u∗) is monoid.

Definition 5.25. In a dagger pivotal category, an involution for a
monoid (A, ,) is a monoid homomorphism A i A∗ satisfying
i∗ ◦ i = idA.

A

A

i

i

=

A

A

B

A

f

iB

=

A

B

iA

f

A morphism of involutive monoids is monoid homomorphism A f B
satisfying iB ◦ f = f∗ ◦ iA.

162 / 3135.3 Involutive monoids

Lemma 5.24. In a dagger pivotal category, if (A,m, u) is a monoid,
then (A∗,m∗, u∗) is monoid.

Definition 5.25. In a dagger pivotal category, an involution for a
monoid (A, ,) is a monoid homomorphism A i A∗ satisfying
i∗ ◦ i = idA.

A

A

i

i

=

A

A B

A

f

iB

=

A

B

iA

f

A morphism of involutive monoids is monoid homomorphism A f B
satisfying iB ◦ f = f∗ ◦ iA.

163 / 3135.3 Involutive monoids
Examples:

• Matrix algebra. Mn is an involutive monoid in FHilb.
Opposite monoid M∗

n: multiplication ab in M∗
n is ba in Mn.

Canonical involution Mn M∗
n given by f 7→ f †.

• Pair of pants. A∗ ⊗ A involutive in a dagger pivotal category.
Identity map as involution, because of conventions:

()
∗
=




†

=

• Groupoid Frobenius structure. G in Rel is involutive.
Opposite monoid: induced by opposite groupoid Gop

=

Canonical involution G G∗ given by g ∼ g−1.

163 / 3135.3 Involutive monoids
Examples:

• Matrix algebra. Mn is an involutive monoid in FHilb.
Opposite monoid M∗

n: multiplication ab in M∗
n is ba in Mn.

Canonical involution Mn M∗
n given by f 7→ f †.

• Pair of pants. A∗ ⊗ A involutive in a dagger pivotal category.
Identity map as involution, because of conventions:

()
∗
=




†

=

• Groupoid Frobenius structure. G in Rel is involutive.
Opposite monoid: induced by opposite groupoid Gop

=

Canonical involution G G∗ given by g ∼ g−1.

163 / 3135.3 Involutive monoids
Examples:

• Matrix algebra. Mn is an involutive monoid in FHilb.
Opposite monoid M∗

n: multiplication ab in M∗
n is ba in Mn.

Canonical involution Mn M∗
n given by f 7→ f †.

• Pair of pants. A∗ ⊗ A involutive in a dagger pivotal category.
Identity map as involution, because of conventions:

()
∗
=




†

=

• Groupoid Frobenius structure. G in Rel is involutive.
Opposite monoid: induced by opposite groupoid Gop

=

Canonical involution G G∗ given by g ∼ g−1.

164 / 3135.3 Involutive monoids
Theorem 5.28. In a dagger pivotal category, a monoid (A, ,) is
dagger Frobenius if and only if i is an involution:

i =

Proof. Assume dagger Frobenius.
• i preserves multiplication:

i i
= = = =

i

• i preserves units: easy.

• i is involution:
i

i

= = =

164 / 3135.3 Involutive monoids
Theorem 5.28. In a dagger pivotal category, a monoid (A, ,) is
dagger Frobenius if and only if i is an involution:

i =

Proof. Assume dagger Frobenius.

• i preserves multiplication:

i i
= = = =

i

• i preserves units: easy.

• i is involution:
i

i

= = =

164 / 3135.3 Involutive monoids
Theorem 5.28. In a dagger pivotal category, a monoid (A, ,) is
dagger Frobenius if and only if i is an involution:

i =

Proof. Assume dagger Frobenius.
• i preserves multiplication:

i i
= = = =

i

• i preserves units: easy.

• i is involution:
i

i

= = =

164 / 3135.3 Involutive monoids
Theorem 5.28. In a dagger pivotal category, a monoid (A, ,) is
dagger Frobenius if and only if i is an involution:

i =

Proof. Assume dagger Frobenius.
• i preserves multiplication:

i i
= = = =

i

• i preserves units: easy.

• i is involution:
i

i

= = =

164 / 3135.3 Involutive monoids
Theorem 5.28. In a dagger pivotal category, a monoid (A, ,) is
dagger Frobenius if and only if i is an involution:

i =

Proof. Assume dagger Frobenius.
• i preserves multiplication:

i i
= = = =

i

• i preserves units: easy.

• i is involution:
i

i

= = =

165 / 3135.3 Involutive monoids

Proof. (continued.) Conversely, suppose i∗ ◦ i = id. Then:

= and by applying †, =

So we have a Frobenius structure, defined by a nondegenerate form.

Is it a dagger Frobenius structure?

The condition that i preserves multiplication gives: =

 ⇒

 =

 ⇒

(
=

)

So the form definition gives rise to the correct comultiplication.

165 / 3135.3 Involutive monoids

Proof. (continued.) Conversely, suppose i∗ ◦ i = id. Then:

= and by applying †, =

So we have a Frobenius structure, defined by a nondegenerate form.

Is it a dagger Frobenius structure?

The condition that i preserves multiplication gives: =

 ⇒

 =

 ⇒

(
=

)

So the form definition gives rise to the correct comultiplication.

165 / 3135.3 Involutive monoids

Proof. (continued.) Conversely, suppose i∗ ◦ i = id. Then:

= and by applying †, =

So we have a Frobenius structure, defined by a nondegenerate form.

Is it a dagger Frobenius structure?

The condition that i preserves multiplication gives: =

 ⇒

 =

 ⇒

(
=

)

So the form definition gives rise to the correct comultiplication.

166 / 3135.4 Classification

In FHilb, Frobenius structures cannot be classified in general.

Here is a ‘wild’ Frobenius structure on C[1,X], with unit u,
m : C[1,X]⊗ C[1,X] C[1,X] and f : C[1,X] C:

m(1,1) = 1 u = 1

m(1,X) = X
m(X,1) = X f(1) = 0

m(X,X) = 0 f(X) = 1

However, we can classify them in various cases, when we add
sufficient adjectives.

166 / 3135.4 Classification

In FHilb, Frobenius structures cannot be classified in general.

Here is a ‘wild’ Frobenius structure on C[1,X], with unit u,
m : C[1,X]⊗ C[1,X] C[1,X] and f : C[1,X] C:

m(1,1) = 1 u = 1

m(1,X) = X
m(X,1) = X f(1) = 0

m(X,X) = 0 f(X) = 1

However, we can classify them in various cases, when we add
sufficient adjectives.

166 / 3135.4 Classification

In FHilb, Frobenius structures cannot be classified in general.

Here is a ‘wild’ Frobenius structure on C[1,X], with unit u,
m : C[1,X]⊗ C[1,X] C[1,X] and f : C[1,X] C:

m(1,1) = 1 u = 1

m(1,X) = X
m(X,1) = X f(1) = 0

m(X,X) = 0 f(X) = 1

However, we can classify them in various cases, when we add
sufficient adjectives.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

167 / 3135.4 Classification

Theorem. In FHilb, special commutative Frobenius structures
correspond to Hilbert spaces equipped with a basis.

Proof. The specialness property implies that the algebra structure is
strongly separable.

The Artin-Wedderburn theorem says that a strongly separable
algebra over C is a direct sum of matrix algebras over C.

If the algebra is commutative, these must be 1-by-1 matrix algebras.

So if the underlying Hilbert space is H, we have H ≃ C⊕ · · · ⊕ C,
which is exactly the choice of a basis.

The Frobenius laws then follow, choosing the comultiplication to
copy this chosen basis.

168 / 3135.4 Classification

Lemma. Given a basis for a finite-dimensional Hilbert space, its
comonoid in FHilb is dagger Frobenius just when the basis is
orthogonal.

Proof. Let x, y be nonzero copyable states, then:

x x x

x x y

(4.17)
=

x x

x y

(5.1)
=

xx

yx
(4.17)
=

x x x

x y y

If ⟨x|y⟩ = 0, then this is satisfied.

If ⟨x|y⟩ ≠ 0, this implies ⟨x|x⟩ = ⟨x|y⟩. Similarly ⟨y|x⟩ = ⟨y|y⟩.
Hence ⟨x − y|x − y⟩ = ⟨x|x⟩ − ⟨x|y⟩ − ⟨y|x⟩+ ⟨y|y⟩ = 0, so x = y.

168 / 3135.4 Classification

Lemma. Given a basis for a finite-dimensional Hilbert space, its
comonoid in FHilb is dagger Frobenius just when the basis is
orthogonal.

Proof. Let x, y be nonzero copyable states, then:

x x x

x x y

(4.17)
=

x x

x y

(5.1)
=

xx

yx
(4.17)
=

x x x

x y y

If ⟨x|y⟩ = 0, then this is satisfied.

If ⟨x|y⟩ ≠ 0, this implies ⟨x|x⟩ = ⟨x|y⟩. Similarly ⟨y|x⟩ = ⟨y|y⟩.
Hence ⟨x − y|x − y⟩ = ⟨x|x⟩ − ⟨x|y⟩ − ⟨y|x⟩+ ⟨y|y⟩ = 0, so x = y.

168 / 3135.4 Classification

Lemma. Given a basis for a finite-dimensional Hilbert space, its
comonoid in FHilb is dagger Frobenius just when the basis is
orthogonal.

Proof. Let x, y be nonzero copyable states, then:

x x x

x x y

(4.17)
=

x x

x y

(5.1)
=

xx

yx
(4.17)
=

x x x

x y y

If ⟨x|y⟩ = 0, then this is satisfied.

If ⟨x|y⟩ ≠ 0, this implies ⟨x|x⟩ = ⟨x|y⟩. Similarly ⟨y|x⟩ = ⟨y|y⟩.
Hence ⟨x − y|x − y⟩ = ⟨x|x⟩ − ⟨x|y⟩ − ⟨y|x⟩+ ⟨y|y⟩ = 0, so x = y.

168 / 3135.4 Classification

Lemma. Given a basis for a finite-dimensional Hilbert space, its
comonoid in FHilb is dagger Frobenius just when the basis is
orthogonal.

Proof. Let x, y be nonzero copyable states, then:

x x x

x x y

(4.17)
=

x x

x y

(5.1)
=

xx

yx
(4.17)
=

x x x

x y y

If ⟨x|y⟩ = 0, then this is satisfied.

If ⟨x|y⟩ ≠ 0, this implies ⟨x|x⟩ = ⟨x|y⟩. Similarly ⟨y|x⟩ = ⟨y|y⟩.

Hence ⟨x − y|x − y⟩ = ⟨x|x⟩ − ⟨x|y⟩ − ⟨y|x⟩+ ⟨y|y⟩ = 0, so x = y.

168 / 3135.4 Classification

Lemma. Given a basis for a finite-dimensional Hilbert space, its
comonoid in FHilb is dagger Frobenius just when the basis is
orthogonal.

Proof. Let x, y be nonzero copyable states, then:

x x x

x x y

(4.17)
=

x x

x y

(5.1)
=

xx

yx
(4.17)
=

x x x

x y y

If ⟨x|y⟩ = 0, then this is satisfied.

If ⟨x|y⟩ ≠ 0, this implies ⟨x|x⟩ = ⟨x|y⟩. Similarly ⟨y|x⟩ = ⟨y|y⟩.
Hence ⟨x − y|x − y⟩ = ⟨x|x⟩ − ⟨x|y⟩ − ⟨y|x⟩+ ⟨y|y⟩ = 0, so x = y.

169 / 3135.4 Classification

Theorem. In FHilb, commutative dagger Frobenius structures
correspond to Hilbert spaces equipped with an orthogonal basis.

Proof. We have seen that a dagger Frobenius structure on H has an
involution-preserving homomorphism into Hom(H,H).

This is a finite-dimensional C*-algebra, and involution-closed
subalgebras of f.d. C*-algebras are again C*-algebras.

By the spectral theorem, the copyable states form a basis—so if we
know what happens to these states, we know the whole algebra.

By the previous lemma, the only restriction on these states is that
they are orthogonal.

169 / 3135.4 Classification

Theorem. In FHilb, commutative dagger Frobenius structures
correspond to Hilbert spaces equipped with an orthogonal basis.

Proof. We have seen that a dagger Frobenius structure on H has an
involution-preserving homomorphism into Hom(H,H).

This is a finite-dimensional C*-algebra, and involution-closed
subalgebras of f.d. C*-algebras are again C*-algebras.

By the spectral theorem, the copyable states form a basis—so if we
know what happens to these states, we know the whole algebra.

By the previous lemma, the only restriction on these states is that
they are orthogonal.

169 / 3135.4 Classification

Theorem. In FHilb, commutative dagger Frobenius structures
correspond to Hilbert spaces equipped with an orthogonal basis.

Proof. We have seen that a dagger Frobenius structure on H has an
involution-preserving homomorphism into Hom(H,H).

This is a finite-dimensional C*-algebra, and involution-closed
subalgebras of f.d. C*-algebras are again C*-algebras.

By the spectral theorem, the copyable states form a basis—so if we
know what happens to these states, we know the whole algebra.

By the previous lemma, the only restriction on these states is that
they are orthogonal.

169 / 3135.4 Classification

Theorem. In FHilb, commutative dagger Frobenius structures
correspond to Hilbert spaces equipped with an orthogonal basis.

Proof. We have seen that a dagger Frobenius structure on H has an
involution-preserving homomorphism into Hom(H,H).

This is a finite-dimensional C*-algebra, and involution-closed
subalgebras of f.d. C*-algebras are again C*-algebras.

By the spectral theorem, the copyable states form a basis—so if we
know what happens to these states, we know the whole algebra.

By the previous lemma, the only restriction on these states is that
they are orthogonal.

169 / 3135.4 Classification

Theorem. In FHilb, commutative dagger Frobenius structures
correspond to Hilbert spaces equipped with an orthogonal basis.

Proof. We have seen that a dagger Frobenius structure on H has an
involution-preserving homomorphism into Hom(H,H).

This is a finite-dimensional C*-algebra, and involution-closed
subalgebras of f.d. C*-algebras are again C*-algebras.

By the spectral theorem, the copyable states form a basis—so if we
know what happens to these states, we know the whole algebra.

By the previous lemma, the only restriction on these states is that
they are orthogonal.

170 / 3135.4 Classification

Theorem. In FHilb, classical structures correspond to Hilbert
spaces equipped with a choice of orthonormal basis.

Proof. Classical structures are special commutative dagger
Frobenius structures.

By the previous theorem, they must correspond to orthogonal bases
with some additional property.

The specialness condition says exactly that the basis elements are
normalized.

170 / 3135.4 Classification

Theorem. In FHilb, classical structures correspond to Hilbert
spaces equipped with a choice of orthonormal basis.

Proof. Classical structures are special commutative dagger
Frobenius structures.

By the previous theorem, they must correspond to orthogonal bases
with some additional property.

The specialness condition says exactly that the basis elements are
normalized.

170 / 3135.4 Classification

Theorem. In FHilb, classical structures correspond to Hilbert
spaces equipped with a choice of orthonormal basis.

Proof. Classical structures are special commutative dagger
Frobenius structures.

By the previous theorem, they must correspond to orthogonal bases
with some additional property.

The specialness condition says exactly that the basis elements are
normalized.

170 / 3135.4 Classification

Theorem. In FHilb, classical structures correspond to Hilbert
spaces equipped with a choice of orthonormal basis.

Proof. Classical structures are special commutative dagger
Frobenius structures.

By the previous theorem, they must correspond to orthogonal bases
with some additional property.

The specialness condition says exactly that the basis elements are
normalized.

171 / 3135.4 Classification

We can compare these classification theorems:

Commutative Frobenius structure Basis
Special Arbitrary
Dagger Orthogonal
Special dagger Orthonormal

How can this make sense?

The comultiplications are different.

For an arbitrary basis, the dagger structure plays no role.

For the other bases, the comultiplication is the adjoint of the
multiplication.

171 / 3135.4 Classification

We can compare these classification theorems:

Commutative Frobenius structure Basis
Special Arbitrary
Dagger Orthogonal
Special dagger Orthonormal

How can this make sense?

The comultiplications are different.

For an arbitrary basis, the dagger structure plays no role.

For the other bases, the comultiplication is the adjoint of the
multiplication.

171 / 3135.4 Classification

We can compare these classification theorems:

Commutative Frobenius structure Basis
Special Arbitrary
Dagger Orthogonal
Special dagger Orthonormal

How can this make sense?

The comultiplications are different.

For an arbitrary basis, the dagger structure plays no role.

For the other bases, the comultiplication is the adjoint of the
multiplication.

172 / 3135.4 Classification
Corollary 5.37. In FHilb, a morphism between two commutative
dagger Frobenius structures acts as a function on copyable states if
and only if it is a comonoid homomorphism.

Proof. Suffices to see about basis of copyable states {ei}.

ei ei

f f

=

ei

f f

=

ei

f

Hence f(ei) copyable.

Lemma 5.38. In FHilb, comonoid homomorphisms between
commutative dagger Frobenius structures are self-conjugate:

f := f = f

Proof. Verify they have the same matrix entries.

172 / 3135.4 Classification
Corollary 5.37. In FHilb, a morphism between two commutative
dagger Frobenius structures acts as a function on copyable states if
and only if it is a comonoid homomorphism.

Proof. Suffices to see about basis of copyable states {ei}.

ei ei

f f

=

ei

f f

=

ei

f

Hence f(ei) copyable.

Lemma 5.38. In FHilb, comonoid homomorphisms between
commutative dagger Frobenius structures are self-conjugate:

f := f = f

Proof. Verify they have the same matrix entries.

172 / 3135.4 Classification
Corollary 5.37. In FHilb, a morphism between two commutative
dagger Frobenius structures acts as a function on copyable states if
and only if it is a comonoid homomorphism.

Proof. Suffices to see about basis of copyable states {ei}.

ei ei

f f

=

ei

f f

=

ei

f

Hence f(ei) copyable.

Lemma 5.38. In FHilb, comonoid homomorphisms between
commutative dagger Frobenius structures are self-conjugate:

f := f = f

Proof. Verify they have the same matrix entries.

173 / 3135.4 Classification

We now consider the classification in Rel.

Theorem 5.41. Special dagger Frobenius structures in Rel
correspond exactly to groupoids.

Proof. Write A × A M A for multiplication, U ⊆ A for unit.

M is single-valued: by speciality a(M ◦ M†)b iff a = b:

a

b

c d
(5.5)
=

a

b

So: if (c, d)Ma and (c, d)Mb, must have a = b.
May simply write ab for unique c with (a, b)Mc.
Remember: ab not always defined!

173 / 3135.4 Classification

We now consider the classification in Rel.

Theorem 5.41. Special dagger Frobenius structures in Rel
correspond exactly to groupoids.

Proof. Write A × A M A for multiplication, U ⊆ A for unit.

M is single-valued: by speciality a(M ◦ M†)b iff a = b:

a

b

c d
(5.5)
=

a

b

So: if (c, d)Ma and (c, d)Mb, must have a = b.
May simply write ab for unique c with (a, b)Mc.
Remember: ab not always defined!

173 / 3135.4 Classification

We now consider the classification in Rel.

Theorem 5.41. Special dagger Frobenius structures in Rel
correspond exactly to groupoids.

Proof. Write A × A M A for multiplication, U ⊆ A for unit.

M is single-valued: by speciality a(M ◦ M†)b iff a = b:

a

b

c d
(5.5)
=

a

b

So: if (c, d)Ma and (c, d)Mb, must have a = b.
May simply write ab for unique c with (a, b)Mc.
Remember: ab not always defined!

174 / 3135.4 Classification

Proof. (continued)

Associativity:

a b c

(ab)c

ab (4.4)
=

cba

a(bc)

bc

So ab and (ab)c defined exactly when bc and a(bc) are defined, and
then (ab)c = a(bc).

175 / 3135.4 Classification

Proof. (continued)

Unitality: for units x, y ∈ U

b

a

x (4.5)
=

a

b

(4.5)
=

b

a

y

So: a, b allow x ∈ U with xa = b iff a = b.
And: a, b allow y ∈ U with ay = b iff a = b.
If z ∈ U then xz = x for some x ∈ U. But then x = z!
Units idempotent; multiplication of different ones undefined.

If xa = a = x′a, then a = xa = x(x′a) = (xx′)a, so x = x′.
So every element has unique left/right identity.

176 / 3135.4 Classification

Proof. (continued)

Category: U set of objects, A set of morphisms.

If fg defined and gh defined, want (fg)h = f(gh) defined too:

f

g

h

gh

fg

=

f gh

f(gh) = (fg)h

fg h

If fg and gh defined then LHS defined, so RHS defined too.

177 / 3135.4 Classification

Proof. (continued)

Inverses: for f ∈ A with left unit x and right unit y:

f

g

f

y

x

=

f y

f

x f

That completes the proof.

178 / 3135.5 Phases

Definition 5.44. Let (A, ,) be a Frobenius structure in a
monoidal dagger category. A state I a A is called a phase when:

a

a

= =

a

a

Its (right) phase shift is the following morphism A A:

a :=
a

178 / 3135.5 Phases

Definition 5.44. Let (A, ,) be a Frobenius structure in a
monoidal dagger category. A state I a A is called a phase when:

a

a

= =

a

a

Its (right) phase shift is the following morphism A A:

a :=
a

179 / 3135.5 Phases

Examples:

• For classical structure in FHilb copying basis {ei}, vector
a = a1e1 + · · · anen is phase iff each ai on unit circle: |ai|2 = 1.

• The unit of a Frobenius structure is always a phase.

Lemma 5.46. In a dagger pivotal category, phases for a pair of
pants structure (A∗ ⊗ A, ,) correspond to unitary morphisms.

Proof. The name of an morphism A f A is a phase when:

(5.34)
=

f

f

=
f

f

But this means f ◦ f † = idA; similarly f † ◦ f = idA.

179 / 3135.5 Phases

Examples:

• For classical structure in FHilb copying basis {ei}, vector
a = a1e1 + · · · anen is phase iff each ai on unit circle: |ai|2 = 1.

• The unit of a Frobenius structure is always a phase.

Lemma 5.46. In a dagger pivotal category, phases for a pair of
pants structure (A∗ ⊗ A, ,) correspond to unitary morphisms.

Proof. The name of an morphism A f A is a phase when:

(5.34)
=

f

f

=
f

f

But this means f ◦ f † = idA; similarly f † ◦ f = idA.

179 / 3135.5 Phases

Examples:

• For classical structure in FHilb copying basis {ei}, vector
a = a1e1 + · · · anen is phase iff each ai on unit circle: |ai|2 = 1.

• The unit of a Frobenius structure is always a phase.

Lemma 5.46. In a dagger pivotal category, phases for a pair of
pants structure (A∗ ⊗ A, ,) correspond to unitary morphisms.

Proof.

The name of an morphism A f A is a phase when:

(5.34)
=

f

f

=
f

f

But this means f ◦ f † = idA; similarly f † ◦ f = idA.

179 / 3135.5 Phases

Examples:

• For classical structure in FHilb copying basis {ei}, vector
a = a1e1 + · · · anen is phase iff each ai on unit circle: |ai|2 = 1.

• The unit of a Frobenius structure is always a phase.

Lemma 5.46. In a dagger pivotal category, phases for a pair of
pants structure (A∗ ⊗ A, ,) correspond to unitary morphisms.

Proof. The name of an morphism A f A is a phase when:

(5.34)
=

f

f

=
f

f

But this means f ◦ f † = idA; similarly f † ◦ f = idA.

180 / 3135.5 Phases

Example 5.47. Phases of Frobenius structure Mn in FHilb form set
U(n) of n-by-n unitary matrices. Hence phases of Mk1 ⊕ · · · ⊕Mkn

range over U(k1)× · · · × U(kn).

Special case: classical structure Cn copying basis {e1, . . . , en}.
Phases are elements of U(1)× · · · × U(1);
phase shift Cn Cn is accompanying unitary matrix.

Example 5.48. The phases of a Frobenius structure in Rel induced
by a group G are elements of that group G itself.

Proof. For a subset a ⊆ G, equation defining phases reads

{g−1h | g, h ∈ a} = {1G} = {hg−1 | g, h ∈ a}.

So if g ∈ G, then a = {g} is a phase. But if a contains two distinct
elements g ̸= h of G, then it cannot be a phase. Similarly, a = ∅ is
not a phase. Hence a is a phase precisely when it is a singleton {g}.

180 / 3135.5 Phases

Example 5.47. Phases of Frobenius structure Mn in FHilb form set
U(n) of n-by-n unitary matrices. Hence phases of Mk1 ⊕ · · · ⊕Mkn

range over U(k1)× · · · × U(kn).

Special case: classical structure Cn copying basis {e1, . . . , en}.
Phases are elements of U(1)× · · · × U(1);
phase shift Cn Cn is accompanying unitary matrix.

Example 5.48. The phases of a Frobenius structure in Rel induced
by a group G are elements of that group G itself.

Proof. For a subset a ⊆ G, equation defining phases reads

{g−1h | g, h ∈ a} = {1G} = {hg−1 | g, h ∈ a}.

So if g ∈ G, then a = {g} is a phase. But if a contains two distinct
elements g ̸= h of G, then it cannot be a phase. Similarly, a = ∅ is
not a phase. Hence a is a phase precisely when it is a singleton {g}.

180 / 3135.5 Phases

Example 5.47. Phases of Frobenius structure Mn in FHilb form set
U(n) of n-by-n unitary matrices. Hence phases of Mk1 ⊕ · · · ⊕Mkn

range over U(k1)× · · · × U(kn).

Special case: classical structure Cn copying basis {e1, . . . , en}.
Phases are elements of U(1)× · · · × U(1);
phase shift Cn Cn is accompanying unitary matrix.

Example 5.48. The phases of a Frobenius structure in Rel induced
by a group G are elements of that group G itself.

Proof. For a subset a ⊆ G, equation defining phases reads

{g−1h | g, h ∈ a} = {1G} = {hg−1 | g, h ∈ a}.

So if g ∈ G, then a = {g} is a phase. But if a contains two distinct
elements g ̸= h of G, then it cannot be a phase. Similarly, a = ∅ is
not a phase. Hence a is a phase precisely when it is a singleton {g}.

180 / 3135.5 Phases

Example 5.47. Phases of Frobenius structure Mn in FHilb form set
U(n) of n-by-n unitary matrices. Hence phases of Mk1 ⊕ · · · ⊕Mkn

range over U(k1)× · · · × U(kn).

Special case: classical structure Cn copying basis {e1, . . . , en}.
Phases are elements of U(1)× · · · × U(1);
phase shift Cn Cn is accompanying unitary matrix.

Example 5.48. The phases of a Frobenius structure in Rel induced
by a group G are elements of that group G itself.

Proof. For a subset a ⊆ G, equation defining phases reads

{g−1h | g, h ∈ a} = {1G} = {hg−1 | g, h ∈ a}.

So if g ∈ G, then a = {g} is a phase. But if a contains two distinct
elements g ̸= h of G, then it cannot be a phase. Similarly, a = ∅ is
not a phase. Hence a is a phase precisely when it is a singleton {g}.

181 / 3135.5 Phases

Proposition 5.49. In a monoidal dagger category, the phases for a
dagger Frobenius structure form a group, with unit and:

a + b
=

a b

Proof. This is again a well-defined phase:

a + b

a + b

=

a b

a b

=

a

a

b

b

=
b

b

=

The flipped equation follows similarly.

Associativity is clear, hence phases form a monoid.

181 / 3135.5 Phases

Proposition 5.49. In a monoidal dagger category, the phases for a
dagger Frobenius structure form a group, with unit and:

a + b
=

a b

Proof. This is again a well-defined phase:

a + b

a + b

=

a b

a b

=

a

a

b

b

=
b

b

=

The flipped equation follows similarly.

Associativity is clear, hence phases form a monoid.

182 / 3135.5 Phases

Proof. (continued)

Left-inverse of phase a is:

−a
:=

a

Left-inverse of a is −a:

(−a) + a

(5.36)
=

a

a

(5.1)
=

a

a
(5.34)
=

Similarly there is right-inverse. But in monoids, left and right
inverses are equal: l = l(xr) = (lx)r = r.

182 / 3135.5 Phases

Proof. (continued)

Left-inverse of phase a is:

−a
:=

a

Left-inverse of a is −a:

(−a) + a

(5.36)
=

a

a

(5.1)
=

a

a
(5.34)
=

Similarly there is right-inverse. But in monoids, left and right
inverses are equal: l = l(xr) = (lx)r = r.

182 / 3135.5 Phases

Proof. (continued)

Left-inverse of phase a is:

−a
:=

a

Left-inverse of a is −a:

(−a) + a

(5.36)
=

a

a

(5.1)
=

a

a
(5.34)
=

Similarly there is right-inverse. But in monoids, left and right
inverses are equal: l = l(xr) = (lx)r = r.

183 / 3135.5 Phases

This group is called the phase group.

Examples:

• In FHilb, the phase group for the pair of pants Frobenius
structure is the unitary group.

• Phase addition in the Frobenius structure Mk1 ⊕ · · · ⊕Mkn in
FHilb is entrywise multiplication in U(k1)× · · · × U(kn).
In particular, phase addition in a classical structure in FHilb is
multiplication of diagonal matrices.

• In Rel, the phase group induced by a group G is the group
itself.

183 / 3135.5 Phases

This group is called the phase group.

Examples:

• In FHilb, the phase group for the pair of pants Frobenius
structure is the unitary group.

• Phase addition in the Frobenius structure Mk1 ⊕ · · · ⊕Mkn in
FHilb is entrywise multiplication in U(k1)× · · · × U(kn).
In particular, phase addition in a classical structure in FHilb is
multiplication of diagonal matrices.

• In Rel, the phase group induced by a group G is the group
itself.

183 / 3135.5 Phases

This group is called the phase group.

Examples:

• In FHilb, the phase group for the pair of pants Frobenius
structure is the unitary group.

• Phase addition in the Frobenius structure Mk1 ⊕ · · · ⊕Mkn in
FHilb is entrywise multiplication in U(k1)× · · · × U(kn).
In particular, phase addition in a classical structure in FHilb is
multiplication of diagonal matrices.

• In Rel, the phase group induced by a group G is the group
itself.

184 / 3135.5 Phases

Corollary 5.51. Let (A, ,) be classical structure in braided
monoidal dagger category. Any connected morphism A⊗m A⊗n

built of finitely many , , id, σ and phases using ◦, ⊗, and †, equals
n︷ ︸︸ ︷

∑
a

︸ ︷︷ ︸
m

where a ranges over all the phases used in the diagram.

Proof. Using braidings to have all phases dangle at the bottom.
Apply Spider Theorem. Use phase addition to reduce to single
phase

∑
a on bottom right. Apply Spider Theorem again.

184 / 3135.5 Phases

Corollary 5.51. Let (A, ,) be classical structure in braided
monoidal dagger category. Any connected morphism A⊗m A⊗n

built of finitely many , , id, σ and phases using ◦, ⊗, and †, equals
n︷ ︸︸ ︷

∑
a

︸ ︷︷ ︸
m

where a ranges over all the phases used in the diagram.

Proof. Using braidings to have all phases dangle at the bottom.
Apply Spider Theorem. Use phase addition to reduce to single
phase

∑
a on bottom right. Apply Spider Theorem again.

185 / 3135.5 Phases

Quantum state transfer protocol: transfer state of Hilbert space H
from one system to another, with success probability 1/ dim(H)2.

May be lax in drawing, e.g. projection H ⊗ H H ⊗ H:

= =

The procedure looks like this:

1√
n

1√
n measure the first qubit

measure both qubits together

prepare the second qubit

=
1√
n

1√
n

=
1
n

Extra challenge: apply phase gate while transferring state

ϕ =

condition on first qubit

measurement projection

prepare second qubit

ϕ

186 / 3135.6 Modules

Modules give us a more sophisticated way to model measurement.

Definition 5.52. In a monoidal category, a module for a monoid
(M, ,) is an object A equipped with M ⊗ A m A satisfying:

A

AMM

m

=

AM

A

M

m

m

A

A

=

A

A

m

The morphism m is called an action of the monoid on the object A.

We will only consider left modules.

186 / 3135.6 Modules

Modules give us a more sophisticated way to model measurement.

Definition 5.52. In a monoidal category, a module for a monoid
(M, ,) is an object A equipped with M ⊗ A m A satisfying:

A

AMM

m

=

AM

A

M

m

m

A

A

=

A

A

m

The morphism m is called an action of the monoid on the object A.

We will only consider left modules.

186 / 3135.6 Modules

Modules give us a more sophisticated way to model measurement.

Definition 5.52. In a monoidal category, a module for a monoid
(M, ,) is an object A equipped with M ⊗ A m A satisfying:

A

AMM

m

=

AM

A

M

m

m

A

A

=

A

A

m

The morphism m is called an action of the monoid on the object A.

We will only consider left modules.

187 / 3135.6 Modules

Definition 5.55. Dagger module for dagger Frobenius structure
(M, ,) in monoidal dagger category is module M ⊗ A m A with:

M

A

A

m =

M A

A

m

Examples:

• Multiplication : M ⊗ M M of a dagger Frobenius structure
is the action of a dagger module on itself.

• Let group G induce group algebra A in FHilb.

Modules A ⊗ Cn Cn are representations of G.

Dagger modules A ⊗ Cn Cn are unitary representations of G.

187 / 3135.6 Modules

Definition 5.55. Dagger module for dagger Frobenius structure
(M, ,) in monoidal dagger category is module M ⊗ A m A with:

M

A

A

m =

M A

A

m

Examples:

• Multiplication : M ⊗ M M of a dagger Frobenius structure
is the action of a dagger module on itself.

• Let group G induce group algebra A in FHilb.

Modules A ⊗ Cn Cn are representations of G.

Dagger modules A ⊗ Cn Cn are unitary representations of G.

187 / 3135.6 Modules

Definition 5.55. Dagger module for dagger Frobenius structure
(M, ,) in monoidal dagger category is module M ⊗ A m A with:

M

A

A

m =

M A

A

m

Examples:

• Multiplication : M ⊗ M M of a dagger Frobenius structure
is the action of a dagger module on itself.

• Let group G induce group algebra A in FHilb.

Modules A ⊗ Cn Cn are representations of G.

Dagger modules A ⊗ Cn Cn are unitary representations of G.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .

• Since =
∑

i ei, also
∑

i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

188 / 3135.6 Modules

Lemma 5.57. Dagger modules for classical structure (M, ,)
acting on H in FHilb correspond to projection-valued measure on H
with dim(M) outcomes.

Proof. Module M ⊗ H m H determined by following morphisms pi:

H

H

ei

m

for copyable states ei ∈ M. These form a PVM:

• Associativity, speciality, copyability: pi ◦ pi = pi, and pi ◦ pj = 0.

• Dagger module axiom: pi = p†i .
• Since =

∑
i ei, also

∑
i pi = idH.

Conversely: if {pI} is PVM, get a module action M ⊗ H H.

Special case m = gives a nondegenerate measurement.

189 / 3135.6 Modules
After measurement, only allowed controlled operations:
unitary maps that do not affect the measurement result.

Definition 5.60. Given monoid (M, ,) in monoidal category and
module actions M ⊗A m A and M ⊗B n B, a module homomorphism
m f n is a morphism A f B satisfying the following condition:

f

m
=

f

n

We can use this to formalize quantum teleportation:

m

f

=
u

m

Here (A ⊗ A∗,m, u) is a classical structure, f is module homomorphism.

189 / 3135.6 Modules
After measurement, only allowed controlled operations:
unitary maps that do not affect the measurement result.

Definition 5.60. Given monoid (M, ,) in monoidal category and
module actions M ⊗A m A and M ⊗B n B, a module homomorphism
m f n is a morphism A f B satisfying the following condition:

f

m
=

f

n

We can use this to formalize quantum teleportation:

m

f

=
u

m

Here (A ⊗ A∗,m, u) is a classical structure, f is module homomorphism.

189 / 3135.6 Modules
After measurement, only allowed controlled operations:
unitary maps that do not affect the measurement result.

Definition 5.60. Given monoid (M, ,) in monoidal category and
module actions M ⊗A m A and M ⊗B n B, a module homomorphism
m f n is a morphism A f B satisfying the following condition:

f

m
=

f

n

We can use this to formalize quantum teleportation:

m

f

=
u

m

Here (A ⊗ A∗,m, u) is a classical structure, f is module homomorphism.

190 / 3135.6 Modules

Can now treat teleportation without biproducts, purely graphically.

Proposition 5.64. In a dagger monoidal category, a classical
structure (A ⊗ A∗,m, u) describes measurement in a teleportation
protocol if and only if:

m = u

Proof. Successful execution of quantum teleportation means:

m

f

=

u

m

190 / 3135.6 Modules

Can now treat teleportation without biproducts, purely graphically.

Proposition 5.64. In a dagger monoidal category, a classical
structure (A ⊗ A∗,m, u) describes measurement in a teleportation
protocol if and only if:

m = u

Proof. Successful execution of quantum teleportation means:

m

f

=

u

m

191 / 3135.6 Modules
Proof. (continued.) Bend down the top-left A ⊗ A wires:

m

f

=

Compose both sides with f † at the top:

m
= f

Using this description of f †:

=
f

f

=
m

m

Finally, compose with u on bottom-left to obtain desired formula.

191 / 3135.6 Modules
Proof. (continued.) Bend down the top-left A ⊗ A wires:

m

f

=

Compose both sides with f † at the top:

m
= f

Using this description of f †:

=
f

f

=
m

m

Finally, compose with u on bottom-left to obtain desired formula.

191 / 3135.6 Modules
Proof. (continued.) Bend down the top-left A ⊗ A wires:

m

f

=

Compose both sides with f † at the top:

m
= f

Using this description of f †:

=
f

f

=
m

m

Finally, compose with u on bottom-left to obtain desired formula.

191 / 3135.6 Modules
Proof. (continued.) Bend down the top-left A ⊗ A wires:

m

f

=

Compose both sides with f † at the top:

m
= f

Using this description of f †:

=
f

f

=
m

m

Finally, compose with u on bottom-left to obtain desired formula.

192 / 3135.6 Modules
Proof. (continued.) Conversely, suppose classical structure m
satisfies the condition. Then define f as follows:

f := m

This f is unitary, and a module homomorphism:

m

m

=
m

m

It correctly implements quantum teleportation:

m

m

=
m

m

=
u

m

192 / 3135.6 Modules
Proof. (continued.) Conversely, suppose classical structure m
satisfies the condition. Then define f as follows:

f := m

This f is unitary, and a module homomorphism:

m

m

=
m

m

It correctly implements quantum teleportation:

m

m

=
m

m

=
u

m

192 / 3135.6 Modules
Proof. (continued.) Conversely, suppose classical structure m
satisfies the condition. Then define f as follows:

f := m

This f is unitary, and a module homomorphism:

m

m

=
m

m

It correctly implements quantum teleportation:

m

m

=
m

m

=
u

m

193 / 313

Chapter 6
Complementarity

194 / 3136.1 Complementarity

Measure qubit in basis {
(

1
0

)
,
(

0
1

)
}, then in { 1√

2

(
1
1

)
, 1√

2

(
1
−1

)
}.

After first measurement, qubit collapses to either
(

1
0

)
or
(

0
1

)
.

Either way, second measurement has probability 1/2 for outcomes.

The first measurement provides no information about the second.

This is a simple form of Heisenberg’s uncertainty principle.

We formalize this as follows.

Definition 6.1. For a finite-dimensional Hilbert space H, two
orthogonal bases {ai} and {bj} are complementary, or unbiased,
when there is some constant c ∈ C such that the following holds:

⟨ai |bj⟩⟨bj |ai⟩ = c

That is, the inner products have constant absolute value.

194 / 3136.1 Complementarity

Measure qubit in basis {
(

1
0

)
,
(

0
1

)
}, then in { 1√

2

(
1
1

)
, 1√

2

(
1
−1

)
}.

After first measurement, qubit collapses to either
(

1
0

)
or
(

0
1

)
.

Either way, second measurement has probability 1/2 for outcomes.

The first measurement provides no information about the second.

This is a simple form of Heisenberg’s uncertainty principle.

We formalize this as follows.

Definition 6.1. For a finite-dimensional Hilbert space H, two
orthogonal bases {ai} and {bj} are complementary, or unbiased,
when there is some constant c ∈ C such that the following holds:

⟨ai |bj⟩⟨bj |ai⟩ = c

That is, the inner products have constant absolute value.

194 / 3136.1 Complementarity

Measure qubit in basis {
(

1
0

)
,
(

0
1

)
}, then in { 1√

2

(
1
1

)
, 1√

2

(
1
−1

)
}.

After first measurement, qubit collapses to either
(

1
0

)
or
(

0
1

)
.

Either way, second measurement has probability 1/2 for outcomes.

The first measurement provides no information about the second.

This is a simple form of Heisenberg’s uncertainty principle.

We formalize this as follows.

Definition 6.1. For a finite-dimensional Hilbert space H, two
orthogonal bases {ai} and {bj} are complementary, or unbiased,
when there is some constant c ∈ C such that the following holds:

⟨ai |bj⟩⟨bj |ai⟩ = c

That is, the inner products have constant absolute value.

195 / 3136.1 Complementarity

We can prove a simple lemma about complementary bases.

Lemma 6.2. For a pair of complementary bases {ai} and {bj},
within each basis, the elements have constant norm.

Proof. We perform the following computation:

⟨bj |bj⟩ =
∑

i

⟨bj |ai⟩⟨ai |bj⟩
⟨ai |ai⟩

(6.1)
=

∑
i

c
⟨ai |ai⟩

In the first equality, we insert the identity as a sum over the
complete family of projectors |ai⟩⟨ai|/⟨ai |ai⟩.
The final expression is independent of j as required.

A similar argument holds for the {ai} basis.

195 / 3136.1 Complementarity

We can prove a simple lemma about complementary bases.

Lemma 6.2. For a pair of complementary bases {ai} and {bj},
within each basis, the elements have constant norm.

Proof. We perform the following computation:

⟨bj |bj⟩ =
∑

i

⟨bj |ai⟩⟨ai |bj⟩
⟨ai |ai⟩

(6.1)
=

∑
i

c
⟨ai |ai⟩

In the first equality, we insert the identity as a sum over the
complete family of projectors |ai⟩⟨ai|/⟨ai |ai⟩.
The final expression is independent of j as required.

A similar argument holds for the {ai} basis.

195 / 3136.1 Complementarity

We can prove a simple lemma about complementary bases.

Lemma 6.2. For a pair of complementary bases {ai} and {bj},
within each basis, the elements have constant norm.

Proof. We perform the following computation:

⟨bj |bj⟩ =
∑

i

⟨bj |ai⟩⟨ai |bj⟩
⟨ai |ai⟩

(6.1)
=

∑
i

c
⟨ai |ai⟩

In the first equality, we insert the identity as a sum over the
complete family of projectors |ai⟩⟨ai|/⟨ai |ai⟩.

The final expression is independent of j as required.

A similar argument holds for the {ai} basis.

195 / 3136.1 Complementarity

We can prove a simple lemma about complementary bases.

Lemma 6.2. For a pair of complementary bases {ai} and {bj},
within each basis, the elements have constant norm.

Proof. We perform the following computation:

⟨bj |bj⟩ =
∑

i

⟨bj |ai⟩⟨ai |bj⟩
⟨ai |ai⟩

(6.1)
=

∑
i

c
⟨ai |ai⟩

In the first equality, we insert the identity as a sum over the
complete family of projectors |ai⟩⟨ai|/⟨ai |ai⟩.
The final expression is independent of j as required.

A similar argument holds for the {ai} basis.

195 / 3136.1 Complementarity

We can prove a simple lemma about complementary bases.

Lemma 6.2. For a pair of complementary bases {ai} and {bj},
within each basis, the elements have constant norm.

Proof. We perform the following computation:

⟨bj |bj⟩ =
∑

i

⟨bj |ai⟩⟨ai |bj⟩
⟨ai |ai⟩

(6.1)
=

∑
i

c
⟨ai |ai⟩

In the first equality, we insert the identity as a sum over the
complete family of projectors |ai⟩⟨ai|/⟨ai |ai⟩.
The final expression is independent of j as required.

A similar argument holds for the {ai} basis.

196 / 3136.1 Complementarity

Definition 6.3. In a braided monoidal dagger category, two
symmetric dagger Frobenius structures and on the same object
are complementary when the following equations hold:

= =

Black and white not obviously interchangeable. But by symmetry:

(5.6)
= =

So could have added two more equalities.

196 / 3136.1 Complementarity

Definition 6.3. In a braided monoidal dagger category, two
symmetric dagger Frobenius structures and on the same object
are complementary when the following equations hold:

= =

Black and white not obviously interchangeable. But by symmetry:

(5.6)
= =

So could have added two more equalities.

197 / 3136.1 Complementarity

Proposition 6.4. In FHilb, the following are equivalent for two
commutative dagger Frobenius structures on the same object:

• as Frobenius structures, they are complementary;

• as bases, they are complementary with constant c = 1.

Proof. The complementarity equation (6.4) holds if and only if the
following equation holds for all a in the white basis, and b in the
black basis:

a

b

=

a

b

197 / 3136.1 Complementarity

Proposition 6.4. In FHilb, the following are equivalent for two
commutative dagger Frobenius structures on the same object:

• as Frobenius structures, they are complementary;

• as bases, they are complementary with constant c = 1.

Proof. The complementarity equation (6.4) holds if and only if the
following equation holds for all a in the white basis, and b in the
black basis:

a

b

=

a

b

198 / 3136.1 Complementarity

Proof. (continued.)

The left-hand side can be simplified as follows:

a

b

=

aa

bb

(5.30)
=

a

b

b

a

The right-hand side expands to 1.

199 / 3136.1 Complementarity

Lemma 6.6. In a braided dagger pivotal category, if A is self-dual,
then the following Frobenius structures on A ⊗ A are
complementary: pair of pants, and transport across braiding.

Proof. Draw pair of pants white, transport across braiding black:
A ⊗ A

A ⊗ AA ⊗ A

=

A

AA A

A

A

A ⊗ A

=
A A

= = =

199 / 3136.1 Complementarity

Lemma 6.6. In a braided dagger pivotal category, if A is self-dual,
then the following Frobenius structures on A ⊗ A are
complementary: pair of pants, and transport across braiding.

Proof. Draw pair of pants white, transport across braiding black:
A ⊗ A

A ⊗ AA ⊗ A

=

A

AA A

A

A

A ⊗ A

=
A A

= = =

199 / 3136.1 Complementarity

Lemma 6.6. In a braided dagger pivotal category, if A is self-dual,
then the following Frobenius structures on A ⊗ A are
complementary: pair of pants, and transport across braiding.

Proof. Draw pair of pants white, transport across braiding black:
A ⊗ A

A ⊗ AA ⊗ A

=

A

AA A

A

A

A ⊗ A

=
A A

= = =

200 / 3136.1 Complementarity

Example 6.5. Three mutually complementary bases of C2:

X basis
{

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
Y basis

{
1√
2

(
1
i

)
,

1√
2

(
1
−i

)}
Z basis

{(
1
0

)
,

(
0
1

)}

• Largest family of complementary bases for C2:
no four bases all mutually unbiased.

• What is the maximum number of mutually complementary
bases in a given dimension?

• Only known for prime power dimensions pn.

200 / 3136.1 Complementarity

Example 6.5. Three mutually complementary bases of C2:

X basis
{

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
Y basis

{
1√
2

(
1
i

)
,

1√
2

(
1
−i

)}
Z basis

{(
1
0

)
,

(
0
1

)}

• Largest family of complementary bases for C2:
no four bases all mutually unbiased.

• What is the maximum number of mutually complementary
bases in a given dimension?

• Only known for prime power dimensions pn.

200 / 3136.1 Complementarity

Example 6.5. Three mutually complementary bases of C2:

X basis
{

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
Y basis

{
1√
2

(
1
i

)
,

1√
2

(
1
−i

)}
Z basis

{(
1
0

)
,

(
0
1

)}

• Largest family of complementary bases for C2:
no four bases all mutually unbiased.

• What is the maximum number of mutually complementary
bases in a given dimension?

• Only known for prime power dimensions pn.

201 / 3136.1 Complementarity

Proposition 6.7. Two symmetric dagger Frobenius structures in a
braided monoidal dagger category are complementary if and only if
the following endomorphism is unitary:

Proof. Compose with adjoint:

=
(4.4)
=

Conversely, if is identity, compose with white counit on top right,
black unit on bottom left, to get complementarity.

201 / 3136.1 Complementarity

Proposition 6.7. Two symmetric dagger Frobenius structures in a
braided monoidal dagger category are complementary if and only if
the following endomorphism is unitary:

Proof. Compose with adjoint:

=
(4.4)
=

Conversely, if is identity, compose with white counit on top right,
black unit on bottom left, to get complementarity.

201 / 3136.1 Complementarity

Proposition 6.7. Two symmetric dagger Frobenius structures in a
braided monoidal dagger category are complementary if and only if
the following endomorphism is unitary:

Proof. Compose with adjoint:

=
(4.4)
=

Conversely, if is identity, compose with white counit on top right,
black unit on bottom left, to get complementarity.

202 / 3136.1 Complementarity
Example 6.8. Let G and H be nontrivial groups, and define:

• groupoid with objects g ∈ G, morphisms g (g,h) g,
composition g (g,h) g (g,h′) g = g (g,hh′) g;

• groupoid with objects h ∈ H, morphisms h (g,h) h,
composition h (g,h) h (g′,h) h = h (gh′,h) h;

Then G and H are complementary Frobenius structures.

Proof. Let’s consider the following composite:

(g, h) (g′, h′)

(g, k)
∑

k (g, hk−1) (g′, h′)

(gg′, h′) [k = h′](g, hh′−1)

Every input element is related to a unique output element, so the
structures are complementary by Proposition 6.7.

Proposition 6.10. In Rel, a groupoid allows a complementary one
just when every object has the same number of morphisms out of it.

202 / 3136.1 Complementarity
Example 6.8. Let G and H be nontrivial groups, and define:

• groupoid with objects g ∈ G, morphisms g (g,h) g,
composition g (g,h) g (g,h′) g = g (g,hh′) g;

• groupoid with objects h ∈ H, morphisms h (g,h) h,
composition h (g,h) h (g′,h) h = h (gh′,h) h;

Then G and H are complementary Frobenius structures.

Proof. Let’s consider the following composite:

(g, h) (g′, h′)

(g, k)
∑

k (g, hk−1) (g′, h′)

(gg′, h′) [k = h′](g, hh′−1)

Every input element is related to a unique output element, so the
structures are complementary by Proposition 6.7.

Proposition 6.10. In Rel, a groupoid allows a complementary one
just when every object has the same number of morphisms out of it.

203 / 3136.1 Complementarity

Complementary bases: copyable states for one unbiased for other.
Abstractly: state is unbiased phase shift is unitary.

Lemma 6.11. In a braided monoidal dagger category, if symmetric
dagger Frobenius structures are complementary, then up to scalar,
state that is self-conjugate and copyable for one is phase for other,
up to an idempotent scalar.

Proof.

a

a

= a
a

(5.6)
= a

a

(5.30)
= a

a

(4.17)
=

a

(6.4)
=

a

203 / 3136.1 Complementarity

Complementary bases: copyable states for one unbiased for other.
Abstractly: state is unbiased phase shift is unitary.

Lemma 6.11. In a braided monoidal dagger category, if symmetric
dagger Frobenius structures are complementary, then up to scalar,
state that is self-conjugate and copyable for one is phase for other,
up to an idempotent scalar.

Proof.

a

a

= a
a

(5.6)
= a

a

(5.30)
= a

a

(4.17)
=

a

(6.4)
=

a

203 / 3136.1 Complementarity

Complementary bases: copyable states for one unbiased for other.
Abstractly: state is unbiased phase shift is unitary.

Lemma 6.11. In a braided monoidal dagger category, if symmetric
dagger Frobenius structures are complementary, then up to scalar,
state that is self-conjugate and copyable for one is phase for other,
up to an idempotent scalar.

Proof.

a

a

= a
a

(5.6)
= a

a

(5.30)
= a

a

(4.17)
=

a

(6.4)
=

a

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm

• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm

• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

204 / 3136.2 The Deutsch-Jozsa algorithm

Deutsch–Jozsa solves certain problem faster in quantum case than
possible the classical case.

• Typical of quantum algorithms that decide on a solution
without relying on approximation.

• Solves artificial problem, but other important algorithms have
a similar structure:

• Shor’s factoring algorithm
• Grover’s search algorithm
• the hidden subgroup problem

• ‘All or nothing’ nature of Deutsch-Jozsa makes it amenable to
categorical modelling.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

205 / 3136.2 The Deutsch-Jozsa algorithm

Problem:

• Given 2-valued function A f {0,1} on a finite set A.

• Constant if takes just a single value on every element of A.

• Balanced if takes value 0 on exactly half the elements of A.

• You are promised that f is either constant or balanced.
You must decide which.

Best classical strategy:

• Sample f on 1
2 |A|+ 1 elements of A.

If different values balanced, otherwise constant.

206 / 3136.2 The Deutsch-Jozsa algorithm

Quantum Deutsch–Jozsa uses f only once!

How to access f? Can only apply unitary operators.

Must embed A f {0,1} into an oracle.

Definition 6.12. In a monoidal dagger category, given Frobenius
structures (A, ,) and (B, ,), an oracle is a morphism A f B such
that the following morphism is unitary:

A

A

B

B

f

206 / 3136.2 The Deutsch-Jozsa algorithm

Quantum Deutsch–Jozsa uses f only once!

How to access f? Can only apply unitary operators.

Must embed A f {0,1} into an oracle.

Definition 6.12. In a monoidal dagger category, given Frobenius
structures (A, ,) and (B, ,), an oracle is a morphism A f B such
that the following morphism is unitary:

A

A

B

B

f

206 / 3136.2 The Deutsch-Jozsa algorithm

Quantum Deutsch–Jozsa uses f only once!

How to access f? Can only apply unitary operators.

Must embed A f {0,1} into an oracle.

Definition 6.12. In a monoidal dagger category, given Frobenius
structures (A, ,) and (B, ,), an oracle is a morphism A f B such
that the following morphism is unitary:

A

A

B

B

f

206 / 3136.2 The Deutsch-Jozsa algorithm

Quantum Deutsch–Jozsa uses f only once!

How to access f? Can only apply unitary operators.

Must embed A f {0,1} into an oracle.

Definition 6.12. In a monoidal dagger category, given Frobenius
structures (A, ,) and (B, ,), an oracle is a morphism A f B such
that the following morphism is unitary:

A

A

B

B

f

207 / 3136.2 The Deutsch-Jozsa algorithm
Proposition 6.14. In a braided monoidal dagger category, let
(A,), (B,) and (B,) be symmetric dagger Frobenius structures.
Then if , are complementary, a self-conjugate comonoid
homomorphism (A,)

f
(B,) gives an oracle.

Proof. Suppose , complementary, compose with adjoint:

f

f

(5.18)
=

f

f
(5.29)
=

f

f
(4.4)
= f f

(4.7)
=

f

(6.4)
=

f

(4.8)
=

(4.5)
=

207 / 3136.2 The Deutsch-Jozsa algorithm
Proposition 6.14. In a braided monoidal dagger category, let
(A,), (B,) and (B,) be symmetric dagger Frobenius structures.
Then if , are complementary, a self-conjugate comonoid
homomorphism (A,)

f
(B,) gives an oracle.

Proof. Suppose , complementary, compose with adjoint:

f

f

(5.18)
=

f

f
(5.29)
=

f

f
(4.4)
= f f

(4.7)
=

f

(6.4)
=

f

(4.8)
=

(4.5)
=

208 / 3136.2 The Deutsch-Jozsa algorithm

Suppose |A| = n, and let A f {0,1} be the given function.

Choose complementary bases = C2, = C[Z2].

Let b =
(

1
−1

)
, a copyable state of .

Definition 6.15. The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f

It describes a particular quantum history.

208 / 3136.2 The Deutsch-Jozsa algorithm

Suppose |A| = n, and let A f {0,1} be the given function.

Choose complementary bases = C2, = C[Z2].

Let b =
(

1
−1

)
, a copyable state of .

Definition 6.15. The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f

It describes a particular quantum history.

208 / 3136.2 The Deutsch-Jozsa algorithm

Suppose |A| = n, and let A f {0,1} be the given function.

Choose complementary bases = C2, = C[Z2].

Let b =
(

1
−1

)
, a copyable state of .

Definition 6.15. The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f

It describes a particular quantum history.

208 / 3136.2 The Deutsch-Jozsa algorithm

Suppose |A| = n, and let A f {0,1} be the given function.

Choose complementary bases = C2, = C[Z2].

Let b =
(

1
−1

)
, a copyable state of .

Definition 6.15. The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f

It describes a particular quantum history.

208 / 3136.2 The Deutsch-Jozsa algorithm

Suppose |A| = n, and let A f {0,1} be the given function.

Choose complementary bases = C2, = C[Z2].

Let b =
(

1
−1

)
, a copyable state of .

Definition 6.15. The Deutsch–Jozsa algorithm is this morphism:

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

21/
√

n

1/
√

n

f

It describes a particular quantum history.

209 / 3136.2 The Deutsch-Jozsa algorithm

Lemma 6.16. The Deutsch–Jozsa algorithm (6.11) simplifies to:

b b

1/
√

21/n f

Proof. Duplicate copyable state b through white dot, and apply
noncommutative spider theorem to cluster of gray dots.

209 / 3136.2 The Deutsch-Jozsa algorithm

Lemma 6.16. The Deutsch–Jozsa algorithm (6.11) simplifies to:

b b

1/
√

21/n f

Proof. Duplicate copyable state b through white dot, and apply
noncommutative spider theorem to cluster of gray dots.

210 / 3136.2 The Deutsch-Jozsa algorithm

To prove correctness, distinguish two cases.

Lemma 6.17 (The constant case). If A f {0,1} is constant,
the Deutsch–Jozsa history is certain.

Proof. If f(a) = x for all a ∈ A, oracle H f C2 decomposes as:

f =
x

Hence we can express our history as follows:

b b

1/
√

2

1/n

f
= x

b b

1/
√

2

1/n

=
b

1/
√

2

±1

This has norm 1, so the history is certain.

210 / 3136.2 The Deutsch-Jozsa algorithm

To prove correctness, distinguish two cases.

Lemma 6.17 (The constant case). If A f {0,1} is constant,
the Deutsch–Jozsa history is certain.

Proof. If f(a) = x for all a ∈ A, oracle H f C2 decomposes as:

f =
x

Hence we can express our history as follows:

b b

1/
√

2

1/n

f
= x

b b

1/
√

2

1/n

=
b

1/
√

2

±1

This has norm 1, so the history is certain.

210 / 3136.2 The Deutsch-Jozsa algorithm

To prove correctness, distinguish two cases.

Lemma 6.17 (The constant case). If A f {0,1} is constant,
the Deutsch–Jozsa history is certain.

Proof. If f(a) = x for all a ∈ A, oracle H f C2 decomposes as:

f =
x

Hence we can express our history as follows:

b b

1/
√

2

1/n

f
= x

b b

1/
√

2

1/n

=
b

1/
√

2

±1

This has norm 1, so the history is certain.

211 / 3136.2 The Deutsch-Jozsa algorithm

Lemma 6.18 (The balanced case). If A f {0,1} is balanced,
the Deutsch–Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

b

f = 0

Recall b =
(

1
−1

)
.

Hence the final history equals 0.

211 / 3136.2 The Deutsch-Jozsa algorithm

Lemma 6.18 (The balanced case). If A f {0,1} is balanced,
the Deutsch–Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

b

f = 0

Recall b =
(

1
−1

)
.

Hence the final history equals 0.

211 / 3136.2 The Deutsch-Jozsa algorithm

Lemma 6.18 (The balanced case). If A f {0,1} is balanced,
the Deutsch–Jozsa history is impossible.

Proof. The function f is balanced just when the following holds:

b

f = 0

Recall b =
(

1
−1

)
.

Hence the final history equals 0.

212 / 3136.3 Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g ∈ G}, with

: g 7→ g ⊗ g : g 7→ 1

: g ⊗ h 7→ gh : 1 7→
∑
g∈G

g

Some nice relationships emerge between and .

212 / 3136.3 Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g ∈ G}, with

: g 7→ g ⊗ g : g 7→ 1

: g ⊗ h 7→ gh : 1 7→
∑
g∈G

g

Some nice relationships emerge between and .

212 / 3136.3 Bialgebras

Complementary classical structures in FHilb are mutually unbiased
bases. How to build them?

One standard way: let G be finite group, and consider Hilbert space
with basis {g ∈ G}, with

: g 7→ g ⊗ g : g 7→ 1

: g ⊗ h 7→ gh : 1 7→
∑
g∈G

g

Some nice relationships emerge between and .

213 / 3136.3 Bialgebras

Definition 6.20. In a braided monoidal category, a bialgebra
consists of a monoid (A, ,) and a comonoid (A, ,) satisfying
the following equations:

= = = =

A bialgebra is commutative when the underlying monoid and
comonoid are commutative. In a braided monoidal dagger category,
a dagger bialgebra is a bialgebra for which = .

In the commutative case, interpretation in terms of counting paths.
Leads to normal form.

213 / 3136.3 Bialgebras

Definition 6.20. In a braided monoidal category, a bialgebra
consists of a monoid (A, ,) and a comonoid (A, ,) satisfying
the following equations:

= = = =

A bialgebra is commutative when the underlying monoid and
comonoid are commutative. In a braided monoidal dagger category,
a dagger bialgebra is a bialgebra for which = .

In the commutative case, interpretation in terms of counting paths.
Leads to normal form.

213 / 3136.3 Bialgebras

Definition 6.20. In a braided monoidal category, a bialgebra
consists of a monoid (A, ,) and a comonoid (A, ,) satisfying
the following equations:

= = = =

A bialgebra is commutative when the underlying monoid and
comonoid are commutative. In a braided monoidal dagger category,
a dagger bialgebra is a bialgebra for which = .

In the commutative case, interpretation in terms of counting paths.
Leads to normal form.

214 / 3136.3 Bialgebras

Example 6.21.

• In any category with biproducts, any object A has bialgebra:

A

(
idA
idA

)
A ⊕ A 0

00,A A A ⊕ A
(idA idA) A A

0A,0 0

• Any monoid M is a bialgebra in Set:

: m 7→ (m,m) : m 7→ • : (m,n) 7→ mn : • 7→ 1M.

• Symmetric monoidal functors FSet FHilb, Set Rel extend
these examples to other categories.

214 / 3136.3 Bialgebras

Example 6.21.

• In any category with biproducts, any object A has bialgebra:

A

(
idA
idA

)
A ⊕ A 0

00,A A A ⊕ A
(idA idA) A A

0A,0 0

• Any monoid M is a bialgebra in Set:

: m 7→ (m,m) : m 7→ • : (m,n) 7→ mn : • 7→ 1M.

• Symmetric monoidal functors FSet FHilb, Set Rel extend
these examples to other categories.

214 / 3136.3 Bialgebras

Example 6.21.

• In any category with biproducts, any object A has bialgebra:

A

(
idA
idA

)
A ⊕ A 0

00,A A A ⊕ A
(idA idA) A A

0A,0 0

• Any monoid M is a bialgebra in Set:

: m 7→ (m,m) : m 7→ • : (m,n) 7→ mn : • 7→ 1M.

• Symmetric monoidal functors FSet FHilb, Set Rel extend
these examples to other categories.

215 / 3136.3 Bialgebras

Here is a nice characterization of the bialgebra laws.

Lemma 6.22. In a braided monoidal category, the following are
equivalent:

• a comonoid (A, ,) and monoid (A, ,) form a bialgebra;

• and are comonoid homomorphisms;

• and are monoid homomorphisms.

Proof. Unfold what it means for to be a comonoid
homomorphism: comultiplication preservation gives the first of the
bialgebra laws; counit preservation gives the second; and the last
two come from requiring that is a comonoid homomorphism. The
case of monoid homomorphisms is analogous.

215 / 3136.3 Bialgebras

Here is a nice characterization of the bialgebra laws.

Lemma 6.22. In a braided monoidal category, the following are
equivalent:

• a comonoid (A, ,) and monoid (A, ,) form a bialgebra;

• and are comonoid homomorphisms;

• and are monoid homomorphisms.

Proof. Unfold what it means for to be a comonoid
homomorphism: comultiplication preservation gives the first of the
bialgebra laws; counit preservation gives the second; and the last
two come from requiring that is a comonoid homomorphism. The
case of monoid homomorphisms is analogous.

216 / 3136.3 Bialgebras

Frobenius structures and bialgebras are not compatible.

Theorem 6.23. In a braided monoidal category, if a monoid
(A, ,) and comonoid (A, ,) form a Frobenius structure and a
bialgebra, then A ≃ I.

Proof. Will show and are inverses. The bialgebra laws already
require ◦ = idI. For the other composite:

(4.3)
=

(6.15)
= =

216 / 3136.3 Bialgebras

Frobenius structures and bialgebras are not compatible.

Theorem 6.23. In a braided monoidal category, if a monoid
(A, ,) and comonoid (A, ,) form a Frobenius structure and a
bialgebra, then A ≃ I.

Proof. Will show and are inverses. The bialgebra laws already
require ◦ = idI. For the other composite:

(4.3)
=

(6.15)
= =

216 / 3136.3 Bialgebras

Frobenius structures and bialgebras are not compatible.

Theorem 6.23. In a braided monoidal category, if a monoid
(A, ,) and comonoid (A, ,) form a Frobenius structure and a
bialgebra, then A ≃ I.

Proof. Will show and are inverses. The bialgebra laws already
require ◦ = idI. For the other composite:

(4.3)
=

(6.15)
= =

217 / 3136.3 Bialgebras

Lemma 6.24. In a braided monoidal category, if a monoid and
comonoid interact as a bialgebra, then the copyable states for
are a monoid under .

Proof. Associativity is immediate. Unitality comes down to third
bialgebra law: is copyable for . Have to prove well-definedness.
Let a and b be copyable states for .

a b

(6.15)
=

a b

(4.17)
=

a b a b

Hence -copyable states are indeed closed under .

217 / 3136.3 Bialgebras

Lemma 6.24. In a braided monoidal category, if a monoid and
comonoid interact as a bialgebra, then the copyable states for
are a monoid under .

Proof. Associativity is immediate. Unitality comes down to third
bialgebra law: is copyable for . Have to prove well-definedness.
Let a and b be copyable states for .

a b

(6.15)
=

a b

(4.17)
=

a b a b

Hence -copyable states are indeed closed under .

218 / 3136.3 Bialgebras

Example 6.27. Consider C2 in FHilb. Computational basis
{
(

1
0

)
,
(

0
1

)
} gives dagger Frobenius structure . Orthogonal basis

{
(

eiφ

eiθ

)
,
(

eiφ

−eiθ

)
} gives dagger Frobenius structure .

Complementary, but only a bialgebra if φ = θ = 0.

Definition 6.28. In a braided monoidal dagger category, two
dagger symmetric Frobenius structures are strongly complementary
when they are complementary, and also form a bialgebra.

Strongly complementary pairs have extra nice properties.

218 / 3136.3 Bialgebras

Example 6.27. Consider C2 in FHilb. Computational basis
{
(

1
0

)
,
(

0
1

)
} gives dagger Frobenius structure . Orthogonal basis

{
(

eiφ

eiθ

)
,
(

eiφ

−eiθ

)
} gives dagger Frobenius structure .

Complementary, but only a bialgebra if φ = θ = 0.

Definition 6.28. In a braided monoidal dagger category, two
dagger symmetric Frobenius structures are strongly complementary
when they are complementary, and also form a bialgebra.

Strongly complementary pairs have extra nice properties.

219 / 3136.3 Bialgebras

Theorem 6.29. In a braided monoidal dagger category, given
strongly complementary symmetric dagger Frobenius structures,
the states that are self-conjugate, copyable and deletable for (,)
form a group under .

Proof. By Theorem 6.24 they form a monoid, and by Lemma 6.11
every element of this monoid has a left and right inverse.

Theorem 6.30. In FHilb, strongly complementary symmetric
dagger Frobenius structures, one of which is commutative,
correspond to finite groups.

Proof. Suppose is commutative. By Theorem 6.29 the states
which are self-conjugate, copyable and deletable for (,) form a
group for . But by the classification theorem for commutative
dagger Frobenius structures, there is an entire basis of such states
for .

219 / 3136.3 Bialgebras

Theorem 6.29. In a braided monoidal dagger category, given
strongly complementary symmetric dagger Frobenius structures,
the states that are self-conjugate, copyable and deletable for (,)
form a group under .

Proof. By Theorem 6.24 they form a monoid, and by Lemma 6.11
every element of this monoid has a left and right inverse.

Theorem 6.30. In FHilb, strongly complementary symmetric
dagger Frobenius structures, one of which is commutative,
correspond to finite groups.

Proof. Suppose is commutative. By Theorem 6.29 the states
which are self-conjugate, copyable and deletable for (,) form a
group for . But by the classification theorem for commutative
dagger Frobenius structures, there is an entire basis of such states
for .

219 / 3136.3 Bialgebras

Theorem 6.29. In a braided monoidal dagger category, given
strongly complementary symmetric dagger Frobenius structures,
the states that are self-conjugate, copyable and deletable for (,)
form a group under .

Proof. By Theorem 6.24 they form a monoid, and by Lemma 6.11
every element of this monoid has a left and right inverse.

Theorem 6.30. In FHilb, strongly complementary symmetric
dagger Frobenius structures, one of which is commutative,
correspond to finite groups.

Proof. Suppose is commutative. By Theorem 6.29 the states
which are self-conjugate, copyable and deletable for (,) form a
group for . But by the classification theorem for commutative
dagger Frobenius structures, there is an entire basis of such states
for .

219 / 3136.3 Bialgebras

Theorem 6.29. In a braided monoidal dagger category, given
strongly complementary symmetric dagger Frobenius structures,
the states that are self-conjugate, copyable and deletable for (,)
form a group under .

Proof. By Theorem 6.24 they form a monoid, and by Lemma 6.11
every element of this monoid has a left and right inverse.

Theorem 6.30. In FHilb, strongly complementary symmetric
dagger Frobenius structures, one of which is commutative,
correspond to finite groups.

Proof. Suppose is commutative. By Theorem 6.29 the states
which are self-conjugate, copyable and deletable for (,) form a
group for . But by the classification theorem for commutative
dagger Frobenius structures, there is an entire basis of such states
for .

220 / 3136.3 Bialgebras
For symmetric dagger Frobenius structures in FHilb, one of which is
commutative, the ‘black-white snake’ is linear extension of g 7→ g−1:

g

=
g

=
g−1

Same calculation for complementary Frobenius structures in Rel.

Definition 6.31. An antipode for a monoid (A, ,) and comonoid
(A, ,) in a monoidal category is a morphism A s A satisfying

s = = s

A Hopf algebra is a bialgebra with an antipode.

220 / 3136.3 Bialgebras
For symmetric dagger Frobenius structures in FHilb, one of which is
commutative, the ‘black-white snake’ is linear extension of g 7→ g−1:

g

=
g

=
g−1

Same calculation for complementary Frobenius structures in Rel.

Definition 6.31. An antipode for a monoid (A, ,) and comonoid
(A, ,) in a monoidal category is a morphism A s A satisfying

s = = s

A Hopf algebra is a bialgebra with an antipode.

220 / 3136.3 Bialgebras
For symmetric dagger Frobenius structures in FHilb, one of which is
commutative, the ‘black-white snake’ is linear extension of g 7→ g−1:

g

=
g

=
g−1

Same calculation for complementary Frobenius structures in Rel.

Definition 6.31. An antipode for a monoid (A, ,) and comonoid
(A, ,) in a monoidal category is a morphism A s A satisfying

s = = s

A Hopf algebra is a bialgebra with an antipode.

221 / 3136.3 Bialgebras
Theorem ??. In a braided monoidal category, given a Hopf algebra,
the states which are copied by the comultiplication and deleted by
the counit form a group under the multiplication.

Proof. The states which are copied by the comultiplication form a
monoid. Acting on an element by the antipode gives a left inverse:

aa

s =

a

s (6.16)
=

a

s
=

a

= (4)

Similarly, acting by the antipode also gives a right inverse.

Corollary 6.34. In Set, Hopf algebras are exactly groups.

Proof. The only comonoids in Set are built from the diagonal and
terminal morphisms, which copy and delete every element of the
underlying set.

221 / 3136.3 Bialgebras
Theorem ??. In a braided monoidal category, given a Hopf algebra,
the states which are copied by the comultiplication and deleted by
the counit form a group under the multiplication.

Proof. The states which are copied by the comultiplication form a
monoid. Acting on an element by the antipode gives a left inverse:

aa

s =

a

s (6.16)
=

a

s
=

a

= (4)

Similarly, acting by the antipode also gives a right inverse.

Corollary 6.34. In Set, Hopf algebras are exactly groups.

Proof. The only comonoids in Set are built from the diagonal and
terminal morphisms, which copy and delete every element of the
underlying set.

221 / 3136.3 Bialgebras
Theorem ??. In a braided monoidal category, given a Hopf algebra,
the states which are copied by the comultiplication and deleted by
the counit form a group under the multiplication.

Proof. The states which are copied by the comultiplication form a
monoid. Acting on an element by the antipode gives a left inverse:

aa

s =

a

s (6.16)
=

a

s
=

a

= (4)

Similarly, acting by the antipode also gives a right inverse.

Corollary 6.34. In Set, Hopf algebras are exactly groups.

Proof. The only comonoids in Set are built from the diagonal and
terminal morphisms, which copy and delete every element of the
underlying set.

221 / 3136.3 Bialgebras
Theorem ??. In a braided monoidal category, given a Hopf algebra,
the states which are copied by the comultiplication and deleted by
the counit form a group under the multiplication.

Proof. The states which are copied by the comultiplication form a
monoid. Acting on an element by the antipode gives a left inverse:

aa

s =

a

s (6.16)
=

a

s
=

a

= (4)

Similarly, acting by the antipode also gives a right inverse.

Corollary 6.34. In Set, Hopf algebras are exactly groups.

Proof. The only comonoids in Set are built from the diagonal and
terminal morphisms, which copy and delete every element of the
underlying set.

222 / 3136.4 Qubit gates

Graphical calculus can describe useful gates in quantum computing.

Theorem 6.35. In a braided monoidal dagger category, let (,)
and (,) be complementary classical structures. Then the
following holds, if an only if the first bialgebra law holds:

s

s

s

=

223 / 3136.4 Qubit gates
Proof. We use the following graphical argument:

s

s

s

(6.5)
=

s

(5.18)
=

s

iso
=

s

(4.1)
=

s

(4.1)
=

s

= =
(5.18)
=

(5.18)
=

(6.8)
=

224 / 3136.4 Qubit gates

Example 6.36. In FHilb, fix A to be qubit C2; let (,) copy
computational basis {|0⟩, |1⟩}, and (,) copy the X basis.
Then the three antipodes s become identities.

The three unitaries indeed reduce to three CNOT gates: negate
second qubit if the first (control) qubit is |1⟩, do nothing otherwise.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Fix these two classical structures for the rest of this chapter. The
relationship between them is |+⟩ = |0⟩+ |1⟩, and |−⟩ = |0⟩ − |1⟩.
Hence they are transported into each other by the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
= H

224 / 3136.4 Qubit gates

Example 6.36. In FHilb, fix A to be qubit C2; let (,) copy
computational basis {|0⟩, |1⟩}, and (,) copy the X basis.
Then the three antipodes s become identities.

The three unitaries indeed reduce to three CNOT gates: negate
second qubit if the first (control) qubit is |1⟩, do nothing otherwise.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Fix these two classical structures for the rest of this chapter. The
relationship between them is |+⟩ = |0⟩+ |1⟩, and |−⟩ = |0⟩ − |1⟩.
Hence they are transported into each other by the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
= H

225 / 3136.4 Qubit gates

Lemma 6.37. The CZ gate in FHilb can be defined as follows.

CZ := H

Proof. Rewrite as:

CZ
(5.13)
=

H

H

Hence

CZ = (id ⊗ H) ◦ CNOT ◦ (id ⊗ H) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



225 / 3136.4 Qubit gates

Lemma 6.37. The CZ gate in FHilb can be defined as follows.

CZ := H

Proof. Rewrite as:

CZ
(5.13)
=

H

H

Hence

CZ = (id ⊗ H) ◦ CNOT ◦ (id ⊗ H) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



226 / 3136.4 Qubit gates

Proposition 6.39. If (A,) and (A,) complementary classical
structures in braided monoidal dagger category, and A H A satisfies
H ◦ H = idA, then CZ makes sense and satisfies CZ ◦ CZ = id.

Proof. Easy graphical manipulation:

H

H (5.18)
=

H

H
(5.13)
=

H

H

(6.4)
=

H

H

(6.22)
=

226 / 3136.4 Qubit gates

Proposition 6.39. If (A,) and (A,) complementary classical
structures in braided monoidal dagger category, and A H A satisfies
H ◦ H = idA, then CZ makes sense and satisfies CZ ◦ CZ = id.

Proof. Easy graphical manipulation:

H

H (5.18)
=

H

H
(5.13)
=

H

H

(6.4)
=

H

H

(6.22)
=

227 / 3136.4 Qubit gates

Single-qubit unitaries can be implemented via Euler angles: unitary
C2 u C2 allows phases φ,ψ, θ with u = Zθ ◦ Xψ ◦ Zφ, where Zθ is
rotation in Z basis over angle θ, and Xφ in X basis over angle φ.

Theorem 6.40. If unitary C2 u C2 in FHilb has Euler angles φ,ψ, θ,

u =

φ ψ θ

H H

H H

227 / 3136.4 Qubit gates

Single-qubit unitaries can be implemented via Euler angles: unitary
C2 u C2 allows phases φ,ψ, θ with u = Zθ ◦ Xψ ◦ Zφ, where Zθ is
rotation in Z basis over angle θ, and Xφ in X basis over angle φ.

Theorem 6.40. If unitary C2 u C2 in FHilb has Euler angles φ,ψ, θ,

u =

φ ψ θ

H H

H H

228 / 3136.4 Qubit gates

Proof. Use phased spider theorem to reduce to:

φ H ψ H θ H H

But by transport lemma, this is just:

φ ψ θ

which equals u, by definition of the Euler angles.

228 / 3136.4 Qubit gates

Proof. Use phased spider theorem to reduce to:

φ H ψ H θ H H

But by transport lemma, this is just:

φ ψ θ

which equals u, by definition of the Euler angles.

229 / 313

Chapter 7
Complete positivity

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1.

It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

230 / 3137.1 Completely positive maps

Suppose machine produces quantum systems with Hilbert space H.

Two buttons: one produces state v ∈ H, another state w ∈ H.
You receive the system, but can’t see machine operating.
All you know is, a coin is flipped to decide which button to press.

Taking this into account, the state of the system you receive can’t be
described by an element of H. The system is in a mixed state.

Definition 0.65. A density matrix on a Hilbert space H is a positive
map H ρ H. It is normalized when Tr(ρ) = 1. It is pure when
ρ = |ψ⟩⟨ψ| for some ψ ∈ H; otherwise, it is mixed.

Set of density matrices is convex.

Definition 0.71. For Hilbert spaces H and K, the partial trace over K
is the unique linear map TrK : Hilb(H ⊗ K,H ⊗ K) Hilb(H,H)
satisfying TrK(ρ⊗ σ) = Tr(σ) · ρ.

Partial trace of pure state can be mixed.

231 / 3137.1 Completely positive maps

Mixed version of measurement:

Definition 0.69. A positive operator-valued measure (POVM) on a
Hilbert space H is a family of positive maps H fi H satisfying∑

i fi = idH.

Every projection-valued measure {pi} gives rise to a positive
operator–valued measure in a canonical way, by choosing fi = pi.

Definition 0.63 (Born rule). For a positive operator–valued
measure {fi} on a system with normalized density matrix H ρ H,
the probability of outcome i is ⟨ψ|fi|ψ⟩.

231 / 3137.1 Completely positive maps

Mixed version of measurement:

Definition 0.69. A positive operator-valued measure (POVM) on a
Hilbert space H is a family of positive maps H fi H satisfying∑

i fi = idH.

Every projection-valued measure {pi} gives rise to a positive
operator–valued measure in a canonical way, by choosing fi = pi.

Definition 0.63 (Born rule). For a positive operator–valued
measure {fi} on a system with normalized density matrix H ρ H,
the probability of outcome i is ⟨ψ|fi|ψ⟩.

231 / 3137.1 Completely positive maps

Mixed version of measurement:

Definition 0.69. A positive operator-valued measure (POVM) on a
Hilbert space H is a family of positive maps H fi H satisfying∑

i fi = idH.

Every projection-valued measure {pi} gives rise to a positive
operator–valued measure in a canonical way, by choosing fi = pi.

Definition 0.63 (Born rule). For a positive operator–valued
measure {fi} on a system with normalized density matrix H ρ H,
the probability of outcome i is ⟨ψ|fi|ψ⟩.

232 / 3137.1 Completely positive maps

Will now develop mixed states categorically, in 4 steps.
So far have defined pure state as morphism I a A.

Step 1: consider p = a ◦ a† : A A instead of I a A.
This is really just a switch of perspective: we can recover a from p
up to a phase, which is physically unimportant.

232 / 3137.1 Completely positive maps

Will now develop mixed states categorically, in 4 steps.
So far have defined pure state as morphism I a A.

Step 1: consider p = a ◦ a† : A A instead of I a A.
This is really just a switch of perspective: we can recover a from p
up to a phase, which is physically unimportant.

233 / 3137.1 Completely positive maps

Step 2: switch from

A

A

a

a
to

A A

aa

Instead of A A, may take names I A∗⊗A, so no information lost.

Definition 7.1. A positive matrix is a morphism I m A∗ ⊗ A that is
the name ⌜f † ◦ f⌝ of a positive morphism for some A f B. If we can
choose B = I, we call m a pure state.

Will sometimes write
√

m for f to indicate that m has a ‘square root’
and is hence positive. However,

√
m is by no means unique.

233 / 3137.1 Completely positive maps

Step 2: switch from

A

A

a

a
to

A A

aa

Instead of A A, may take names I A∗⊗A, so no information lost.

Definition 7.1. A positive matrix is a morphism I m A∗ ⊗ A that is
the name ⌜f † ◦ f⌝ of a positive morphism for some A f B. If we can
choose B = I, we call m a pure state.

Will sometimes write
√

m for f to indicate that m has a ‘square root’
and is hence positive. However,

√
m is by no means unique.

233 / 3137.1 Completely positive maps

Step 2: switch from

A

A

a

a
to

A A

aa

Instead of A A, may take names I A∗⊗A, so no information lost.

Definition 7.1. A positive matrix is a morphism I m A∗ ⊗ A that is
the name ⌜f † ◦ f⌝ of a positive morphism for some A f B. If we can
choose B = I, we call m a pure state.

Will sometimes write
√

m for f to indicate that m has a ‘square root’
and is hence positive. However,

√
m is by no means unique.

234 / 3137.1 Completely positive maps

Step 3: move from positive matrix I m A∗ ⊗ A to multiplication
A∗ ⊗ A A∗ ⊗ A on left with m; compare Cayley embedding.

A A

AA

a a =

A

A A

A

a

a

Loses no information:

Lemma 7.3. In FHilb, if a morphism I m A∗ ⊗ A satisfies

A A

AA

m = X

A A

A A

g

g

then it is a positive matrix.

234 / 3137.1 Completely positive maps

Step 3: move from positive matrix I m A∗ ⊗ A to multiplication
A∗ ⊗ A A∗ ⊗ A on left with m; compare Cayley embedding.

A A

AA

a a =

A

A A

A

a

a

Loses no information:

Lemma 7.3. In FHilb, if a morphism I m A∗ ⊗ A satisfies

A A

AA

m = X

A A

A A

g

g

then it is a positive matrix.

235 / 3137.1 Completely positive maps

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

Definition 7.4. A mixed state of a dagger Frobenius structure
(A, ,) in a monoidal dagger category is a morphism I m A with

A

A

m
=

A

A

X

g

g

for some object X and some morphism A g X.

Will sometimes write
√

m instead of g, even though not unique.

235 / 3137.1 Completely positive maps

Step 4: Recognize pants, upgrade to arbitrary Frobenius structure.

Definition 7.4. A mixed state of a dagger Frobenius structure
(A, ,) in a monoidal dagger category is a morphism I m A with

A

A

m
=

A

A

X

g

g

for some object X and some morphism A g X.

Will sometimes write
√

m instead of g, even though not unique.

236 / 3137.1 Completely positive maps

Example 7.5. Mixed states in our example categories:

• Recall pair of pants on A = Cn in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m =

√
m† ◦

√
m

for some n-by-m matrix
√

m: precisely density matrices.

• Dagger Frobenius structures in FHilb are finite-dimensional
C*-algebras A. Mixed states I A are elements a ∈ A satisfying
a = b∗b for some b ∈ A; usually called the positive elements.

• Special dagger Frobenius structure in Rel correspond to
groupoids G. Mixed states are subsets R closed under inverses,
and such that g ∈ R implies iddom(g) ∈ R.

236 / 3137.1 Completely positive maps

Example 7.5. Mixed states in our example categories:

• Recall pair of pants on A = Cn in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m =

√
m† ◦

√
m

for some n-by-m matrix
√

m: precisely density matrices.

• Dagger Frobenius structures in FHilb are finite-dimensional
C*-algebras A. Mixed states I A are elements a ∈ A satisfying
a = b∗b for some b ∈ A; usually called the positive elements.

• Special dagger Frobenius structure in Rel correspond to
groupoids G. Mixed states are subsets R closed under inverses,
and such that g ∈ R implies iddom(g) ∈ R.

236 / 3137.1 Completely positive maps

Example 7.5. Mixed states in our example categories:

• Recall pair of pants on A = Cn in FHilb is n-by-n matrices.
Mixed states are n-by-n matrices m satisfying m =

√
m† ◦

√
m

for some n-by-m matrix
√

m: precisely density matrices.

• Dagger Frobenius structures in FHilb are finite-dimensional
C*-algebras A. Mixed states I A are elements a ∈ A satisfying
a = b∗b for some b ∈ A; usually called the positive elements.

• Special dagger Frobenius structure in Rel correspond to
groupoids G. Mixed states are subsets R closed under inverses,
and such that g ∈ R implies iddom(g) ∈ R.

237 / 3137.1 Completely positive maps

What is the accompanying notion of morphism?

Individual morphisms are physical processes; free or controlled
time evolution, preparation, or measurement. So should take
(mixed) states to (mixed) states, and be determined by behaviour
on (mixed) states.

Definition 7.6. Let (A, ,) and (B, ,) be dagger Frobenius
structures in dagger monoidal category. A positive map is morphism
A f B such that I f◦m B is mixed state when I m A is mixed state.

Warning: different from positive-semidefinite morphisms f = g† ◦ g,
abbreviated to positive morphisms.

237 / 3137.1 Completely positive maps

What is the accompanying notion of morphism?

Individual morphisms are physical processes; free or controlled
time evolution, preparation, or measurement. So should take
(mixed) states to (mixed) states, and be determined by behaviour
on (mixed) states.

Definition 7.6. Let (A, ,) and (B, ,) be dagger Frobenius
structures in dagger monoidal category. A positive map is morphism
A f B such that I f◦m B is mixed state when I m A is mixed state.

Warning: different from positive-semidefinite morphisms f = g† ◦ g,
abbreviated to positive morphisms.

237 / 3137.1 Completely positive maps

What is the accompanying notion of morphism?

Individual morphisms are physical processes; free or controlled
time evolution, preparation, or measurement. So should take
(mixed) states to (mixed) states, and be determined by behaviour
on (mixed) states.

Definition 7.6. Let (A, ,) and (B, ,) be dagger Frobenius
structures in dagger monoidal category. A positive map is morphism
A f B such that I f◦m B is mixed state when I m A is mixed state.

Warning: different from positive-semidefinite morphisms f = g† ◦ g,
abbreviated to positive morphisms.

238 / 3137.1 Completely positive maps

Not yet the ‘right’ morphisms: forgot compound systems!
If f and g are physical channels, then so is f ⊗ g.

Specifically, f ⊗ idE should be positive map for any Frobenius
structure E and any positive map A f B. Might only be interested in
A, but can never be sure it’s isolated from environment E.

Definition 7.7. Let (A, ,) and (B, ,) be dagger Frobenius
structures in a dagger monoidal category. A completely positive map
is a morphism A f B such that f ⊗ idE is a positive map for any
dagger Frobenius structure (E, ,).

238 / 3137.1 Completely positive maps

Not yet the ‘right’ morphisms: forgot compound systems!
If f and g are physical channels, then so is f ⊗ g.

Specifically, f ⊗ idE should be positive map for any Frobenius
structure E and any positive map A f B. Might only be interested in
A, but can never be sure it’s isolated from environment E.

Definition 7.7. Let (A, ,) and (B, ,) be dagger Frobenius
structures in a dagger monoidal category. A completely positive map
is a morphism A f B such that f ⊗ idE is a positive map for any
dagger Frobenius structure (E, ,).

239 / 3137.1 Completely positive maps

Example 7.8. Completely positive maps in FHilb:

• Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦ m ◦ u; can phrase it as
A∗ ⊗ A u∗⊗u A∗ ⊗ A for A = Cn.

• Measurement: if A p1,...,pn A is a POVM, then |i⟩ 7→ pi is
completely positive Cn p A∗ ⊗ A. Conversely, if p completely
positive map preserving units, {p(|1⟩), . . . , p(|n⟩)} is POVM.

Definition 7.9. Let G and H be the sets of morphisms of groupoids
G and H. A relation G H is said to respect inverses when g ∼ h
implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).

Proposition 7.10. A morphism G R H in Rel is completely positive
if and only if it respects inverses.

239 / 3137.1 Completely positive maps

Example 7.8. Completely positive maps in FHilb:

• Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦ m ◦ u; can phrase it as
A∗ ⊗ A u∗⊗u A∗ ⊗ A for A = Cn.

• Measurement: if A p1,...,pn A is a POVM, then |i⟩ 7→ pi is
completely positive Cn p A∗ ⊗ A.

Conversely, if p completely
positive map preserving units, {p(|1⟩), . . . , p(|n⟩)} is POVM.

Definition 7.9. Let G and H be the sets of morphisms of groupoids
G and H. A relation G H is said to respect inverses when g ∼ h
implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).

Proposition 7.10. A morphism G R H in Rel is completely positive
if and only if it respects inverses.

239 / 3137.1 Completely positive maps

Example 7.8. Completely positive maps in FHilb:

• Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦ m ◦ u; can phrase it as
A∗ ⊗ A u∗⊗u A∗ ⊗ A for A = Cn.

• Measurement: if A p1,...,pn A is a POVM, then |i⟩ 7→ pi is
completely positive Cn p A∗ ⊗ A. Conversely, if p completely
positive map preserving units, {p(|1⟩), . . . , p(|n⟩)} is POVM.

Definition 7.9. Let G and H be the sets of morphisms of groupoids
G and H. A relation G H is said to respect inverses when g ∼ h
implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).

Proposition 7.10. A morphism G R H in Rel is completely positive
if and only if it respects inverses.

239 / 3137.1 Completely positive maps

Example 7.8. Completely positive maps in FHilb:

• Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦ m ◦ u; can phrase it as
A∗ ⊗ A u∗⊗u A∗ ⊗ A for A = Cn.

• Measurement: if A p1,...,pn A is a POVM, then |i⟩ 7→ pi is
completely positive Cn p A∗ ⊗ A. Conversely, if p completely
positive map preserving units, {p(|1⟩), . . . , p(|n⟩)} is POVM.

Definition 7.9. Let G and H be the sets of morphisms of groupoids
G and H. A relation G H is said to respect inverses when g ∼ h
implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).

Proposition 7.10. A morphism G R H in Rel is completely positive
if and only if it respects inverses.

239 / 3137.1 Completely positive maps

Example 7.8. Completely positive maps in FHilb:

• Unitary evolution: letting an n-by-n matrix m evolve freely
along unitary u to u† ◦ m ◦ u; can phrase it as
A∗ ⊗ A u∗⊗u A∗ ⊗ A for A = Cn.

• Measurement: if A p1,...,pn A is a POVM, then |i⟩ 7→ pi is
completely positive Cn p A∗ ⊗ A. Conversely, if p completely
positive map preserving units, {p(|1⟩), . . . , p(|n⟩)} is POVM.

Definition 7.9. Let G and H be the sets of morphisms of groupoids
G and H. A relation G H is said to respect inverses when g ∼ h
implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h).

Proposition 7.10. A morphism G R H in Rel is completely positive
if and only if it respects inverses.

240 / 3137.2 Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ⊗ idE ≥ 0 =⇒ f ≥ 0.

Lemma 7.14. In a positively monoidal braided dagger category, if
f : (A, ,) (B, ,) is completely positive, then

B

A B

A

f = X

A B

A B

g

g

for some object X and some morphism A ⊗ B g X.

This is called the CP–condition.

240 / 3137.2 Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ⊗ idE ≥ 0 =⇒ f ≥ 0.

Lemma 7.14. In a positively monoidal braided dagger category, if
f : (A, ,) (B, ,) is completely positive, then

B

A B

A

f = X

A B

A B

g

g

for some object X and some morphism A ⊗ B g X.

This is called the CP–condition.

240 / 3137.2 Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ⊗ idE ≥ 0 =⇒ f ≥ 0.

Lemma 7.14. In a positively monoidal braided dagger category, if
f : (A, ,) (B, ,) is completely positive, then

B

A B

A

f = X

A B

A B

g

g

for some object X and some morphism A ⊗ B g X.

This is called the CP–condition.

240 / 3137.2 Categories of completely positive maps

Definition of completely positive map was operational,
will now reformulate in structural form.

Need category to be positive monoidal: f ⊗ idE ≥ 0 =⇒ f ≥ 0.

Lemma 7.14. In a positively monoidal braided dagger category, if
f : (A, ,) (B, ,) is completely positive, then

B

A B

A

f = X

A B

A B

g

g

for some object X and some morphism A ⊗ B g X.

This is called the CP–condition.

241 / 3137.2 Categories of completely positive maps

Proof. Let E = A ⊗ A∗ be pair of pants, define I m A ⊗ E as:

AA A

Then m is a mixed state:

A ⊗ E

A ⊗ E

m
(7.7)
=

A A

A A

A

A

(5.1)
=

A A

A A

A

A

(5.1)
=

AA

AA A

A

241 / 3137.2 Categories of completely positive maps

Proof. Let E = A ⊗ A∗ be pair of pants, define I m A ⊗ E as:

AA A

Then m is a mixed state:

A ⊗ E

A ⊗ E

m
(7.7)
=

A A

A A

A

A

(5.1)
=

A A

A A

A

A

(5.1)
=

AA

AA A

A

242 / 3137.2 Categories of completely positive maps
Since f is completely positive, so (f ⊗ idE) ◦ m is a mixed state:

B

A

A

A

A

B

f (7.4)
= Y

AB A

AB A

h

h

for some object Y and morphism h.

Hence:

B

A B

A

A

A

f
iso
=

B

B A

AA

A

f (7.8)
= Y

B A

B

A

A A

h

h

CP–condition then follows from positively monoidal.

242 / 3137.2 Categories of completely positive maps
Since f is completely positive, so (f ⊗ idE) ◦ m is a mixed state:

B

A

A

A

A

B

f (7.4)
= Y

AB A

AB A

h

h

for some object Y and morphism h. Hence:

B

A B

A

A

A

f
iso
=

B

B A

AA

A

f (7.8)
= Y

B A

B

A

A A

h

h

CP–condition then follows from positively monoidal.

242 / 3137.2 Categories of completely positive maps
Since f is completely positive, so (f ⊗ idE) ◦ m is a mixed state:

B

A

A

A

A

B

f (7.4)
= Y

AB A

AB A

h

h

for some object Y and morphism h. Hence:

B

A B

A

A

A

f
iso
=

B

B A

AA

A

f (7.8)
= Y

B A

B

A

A A

h

h

CP–condition then follows from positively monoidal.

243 / 3137.2 Categories of completely positive maps

CP–condition:
B

A B

A

f = X

A B

A B

g

g

Striking similarity to oracles, Frobenius law.

Object X is also called the ancilla system.
Map g is called a Kraus morphism, written

√
f although not unique.

Will now prove converse; need to show CP–condition well-behaved.

244 / 3137.2 Categories of completely positive maps
Lemma 7.16 (CP maps compose). In a monoidal dagger category,
let (A, ,), (B, ,), and (C, ,) be special dagger Frobenius
structures. If A f B and B g C satisfy the CP condition, so does g ◦ f .

Proof. Since f and g satisfy the CP condition:

f = X

√
f√
f

g = Y

√
g

√
g

Then we perform the following calculation:

g ◦ f
(5.1)
=

f

g
(7.9)
= X Y

√
f√
f

√
g

√
g

This uses the special law to insert a “handle” d • .

244 / 3137.2 Categories of completely positive maps
Lemma 7.16 (CP maps compose). In a monoidal dagger category,
let (A, ,), (B, ,), and (C, ,) be special dagger Frobenius
structures. If A f B and B g C satisfy the CP condition, so does g ◦ f .

Proof. Since f and g satisfy the CP condition:

f = X

√
f√
f

g = Y

√
g

√
g

Then we perform the following calculation:

g ◦ f
(5.1)
=

f

g
(7.9)
= X Y

√
f√
f

√
g

√
g

This uses the special law to insert a “handle” d • .

244 / 3137.2 Categories of completely positive maps
Lemma 7.16 (CP maps compose). In a monoidal dagger category,
let (A, ,), (B, ,), and (C, ,) be special dagger Frobenius
structures. If A f B and B g C satisfy the CP condition, so does g ◦ f .

Proof. Since f and g satisfy the CP condition:

f = X

√
f√
f

g = Y

√
g

√
g

Then we perform the following calculation:

g ◦ f
(5.1)
=

f

g
(7.9)
= X Y

√
f√
f

√
g

√
g

This uses the special law to insert a “handle” d • .

245 / 3137.2 Categories of completely positive maps

Lemma 7.17 (Product CP maps).If (A, ,)
f
(B, ,) and

(C, ,)
g
(D, ,) are maps between dagger Frobenius structures

in a braided monoidal dagger category that satisfy CP–condition,
then so is (A, ,)⊗ (C, ,)

f⊗g
(B, ,)⊗ (D, ,).

Proof. Suppose
√

f and
√

g are Kraus morphisms for f and g. Then:

f g (7.5)
=

√
f

√
f

√
g

√
g

245 / 3137.2 Categories of completely positive maps

Lemma 7.17 (Product CP maps).If (A, ,)
f
(B, ,) and

(C, ,)
g
(D, ,) are maps between dagger Frobenius structures

in a braided monoidal dagger category that satisfy CP–condition,
then so is (A, ,)⊗ (C, ,)

f⊗g
(B, ,)⊗ (D, ,).

Proof. Suppose
√

f and
√

g are Kraus morphisms for f and g. Then:

f g (7.5)
=

√
f

√
f

√
g

√
g

246 / 3137.2 Categories of completely positive maps

Can now show that the CP–condition characterizes completely
positive maps.

Theorem 7.18. Let (A, ,) and (B, ,) be special dagger
Frobenius structures, A f B morphism in braided monoidal dagger
category that is positively monoidal. The following are equivalent:

(a) f is completely positive;

(b) f ⊗ idE is positive map for all E = (X∗ ⊗ X, ,);

(c) f satisfies the CP–condition.

Proof. (a) ⇒ (b) clear; (b) ⇒ (c) already shown; (c) ⇒ (a) follows
from previous two lemmas.

246 / 3137.2 Categories of completely positive maps

Can now show that the CP–condition characterizes completely
positive maps.

Theorem 7.18. Let (A, ,) and (B, ,) be special dagger
Frobenius structures, A f B morphism in braided monoidal dagger
category that is positively monoidal. The following are equivalent:

(a) f is completely positive;

(b) f ⊗ idE is positive map for all E = (X∗ ⊗ X, ,);

(c) f satisfies the CP–condition.

Proof. (a) ⇒ (b) clear; (b) ⇒ (c) already shown; (c) ⇒ (a) follows
from previous two lemmas.

247 / 3137.2 Categories of completely positive maps

Main construction: turn compact dagger category C modeling pure
states into new compact dagger category CP[C] of mixed states.

Definition ??. Let C be a monoidal dagger category. Define a new
category CP[C] as follows: objects are special dagger Frobenius
structures in C, and morphisms are completely positive maps.

248 / 3137.2 Categories of completely positive maps

Proposition 7.22 (CP preserves tensors). If C is a braided monoidal
dagger category, then CP[C] is a monoidal category:

• the tensor product of objects is product comonoid;

• the tensor product of morphisms is well-defined by lemma;

• the tensor unit is I with multiplication I ⊗ I ρI I and unit I idI I;
• the coherence isomorphisms α, λ, and ρ are inherited from C.

If C is a symmetric monoidal category, then so is CP[C].

Proof. If C symmetric, swap maps are CP by Frobenius:

A B

B AA B

B A

(5.1)
=

A B B A

A B B A

Hence, in that case, CP[C] is symmetric monoidal.

248 / 3137.2 Categories of completely positive maps

Proposition 7.22 (CP preserves tensors). If C is a braided monoidal
dagger category, then CP[C] is a monoidal category:

• the tensor product of objects is product comonoid;

• the tensor product of morphisms is well-defined by lemma;

• the tensor unit is I with multiplication I ⊗ I ρI I and unit I idI I;
• the coherence isomorphisms α, λ, and ρ are inherited from C.

If C is a symmetric monoidal category, then so is CP[C].

Proof. If C symmetric, swap maps are CP by Frobenius:

A B

B AA B

B A

(5.1)
=

A B B A

A B B A

Hence, in that case, CP[C] is symmetric monoidal.

249 / 3137.2 Categories of completely positive maps

Lemma 7.25 (CP preserves daggers). Let (A, ,) and (B, ,) be
special dagger Frobenius structures in a braided monoidal dagger
category. If A f B satisfies CP–condition, so does B f† A.

Proof.

B

AB

A

f =

A

A

B

B

f =

A

A

B

B

f =

B

AB

A

f =

B A

B A

√
f

√
f

249 / 3137.2 Categories of completely positive maps

Lemma 7.25 (CP preserves daggers). Let (A, ,) and (B, ,) be
special dagger Frobenius structures in a braided monoidal dagger
category. If A f B satisfies CP–condition, so does B f† A.

Proof.

B

AB

A

f =

A

A

B

B

f =

A

A

B

B

f =

B

AB

A

f =

B A

B A

√
f

√
f

250 / 3137.2 Categories of completely positive maps
Lemma 7.24 (CP preserves duals). Let (A, ,) be a special dagger
Frobenius structure in a braided monoidal dagger category C, and:

A

AA

:=

A

A A

A
:=

A

Then (A, ,) ⊣ (A, ,) in CP[C].
If C symmetric monoidal, both objects are dagger dual in CP[C].

Proof. Define := : I R ⊗ L.

(7.10)
= =

(5.1)
=

Also := : L ⊗ R I is CP.
Because composition in CP[C] is as in C, snake equations come
down precisely to the Frobenius law. Thus L ⊣ R in CP[C].

250 / 3137.2 Categories of completely positive maps
Lemma 7.24 (CP preserves duals). Let (A, ,) be a special dagger
Frobenius structure in a braided monoidal dagger category C, and:

A

AA

:=

A

A A

A
:=

A

Then (A, ,) ⊣ (A, ,) in CP[C].
If C symmetric monoidal, both objects are dagger dual in CP[C].

Proof. Define := : I R ⊗ L.

(7.10)
= =

(5.1)
=

Also := : L ⊗ R I is CP.
Because composition in CP[C] is as in C, snake equations come
down precisely to the Frobenius law. Thus L ⊣ R in CP[C].

251 / 3137.2 Categories of completely positive maps

If C symmetric,

:= : L ⊗ R I := : R ⊗ L I

are CP: composition of CP swap map and adjoint of CP map.
So L and R dagger dual objects in CP[C].

252 / 3137.2 Categories of completely positive maps

Summary:

Theorem 7.26 (CP is compact).
If C braided monoidal dagger, CP[C] monoidal dagger with duals.
If C symmetric monoidal dagger, CP[C] compact dagger.

Duals fabricated out of thin air?

No: Frobenius structures have duals, so CP[Cduals] = CP[C].

• CP[FHilb]: fin-dim C*-algebras and completely positive maps

• CP[Rel]: groupoids and inverse-respecting relations

Next: look at subcategories of quantum/classical structures.

252 / 3137.2 Categories of completely positive maps

Summary:

Theorem 7.26 (CP is compact).
If C braided monoidal dagger, CP[C] monoidal dagger with duals.
If C symmetric monoidal dagger, CP[C] compact dagger.

Duals fabricated out of thin air?
No: Frobenius structures have duals, so CP[Cduals] = CP[C].

• CP[FHilb]: fin-dim C*-algebras and completely positive maps

• CP[Rel]: groupoids and inverse-respecting relations

Next: look at subcategories of quantum/classical structures.

252 / 3137.2 Categories of completely positive maps

Summary:

Theorem 7.26 (CP is compact).
If C braided monoidal dagger, CP[C] monoidal dagger with duals.
If C symmetric monoidal dagger, CP[C] compact dagger.

Duals fabricated out of thin air?
No: Frobenius structures have duals, so CP[Cduals] = CP[C].

• CP[FHilb]: fin-dim C*-algebras and completely positive maps

• CP[Rel]: groupoids and inverse-respecting relations

Next: look at subcategories of quantum/classical structures.

252 / 3137.2 Categories of completely positive maps

Summary:

Theorem 7.26 (CP is compact).
If C braided monoidal dagger, CP[C] monoidal dagger with duals.
If C symmetric monoidal dagger, CP[C] compact dagger.

Duals fabricated out of thin air?
No: Frobenius structures have duals, so CP[Cduals] = CP[C].

• CP[FHilb]: fin-dim C*-algebras and completely positive maps

• CP[Rel]: groupoids and inverse-respecting relations

Next: look at subcategories of quantum/classical structures.

253 / 3137.3 Quantum structures

Definition 7.34. A quantum structure is a dagger Frobenius
structure on A∗ ⊗ A in a monoidal dagger category of the form

d

A

A

A A A

A

d−1
A A

for an object A and an invertible scalar I d I.

As far away from classical structures as possible:

• In FHilb: matrix algebras Mn;
normalizing scalar is (necessarily) d = 1√

n .

• In Rel: indiscrete groupoids;
normalizing scalar is (necessarily) d = 1.

253 / 3137.3 Quantum structures

Definition 7.34. A quantum structure is a dagger Frobenius
structure on A∗ ⊗ A in a monoidal dagger category of the form

d

A

A

A A A

A

d−1
A A

for an object A and an invertible scalar I d I.

As far away from classical structures as possible:

• In FHilb: matrix algebras Mn;
normalizing scalar is (necessarily) d = 1√

n .

• In Rel: indiscrete groupoids;
normalizing scalar is (necessarily) d = 1.

254 / 3137.3 Quantum structures
Remark 7.36. Not quite pair of pants; normalizing scalar bit ugly.
But can pass to monoidally equivalent category without it.

arrows: completely positive maps,
objects: normalizable dagger Frobenius structures

d

d†
=

for some invertible scalar I d I.

Proof. Rescale normalizable Frobenius structure (A, , , d) to
special one (A, d • , d−1 •). Isomorphism A d•idA A.

So can pretend all Frobenius structures are special as long as A
positive-dimensional:

d†

d
A A

=

A

254 / 3137.3 Quantum structures
Remark 7.36. Not quite pair of pants; normalizing scalar bit ugly.
But can pass to monoidally equivalent category without it.

arrows: completely positive maps,
objects: normalizable dagger Frobenius structures

d

d†
=

for some invertible scalar I d I.

Proof. Rescale normalizable Frobenius structure (A, , , d) to
special one (A, d • , d−1 •). Isomorphism A d•idA A.

f =
d

d†

(5.1)
=

d

d†

So can pretend all Frobenius structures are special as long as A
positive-dimensional:

d†

d
A A

=

A

254 / 3137.3 Quantum structures
Remark 7.36. Not quite pair of pants; normalizing scalar bit ugly.
But can pass to monoidally equivalent category without it.

arrows: completely positive maps,
objects: normalizable dagger Frobenius structures

d

d†
=

for some invertible scalar I d I.

Proof. Rescale normalizable Frobenius structure (A, , , d) to
special one (A, d • , d−1 •). Isomorphism A d•idA A.

So can pretend all Frobenius structures are special as long as A
positive-dimensional:

d†

d
A A

=

A

255 / 3137.3 Quantum structures

Pure is special case of mixed.

Proposition 7.37 (CP embeds C). Let C be braided monoidal
dagger category that is positive-dimensional. There is functor
P : C CP[C] defined by letting P(A) be the quantum structure on
A∗ ⊗ A, and P(f) = f∗ ⊗ f on morphisms. It is a monoidal functor
that preserves daggers.

Proof. Let A f B in C. Check P(f) is completely positive.

d

d†

f f =

d

d†

f

f

Daggers and tensor products in CP[C] are by definition as in C. The
only other subtlety is that we have to fix a choice of scalar d for
each object A.

255 / 3137.3 Quantum structures

Pure is special case of mixed.

Proposition 7.37 (CP embeds C). Let C be braided monoidal
dagger category that is positive-dimensional. There is functor
P : C CP[C] defined by letting P(A) be the quantum structure on
A∗ ⊗ A, and P(f) = f∗ ⊗ f on morphisms. It is a monoidal functor
that preserves daggers.

Proof. Let A f B in C. Check P(f) is completely positive.

d

d†

f f =

d

d†

f

f

Daggers and tensor products in CP[C] are by definition as in C. The
only other subtlety is that we have to fix a choice of scalar d for
each object A.

256 / 3137.3 Quantum structures
Well, embedding not quite faithful: only up to phase.

Lemma 7.38 (CP kills phases). If P(f) = P(g) for A f ,g B, there are
I s,t I with s • f = t • g and s† • s = t† • t.

Proof. Define:

s := BA
f

f

t := BA
g

f

And:

s

s†

= BA A B
f

f

f

f

= BA A B
g

f

g

f

=
t

t†

256 / 3137.3 Quantum structures
Well, embedding not quite faithful: only up to phase.

Lemma 7.38 (CP kills phases). If P(f) = P(g) for A f ,g B, there are
I s,t I with s • f = t • g and s† • s = t† • t.

Proof. Define:

s := BA
f

f

t := BA
g

f

And:

s

s†

= BA A B
f

f

f

f

= BA A B
g

f

g

f

=
t

t†

256 / 3137.3 Quantum structures
Well, embedding not quite faithful: only up to phase.

Lemma 7.38 (CP kills phases). If P(f) = P(g) for A f ,g B, there are
I s,t I with s • f = t • g and s† • s = t† • t.

Proof. Define:

s := BA
f

f

t := BA
g

f

Then:

s f
= BA

f

f

f
= BA

g

f

g
=

t g

And:

s

s†

= BA A B
f

f

f

f

= BA A B
g

f

g

f

=
t

t†

256 / 3137.3 Quantum structures
Well, embedding not quite faithful: only up to phase.

Lemma 7.38 (CP kills phases). If P(f) = P(g) for A f ,g B, there are
I s,t I with s • f = t • g and s† • s = t† • t.

Proof. Define:

s := BA
f

f

t := BA
g

f

And:

s

s†

= BA A B
f

f

f

f

= BA A B
g

f

g

f

=
t

t†

257 / 3137.3 Quantum structures

Definition 7.39. Let CPq[C] be subcategory of CP[C] of quantum
structures. Can abbreviate objects A∗ ⊗ A to just A itself;
CP–condition simplifies to positivity of

f

As before: if C is compact dagger category, so is CPq[C].

• CPq[FHilb]: finite-dimensional Hilbert spaces H,
completely positive maps H∗ ⊗ H K∗ ⊗ K.

• CPq[Rel]: sets A, relations A × A B × B with
(a, a) ∼ (b, b) and (a′, a) ∼ (b′, b) when (a, a′) ∼ (b, b′).

257 / 3137.3 Quantum structures

Definition 7.39. Let CPq[C] be subcategory of CP[C] of quantum
structures. Can abbreviate objects A∗ ⊗ A to just A itself;
CP–condition simplifies to positivity of

f

As before: if C is compact dagger category, so is CPq[C].

• CPq[FHilb]: finite-dimensional Hilbert spaces H,
completely positive maps H∗ ⊗ H K∗ ⊗ K.

• CPq[Rel]: sets A, relations A × A B × B with
(a, a) ∼ (b, b) and (a′, a) ∼ (b′, b) when (a, a′) ∼ (b, b′).

258 / 3137.3 Quantum structures
Any object A in CPq[C] has ‘discarding’ map A I, namely ;
in CPq[FHilb] this is the trace.

Leads to axiomatization of CPq[C].

Definition 7.41. Environment structure for compact dagger Cpure is:
• a compact dagger category C of which Cpure is a compact

dagger subcategory with the same objects;

• for each object A, a morphism : A I in C; such that:

(a)
I

= ,
A B

=
A B

(b) for all A f X and A g Y in Cpure:
(c) for each A f B in C there is A g X ⊗ B in Cpure such that:

A

B

f =

A

B

g in C.

258 / 3137.3 Quantum structures
Any object A in CPq[C] has ‘discarding’ map A I, namely ;
in CPq[FHilb] this is the trace. Leads to axiomatization of CPq[C].

Definition 7.41. Environment structure for compact dagger Cpure is:
• a compact dagger category C of which Cpure is a compact

dagger subcategory with the same objects;

• for each object A, a morphism : A I in C;

such that:

(a)
I

= ,
A B

=
A B

(b) for all A f X and A g Y in Cpure:
(c) for each A f B in C there is A g X ⊗ B in Cpure such that:

A

B

f =

A

B

g in C.

258 / 3137.3 Quantum structures
Any object A in CPq[C] has ‘discarding’ map A I, namely ;
in CPq[FHilb] this is the trace. Leads to axiomatization of CPq[C].

Definition 7.41. Environment structure for compact dagger Cpure is:
• a compact dagger category C of which Cpure is a compact

dagger subcategory with the same objects;

• for each object A, a morphism : A I in C; such that:

(a)
I

= ,
A B

=
A B

(b) for all A f X and A g Y in Cpure:
(c) for each A f B in C there is A g X ⊗ B in Cpure such that:

A

B

f =

A

B

g in C.

258 / 3137.3 Quantum structures
Any object A in CPq[C] has ‘discarding’ map A I, namely ;
in CPq[FHilb] this is the trace. Leads to axiomatization of CPq[C].

Definition 7.41. Environment structure for compact dagger Cpure is:
• a compact dagger category C of which Cpure is a compact

dagger subcategory with the same objects;
• for each object A, a morphism : A I in C; such that:

(a)
I

= ,
A B

=
A B

(b) for all A f X and A g Y in Cpure:

X

A

A

f

f

= Y

A

A

g

g

in Cpure ⇐⇒

A

f =

A

g in C;

(c) for each A f B in C there is A g X ⊗ B in Cpure such that:

A

B

f =

A

B

g in C.

258 / 3137.3 Quantum structures
Any object A in CPq[C] has ‘discarding’ map A I, namely ;
in CPq[FHilb] this is the trace. Leads to axiomatization of CPq[C].

Definition 7.41. Environment structure for compact dagger Cpure is:
• a compact dagger category C of which Cpure is a compact

dagger subcategory with the same objects;

• for each object A, a morphism : A I in C; such that:

(a)
I

= ,
A B

=
A B

(b) for all A f X and A g Y in Cpure:
(c) for each A f B in C there is A g X ⊗ B in Cpure such that:

A

B

f =

A

B

g in C.

259 / 3137.3 Quantum structures
Theorem 7.42. If compact dagger category Cpure comes with
environment structure, there is invertible functor CPq[Cpure] F C
with F(A) = A on objects and F(f ⊗ g) = F(f)⊗ F(g) on morphisms.

Proof. Define F(A) = A on objects, and on morphisms:

F


AA

BB

f

 :=

A

B

√
f

Functoriality:

F(g◦f)
(7.22)
=

B

C

A

√
f

√
g

(7.19)
=

B

C

A

√
f

√
g

(7.22)
= F(g)◦F(f)

260 / 3137.3 Quantum structures

Lemma 7.45. If (A, ,) is a Frobenius structures in a braided
monoidal category C, then

A A

A

A A

AA A

is a Frobenius structure in CPq[C]. If two Frobenius structures in C
are complementary, so are the two Frobenius structures in CPq[C].

Classical communication:

is channel that carries classical information encoded in .
In CP[FHilb]: |i⟩⟨i| undisturbed, but |i⟩⟨j| 7→ 0 if i ̸= j.
Decoherence: only information encoded in survives.

260 / 3137.3 Quantum structures

Lemma 7.45. If (A, ,) is a Frobenius structures in a braided
monoidal category C, then

A A

A

A A

AA A

is a Frobenius structure in CPq[C]. If two Frobenius structures in C
are complementary, so are the two Frobenius structures in CPq[C].

Proof. CP–condition:

=

Classical communication:

is channel that carries classical information encoded in .
In CP[FHilb]: |i⟩⟨i| undisturbed, but |i⟩⟨j| 7→ 0 if i ̸= j.
Decoherence: only information encoded in survives.

260 / 3137.3 Quantum structures

Lemma 7.45. If (A, ,) is a Frobenius structures in a braided
monoidal category C, then

A A

A

A A

AA A

is a Frobenius structure in CPq[C]. If two Frobenius structures in C
are complementary, so are the two Frobenius structures in CPq[C].

Classical communication:

is channel that carries classical information encoded in .
In CP[FHilb]: |i⟩⟨i| undisturbed, but |i⟩⟨j| 7→ 0 if i ̸= j.
Decoherence: only information encoded in survives.

261 / 3137.3 Quantum structures

Theorem 7.46 (Quantum teleportation of mixed states). If (A, ,)
and (A, ,) are complementary symmetric dagger Frobenius
structures in a braided monoidal dagger category C, of which is
commutative, then the following equation holds in CPq[C]:

A

input

output

preparation

measurement

correction

classical communication

A

=

A

A

Alice

Bob

• Can handle mixed states
• ‘Classical communication’: only in sense of ‘copied’ by

Frobenius structures, one of which may be noncommutative
• ‘Two bits’ of classical communication: two channels used, may

have more than two copyable states
• Used tensor product and composition only

261 / 3137.3 Quantum structures

Theorem 7.46 (Quantum teleportation of mixed states). If (A, ,)
and (A, ,) are complementary symmetric dagger Frobenius
structures in a braided monoidal dagger category C, of which is
commutative, then the following equation holds in CPq[C]:

• Can handle mixed states

• ‘Classical communication’: only in sense of ‘copied’ by
Frobenius structures, one of which may be noncommutative

• ‘Two bits’ of classical communication: two channels used, may
have more than two copyable states

• Used tensor product and composition only

262 / 3137.4 Classical structures

Definition 7.28. Let C be a braided monoidal dagger category. The
category CPc[C] has as objects classical structures in C. Its
morphisms are completely positive maps.

Again, if C is compact, so is CPc[C].
In fact, any object in CPc[C] is self-dual.

263 / 3137.4 Classical structures

If C models pure state quantum mechanics, and CP[C] mixed state
quantum mechanics, then CPc[C] models statistical mechanics.

Example 7.29. The category CPc[FHilb] is monoidally equivalent
to: objects are natural numbers, morphisms are m-by-n matrices
with nonnegative real entries. The maps that preserve counit
correspond to those matrices whose rows sum up to one,
i.e. stochastic matrices.

Consistent with morphisms of classical structures of Chapter 5:

• Comonoid homomorphisms between classical structures:
every column has single entry 1 and 0s elsewhere

• These are deterministic maps within stochastic setting

• These are self-conjugate: matrix entries are real numbers.

263 / 3137.4 Classical structures

If C models pure state quantum mechanics, and CP[C] mixed state
quantum mechanics, then CPc[C] models statistical mechanics.

Example 7.29. The category CPc[FHilb] is monoidally equivalent
to: objects are natural numbers, morphisms are m-by-n matrices
with nonnegative real entries. The maps that preserve counit
correspond to those matrices whose rows sum up to one,
i.e. stochastic matrices.

Consistent with morphisms of classical structures of Chapter 5:

• Comonoid homomorphisms between classical structures:
every column has single entry 1 and 0s elsewhere

• These are deterministic maps within stochastic setting

• These are self-conjugate: matrix entries are real numbers.

264 / 3137.4 Classical structures

Compact dagger categories have no uniform copying/deleting.
However, doesn’t yet mean they model quantum mechanics.
Classical mechanics might have copying, and quantum mechanics
might not, but statistical mechanics has no copying either;
rather: impossibility of broadcasting unknown mixed states.

First make sure that there exist ‘discarding’ maps A I in CP[C]:

Lemma 7.30. Let (A, ,) be a dagger Frobenius structure in a
braided monoidal dagger category C. Then is completely positive.
If (A, ,) is a classical structure, then is completely positive.

Proof. Verifying CP–condition for is easy. CP–condition for
commutative can be rewritten into positive form easily using
noncommutative spider theorem.

264 / 3137.4 Classical structures

Compact dagger categories have no uniform copying/deleting.
However, doesn’t yet mean they model quantum mechanics.
Classical mechanics might have copying, and quantum mechanics
might not, but statistical mechanics has no copying either;
rather: impossibility of broadcasting unknown mixed states.

First make sure that there exist ‘discarding’ maps A I in CP[C]:

Lemma 7.30. Let (A, ,) be a dagger Frobenius structure in a
braided monoidal dagger category C. Then is completely positive.
If (A, ,) is a classical structure, then is completely positive.

Proof. Verifying CP–condition for is easy. CP–condition for
commutative can be rewritten into positive form easily using
noncommutative spider theorem.

265 / 3137.4 Classical structures

Definition 7.31. let C be a braided monoidal dagger category. A
broadcasting map for an object (A, ,) of CP[C] is a morphism
A B A ⊗ A in CP[C] satisfying:

B = = B

Object (A, ,) is broadcastable if it allows a broadcasting map.

Note: concerns just single object, so weaker than uniform copying.

266 / 3137.4 Classical structures

Lemma 7.32. Let C be a braided monoidal dagger category.
Classical structures are broadcastable objects in CP[C].

Proof. satisfies CP–condition.

In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical structure.

Not so in Rel! Call category skeletal when only morphisms are
endomorphisms.

266 / 3137.4 Classical structures

Lemma 7.32. Let C be a braided monoidal dagger category.
Classical structures are broadcastable objects in CP[C].

Proof. satisfies CP–condition.

In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical structure.

Not so in Rel! Call category skeletal when only morphisms are
endomorphisms.

266 / 3137.4 Classical structures

Lemma 7.32. Let C be a braided monoidal dagger category.
Classical structures are broadcastable objects in CP[C].

Proof. satisfies CP–condition.

In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical structure.

Not so in Rel! Call category skeletal when only morphisms are
endomorphisms.

266 / 3137.4 Classical structures

Lemma 7.32. Let C be a braided monoidal dagger category.
Classical structures are broadcastable objects in CP[C].

Proof. satisfies CP–condition.

In FHilb converse holds: no-broadcasting theorem.
So dagger Frobenius structure broadcastable iff classical structure.

Not so in Rel! Call category skeletal when only morphisms are
endomorphisms.

267 / 3137.4 Classical structures

Lemma 7.33. Broadcastable objects in CP[Rel] are precisely
skeletal groupoids.

Proof. If G is skeletal, then G B G × G given by

B = {
(
g, (iddom(g), g)

)
| g ∈ G)} ∪ {

(
g, (g, iddom(g))

)
| g ∈ G}

is broadcasting map.

Converse: use that broadcasting means

{(g, g) | g ∈ G} = {(g, h) | (g, (idcod(h), h)) ∈ B}
= {(g, h) | (g, (h, iddom(h))) ∈ B}.

268 / 3137.5 Interaction with linear structure
Theorem 7.51. If a braided monoidal dagger category C with duals
has biproducts, then so does CP[C].

Proof. Main idea: show that A iA A⊕ B, B iB A⊕ B, A⊕ B pA A, and
A ⊕ B pB B are homomorphisms of involutive monoids.

Lemma 7.49. Involutive homomorphisms are completely positive.

Proof. Verify CP–condition:

f (5.18)
=

f (7.30)
= f f

(7.30)
= f

f (5.18)
=

f

f

268 / 3137.5 Interaction with linear structure
Theorem 7.51. If a braided monoidal dagger category C with duals
has biproducts, then so does CP[C].

Proof. Main idea: show that A iA A⊕ B, B iB A⊕ B, A⊕ B pA A, and
A ⊕ B pB B are homomorphisms of involutive monoids.

Definition 7.48. An involutive homomorphism is a morphism
(A, ,)

f
(B, ,) between dagger Frobenius structures in a

monoidal dagger category satisfying:

AA

B

f
=

B

A A

f f

BA

f =

A B

f

Lemma 7.49. Involutive homomorphisms are completely positive.

Proof. Verify CP–condition:

f (5.18)
=

f (7.30)
= f f

(7.30)
= f

f (5.18)
=

f

f

268 / 3137.5 Interaction with linear structure
Theorem 7.51. If a braided monoidal dagger category C with duals
has biproducts, then so does CP[C].

Proof. Main idea: show that A iA A⊕ B, B iB A⊕ B, A⊕ B pA A, and
A ⊕ B pB B are homomorphisms of involutive monoids.

Lemma 7.49. Involutive homomorphisms are completely positive.

Proof. Verify CP–condition:

f (5.18)
=

f (7.30)
= f f

(7.30)
= f

f (5.18)
=

f

f

269 / 3137 Complete positivity

• Completely positive maps:
pure states/evolutions vs mixed ones

• Categories of completely positive maps:
everything happily in one category

• Quantum structures:
axiomatization, teleportation

• Classical structures:
operational view, broadcasting

• Interaction with linear structure

270 / 313

Chapter 8
Monoidal 2-categories

271 / 3138.1 Monoidal 2-categories

Definition 8.1. A 2-category C consists of the following data:

• a collection Ob(C) of objects;

• for any two objects A,B, a category C(A,B), with objects called
1-morphisms drawn as A f B, and morphisms µ called
2-morphisms drawn as f µ g, or in full form as follows:

B A

g

f

µ

271 / 3138.1 Monoidal 2-categories

Definition 8.1. A 2-category C consists of the following data:

• a collection Ob(C) of objects;

• for any two objects A,B, a category C(A,B), with objects called
1-morphisms drawn as A f B, and morphisms µ called
2-morphisms drawn as f µ g, or in full form as follows:

B A

g

f

µ

271 / 3138.1 Monoidal 2-categories

Definition 8.1. A 2-category C consists of the following data:

• a collection Ob(C) of objects;

• for any two objects A,B, a category C(A,B), with objects called
1-morphisms drawn as A f B, and morphisms µ called
2-morphisms drawn as f µ g, or in full form as follows:

B A

g

f

µ

272 / 3138.1 Monoidal 2-categories
• for 2-morphisms f µ g and g ν h, an operation called vertical

composition given by their composite as morphisms in C(A,B):

B A
g

f

h

µ

ν

• for any triple of objects A,B,C a horizontal composition functor:

◦ : C(A,B)× C(B,C) C(A,C)

C A

j ◦ g

h ◦ f

ν ◦ µ ≡ C B A

j

h

ν

g

f

µ

272 / 3138.1 Monoidal 2-categories
• for 2-morphisms f µ g and g ν h, an operation called vertical

composition given by their composite as morphisms in C(A,B):

B A
g

f

h

µ

ν

• for any triple of objects A,B,C a horizontal composition functor:

◦ : C(A,B)× C(B,C) C(A,C)

C A

j ◦ g

h ◦ f

ν ◦ µ ≡ C B A

j

h

ν

g

f

µ

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

273 / 3138.1 Monoidal 2-categories

• for any object A, a 1-morphism A idA A called the identity
1-morphism;

• a natural family of invertible 2-morphisms f ◦ idA
ρf f and

idB ◦ f
λf f called the left and right unitors;

• a natural family of invertible 2-morphisms
(h ◦ g) ◦ f

αh,g,f h ◦ (g ◦ f) called the associators.

This structure is required to be coherent, meaning that any
well-formed diagram built from the components of α, λ, ρ and their
inverses under horizontal and vertical composition must commute.

As for monoidal categories, coherence follows just from the triangle
and pentagon equations.

A 2-category is strict just when every λf , ρf , αh,g,f is an identity.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category

Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms

Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms

Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition

Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition

Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

274 / 3138.1 Monoidal 2-categories

Theorem. A monoidal category is a 2-category with one object.

Proof. We sketch the correspondence with this table:

Monoidal category One-object 2-category
Objects 1-morphisms
Morphisms 2-morphisms
Composition Vertical composition
Tensor product Horizontal composition
Unit object Identity 1-morphism

The transformations α, λ and ρ are the same for both structures.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

275 / 3138.1 Monoidal 2-categories

Cat, the 2-category of categories, functors and natural
transformations, is an important motivating example.

Definition. The 2-category Cat is defined as follows:

• objects are categories;

• 1-morphisms are functors;

• 2-morphisms are natural transformations;

• vertical composition is componentwise composition of natural
transformations, with (µ · ν)A := µA ◦ νA;

• horizontal composition is composition of functors.

276 / 3138.1 Monoidal 2-categories

In this more general graphical calculus, objects are represented by
regions, 1-morphisms by vertically-oriented lines, and 2-morphisms
by vertices:

B A

g

f

µ ⇝

f

g

B Aµ

The graphical calculus is the dual of the pasting diagram notation.

276 / 3138.1 Monoidal 2-categories

In this more general graphical calculus, objects are represented by
regions, 1-morphisms by vertically-oriented lines, and 2-morphisms
by vertices:

B A

g

f

µ ⇝

f

g

B Aµ

The graphical calculus is the dual of the pasting diagram notation.

277 / 3138.1 Monoidal 2-categories

Horizontal and vertical composition is represented like this:

C B A

j

h

ν

g

f

µ ⇝

h

j

C

f

g

B Aν µ = ν ◦ µ

A B
g

f

h

µ

ν

⇝

f

g

h

A B

µ

ν

= ν · µ

278 / 3138.1 Monoidal 2-categories

When using the graphical notation, as for monoidal categories, the
structures λ, ρ and α are not depicted.

There is also a correctness theorem, as we would expect.

Theorem. (Correctness of the graphical calculus for a 2-category)
A well-formed equation between 2-morphisms in a 2-category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.

If we have only a single object A, which we may as well denote by a
region coloured white, then the graphical calculus is identical to
that of a monoidal category.

278 / 3138.1 Monoidal 2-categories

When using the graphical notation, as for monoidal categories, the
structures λ, ρ and α are not depicted.

There is also a correctness theorem, as we would expect.

Theorem. (Correctness of the graphical calculus for a 2-category)
A well-formed equation between 2-morphisms in a 2-category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.

If we have only a single object A, which we may as well denote by a
region coloured white, then the graphical calculus is identical to
that of a monoidal category.

278 / 3138.1 Monoidal 2-categories

When using the graphical notation, as for monoidal categories, the
structures λ, ρ and α are not depicted.

There is also a correctness theorem, as we would expect.

Theorem. (Correctness of the graphical calculus for a 2-category)
A well-formed equation between 2-morphisms in a 2-category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.

If we have only a single object A, which we may as well denote by a
region coloured white, then the graphical calculus is identical to
that of a monoidal category.

279 / 3138.1 Monoidal 2-categories
We can use the graphical calculus to define equivalence.

Definition. In a 2-category, an equivalence is a pair of 1-morphisms
A F B and B G A, and 2-morphisms G ◦ F α idA and idB

β F ◦ G:

α β

They must satisfy the following equations:

α-1

α
=

α

α-1
=

β

β-1
=

β-1

β
=

279 / 3138.1 Monoidal 2-categories
We can use the graphical calculus to define equivalence.

Definition. In a 2-category, an equivalence is a pair of 1-morphisms
A F B and B G A, and 2-morphisms G ◦ F α idA and idB

β F ◦ G:

α β

They must satisfy the following equations:

α-1

α
=

α

α-1
=

β

β-1
=

β-1

β
=

280 / 3138.1 Monoidal 2-categories

Definition. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem. In Cat, a duality F ⊣ G is exactly an adjunction F ⊣ G
between F and G as functors.

It may seem that adjunctions have largely been absent from this
course. But now we see they have been everywhere!

280 / 3138.1 Monoidal 2-categories

Definition. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem. In Cat, a duality F ⊣ G is exactly an adjunction F ⊣ G
between F and G as functors.

It may seem that adjunctions have largely been absent from this
course. But now we see they have been everywhere!

280 / 3138.1 Monoidal 2-categories

Definition. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem. In Cat, a duality F ⊣ G is exactly an adjunction F ⊣ G
between F and G as functors.

It may seem that adjunctions have largely been absent from this
course. But now we see they have been everywhere!

280 / 3138.1 Monoidal 2-categories

Definition. In a 2-category, a 1-morphism A L B has a right dual
B R A when there are 2-morphisms G ◦ F α idA and idB

β F ◦ G

α = β =

satisfying the snake equations:

= =

Theorem. In Cat, a duality F ⊣ G is exactly an adjunction F ⊣ G
between F and G as functors.

It may seem that adjunctions have largely been absent from this
course. But now we see they have been everywhere!

281 / 3138.1 Monoidal 2-categories

We now prove a nontrivial theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still give an equivalence.

281 / 3138.1 Monoidal 2-categories

We now prove a nontrivial theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still give an equivalence.

281 / 3138.1 Monoidal 2-categories

We now prove a nontrivial theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still give an equivalence.

281 / 3138.1 Monoidal 2-categories

We now prove a nontrivial theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual
equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed
by invertible 2-morphisms α and β. Then we will build a new
equivalence witnessed by α and β′, with β′ defined like this:

β′ :=

β

α-1

β-1

Since α′ is composed from invertible 2-morphisms it must itself be
invertible, and so it is clear that α′ and β still give an equivalence.

282 / 3138.1 Monoidal 2-categories

We now demonstrate that the adjunction equations are satisfied.

The first adjunction equation takes following form:

α

β′
=

β

α-1

β-1

α

=
α

β

β-1

α-1

=

283 / 3138.1 Monoidal 2-categories

The second is demonstrated as follows:

β′

α

=

β

α-1

β-1

α

=

β

α-1

β-1

α

β

α

α-1

β-1

=
β

α-1

β-1

α

β

α

α-1

β-1

= α-1

α α

α-1

=

284 / 3138.1 Monoidal 2-categories

Since monoidal categories are just 2-categories with one object, we
immediately have the following corollary.

Corollary. In a monoidal category, if A ⊗ B ≃ B ⊗ A ≃ I, then A ⊣ B
and B ⊣ A.

285 / 3138.1 Monoidal 2-categories

Monoidal 2-categories are hard to define. The definition is known,
but it is long and complex. This is a big problem in the field!

Remember the 2d graphical calculus for 2-categories:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For monoidal 2-categories, we simply extend this into 3d.

Tensor product. Given 2-morphisms f µ g and h ν j, the their
tensor product 2-morphism µ⊠ ν is given like this:

µA
B

C
D

f

gg

h

j

ν

285 / 3138.1 Monoidal 2-categories

Monoidal 2-categories are hard to define. The definition is known,
but it is long and complex. This is a big problem in the field!

Remember the 2d graphical calculus for 2-categories:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For monoidal 2-categories, we simply extend this into 3d.

Tensor product. Given 2-morphisms f µ g and h ν j, the their
tensor product 2-morphism µ⊠ ν is given like this:

µA
B

C
D

f

gg

h

j

ν

285 / 3138.1 Monoidal 2-categories

Monoidal 2-categories are hard to define. The definition is known,
but it is long and complex. This is a big problem in the field!

Remember the 2d graphical calculus for 2-categories:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For monoidal 2-categories, we simply extend this into 3d.

Tensor product. Given 2-morphisms f µ g and h ν j, the their
tensor product 2-morphism µ⊠ ν is given like this:

µA
B

C
D

f

gg

h

j

ν

285 / 3138.1 Monoidal 2-categories

Monoidal 2-categories are hard to define. The definition is known,
but it is long and complex. This is a big problem in the field!

Remember the 2d graphical calculus for 2-categories:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For monoidal 2-categories, we simply extend this into 3d.

Tensor product. Given 2-morphisms f µ g and h ν j, the their
tensor product 2-morphism µ⊠ ν is given like this:

µA
B

C
D

f

gg

h

j

ν

286 / 3138.1 Monoidal 2-categories

Interchange. Components can move freely in their separate layers.

The order of 1-morphisms in separate sheets can be interchanged:

x x x x

This process itself gives a 2-morphism, which is called an interchanger.

These two interchangers are inverse to each other.

Unit object. A monoidal 2-category has a unit object I, represented
by a ‘blank’ region.

286 / 3138.1 Monoidal 2-categories

Interchange. Components can move freely in their separate layers.

The order of 1-morphisms in separate sheets can be interchanged:

x x x x

This process itself gives a 2-morphism, which is called an interchanger.

These two interchangers are inverse to each other.

Unit object. A monoidal 2-category has a unit object I, represented
by a ‘blank’ region.

286 / 3138.1 Monoidal 2-categories

Interchange. Components can move freely in their separate layers.

The order of 1-morphisms in separate sheets can be interchanged:

x x x x

This process itself gives a 2-morphism, which is called an interchanger.

These two interchangers are inverse to each other.

Unit object. A monoidal 2-category has a unit object I, represented
by a ‘blank’ region.

287 / 3138.1 Monoidal 2-categories

Something interesting happens when we combine interchangers
and the unit object. Consider the interchanger diagram, but with all
4 planar regions labelled by the unit object:

x x

⇝

We obtain the graphical representation of a braiding.

287 / 3138.1 Monoidal 2-categories

Something interesting happens when we combine interchangers
and the unit object. Consider the interchanger diagram, but with all
4 planar regions labelled by the unit object:

x x

⇝

We obtain the graphical representation of a braiding.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

288 / 3138.1 Monoidal 2-categories

Recall the following result which we saw earlier.

Theorem. A monoidal category is a 2-category with one object.

We can now extend this as follows.

Theorem. A braided monoidal category is a monoidal 2-category
with one object.

We can put this into context with notions of higher category.

Theorem. A monoidal 2-category is a 3-category with one object.

Corollary. A braided monoidal category is a 3-category with one
object and one 1-morphism.

Conjecture. A symmetric monoidal category is a 4-category with one
object, one 1-morphism and one 2-morphism.

The emerging pattern here is called the periodic table, and was
predicted by Baez and Dolan in 1995.

289 / 3138.1 Monoidal 2-categories

Definition. In a monoidal 2-category, an object A has a right dual B
when it can be equipped with 1-morphisms called folds

εA
B

η
A

B

and invertible 2-morphisms called cusps:

289 / 3138.1 Monoidal 2-categories

Definition. In a monoidal 2-category, an object A has a right dual B
when it can be equipped with 1-morphisms called folds

εA
B

η
A

B

and invertible 2-morphisms called cusps:

290 / 3138.1 Monoidal 2-categories

The invertibility equations look like this:

= =

= =

It’s just like deforming a piece of fabric!

291 / 3138.1 Monoidal 2-categories

To capture all the structure of oriented manifolds, we must require
that our fold morphisms themselves have duals.

To see what happens, let’s investigate this duality:

⊣

291 / 3138.1 Monoidal 2-categories

To capture all the structure of oriented manifolds, we must require
that our fold morphisms themselves have duals.

To see what happens, let’s investigate this duality:

⊣

292 / 3138.1 Monoidal 2-categories

It has a unit and counit, which we draw like this:

The snake equations for the duality then look like this:

= =

Again, this makes sense in terms of deformations of surfaces!

292 / 3138.1 Monoidal 2-categories

It has a unit and counit, which we draw like this:

The snake equations for the duality then look like this:

= =

Again, this makes sense in terms of deformations of surfaces!

293 / 3138.1 Monoidal 2-categories

There is only one set of equations left to completely specify the
behaviour of oriented surfaces. They look like this:

=

These are called the cusp-flip equations.

The Cobordism Hypothesis says that you can describe n-dimensional
manifolds in a similar way.

293 / 3138.1 Monoidal 2-categories

There is only one set of equations left to completely specify the
behaviour of oriented surfaces. They look like this:

=

These are called the cusp-flip equations.

The Cobordism Hypothesis says that you can describe n-dimensional
manifolds in a similar way.

293 / 3138.1 Monoidal 2-categories

There is only one set of equations left to completely specify the
behaviour of oriented surfaces. They look like this:

=

These are called the cusp-flip equations.

The Cobordism Hypothesis says that you can describe n-dimensional
manifolds in a similar way.

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C

C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·

Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

294 / 3138.2 2–Hilbert spaces

0
1

i

√
2−i
. . .

C
C2

C3 · · ·
Hilb

Hilb3

Hilb2

· · ·

2Hilb

2Hilb2

2Hilb2

2Hilb2

2Hilb

295 / 3138.2 2–Hilbert spaces

Definition. A 2–Hilbert space is a FHilb-enriched dagger category
which is Cauchy complete.

This categorifies the definition of an ordinary Hilbert space, as a
Cauchy-complete inner product space.

Definition 8.23. For a 2–Hilbert space H, a basis is a set of objects
of H, such that every object in H is a biproduct of elements of the
basis in an essentially unique way.

Definition. A 2–Hilbert space is finite-dimensional when it has a
finite basis.

295 / 3138.2 2–Hilbert spaces

Definition. A 2–Hilbert space is a FHilb-enriched dagger category
which is Cauchy complete.

This categorifies the definition of an ordinary Hilbert space, as a
Cauchy-complete inner product space.

Definition 8.23. For a 2–Hilbert space H, a basis is a set of objects
of H, such that every object in H is a biproduct of elements of the
basis in an essentially unique way.

Definition. A 2–Hilbert space is finite-dimensional when it has a
finite basis.

295 / 3138.2 2–Hilbert spaces

Definition. A 2–Hilbert space is a FHilb-enriched dagger category
which is Cauchy complete.

This categorifies the definition of an ordinary Hilbert space, as a
Cauchy-complete inner product space.

Definition 8.23. For a 2–Hilbert space H, a basis is a set of objects
of H, such that every object in H is a biproduct of elements of the
basis in an essentially unique way.

Definition. A 2–Hilbert space is finite-dimensional when it has a
finite basis.

295 / 3138.2 2–Hilbert spaces

Definition. A 2–Hilbert space is a FHilb-enriched dagger category
which is Cauchy complete.

This categorifies the definition of an ordinary Hilbert space, as a
Cauchy-complete inner product space.

Definition 8.23. For a 2–Hilbert space H, a basis is a set of objects
of H, such that every object in H is a biproduct of elements of the
basis in an essentially unique way.

Definition. A 2–Hilbert space is finite-dimensional when it has a
finite basis.

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

296 / 3138.2 2–Hilbert spaces

There are many analogies between Hilbert spaces and 2–Hilbert
spaces.

▶ every finite-dimensional Hilbert space is of the form Cn up to
isomorphism, while every finite-dimensional Hilbert space is of
the form FHilbn up to equivalence;

▶ Hilbert spaces have zero elements, while 2–Hilbert spaces have
zero objects;

▶ Hilbert spaces have sums of elements v + w, while 2–Hilbert
spaces have biproducts A ⊕ B;

▶ in a Hilbert space we can multiply an element by any complex
number, while in a 2–Hilbert space we can multiply an object
by any Hilbert space;

▶ Hilbert spaces have an equality ⟨v|w⟩ = ⟨w|v⟩, while 2–Hilbert
spaces have an isomorphism H(A,B)∗ ≃ H(B,A);

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

297 / 3138.2 2–Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built from
the following structures:

▶ 0-cells are finite-dimensional 2–Hilbert spaces;

▶ 1-cells are linear functors, meaning F(f + g) = F(f) + F(g);

▶ 2-cells are natural transformations.

This is a standard structure in higher representation theory.

There is a matrix calculus, just as for ordinary Hilbert spaces.

Definition. The symmetric monoidal 2-category Mat(FHilb) is built
from the following structures:

▶ 0-cells are natural numbers;

▶ 1-cells are matrices of Hilbert spaces;

▶ 2-cells are matrices of linear maps.

298 / 3138.3 Modelling quantum procedures

We can arrange cobordisms into monoidal categories.

Definition. The symmetric monoidal category Cob12 has objects
given by compact oriented 1-manifolds, and morphisms given by
diffeomorphism classes of compact oriented 2-manifolds with
boundary.

Definition. The symmetric monoidal category Cob012 has objects
given by compact oriented 0-manifolds, 1-morphisms given by
compact oriented 1-manifolds with boundary, and 2-morphisms
given by compact oriented 2-manifolds with boundary.

Definition. A 2d TQFT is a symmetric monoidal functor:

Z : Cob12 FHilb

Definition. An extended 2d TQFT is a symmetric monoidal functor:

Z : Cob012 2Hilb

298 / 3138.3 Modelling quantum procedures

We can arrange cobordisms into monoidal categories.

Definition. The symmetric monoidal category Cob12 has objects
given by compact oriented 1-manifolds, and morphisms given by
diffeomorphism classes of compact oriented 2-manifolds with
boundary.

Definition. The symmetric monoidal category Cob012 has objects
given by compact oriented 0-manifolds, 1-morphisms given by
compact oriented 1-manifolds with boundary, and 2-morphisms
given by compact oriented 2-manifolds with boundary.

Definition. A 2d TQFT is a symmetric monoidal functor:

Z : Cob12 FHilb

Definition. An extended 2d TQFT is a symmetric monoidal functor:

Z : Cob012 2Hilb

298 / 3138.3 Modelling quantum procedures

We can arrange cobordisms into monoidal categories.

Definition. The symmetric monoidal category Cob12 has objects
given by compact oriented 1-manifolds, and morphisms given by
diffeomorphism classes of compact oriented 2-manifolds with
boundary.

Definition. The symmetric monoidal category Cob012 has objects
given by compact oriented 0-manifolds, 1-morphisms given by
compact oriented 1-manifolds with boundary, and 2-morphisms
given by compact oriented 2-manifolds with boundary.

Definition. A 2d TQFT is a symmetric monoidal functor:

Z : Cob12 FHilb

Definition. An extended 2d TQFT is a symmetric monoidal functor:

Z : Cob012 2Hilb

298 / 3138.3 Modelling quantum procedures

We can arrange cobordisms into monoidal categories.

Definition. The symmetric monoidal category Cob12 has objects
given by compact oriented 1-manifolds, and morphisms given by
diffeomorphism classes of compact oriented 2-manifolds with
boundary.

Definition. The symmetric monoidal category Cob012 has objects
given by compact oriented 0-manifolds, 1-morphisms given by
compact oriented 1-manifolds with boundary, and 2-morphisms
given by compact oriented 2-manifolds with boundary.

Definition. A 2d TQFT is a symmetric monoidal functor:

Z : Cob12 FHilb

Definition. An extended 2d TQFT is a symmetric monoidal functor:

Z : Cob012 2Hilb

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

plaintext

broadcast
ciphertext

secret
keys

decrypted
message

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

initial
quantum

system

broadcast
measurement

result
entangled
systems

final
system

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

299 / 3138.3 Modelling quantum procedures

We will now consider a new perspective on quantum teleportation.

DECRYPT

ENCRYPT

KEY

Encrypted communication

CORRECT

MEASURE

ENTANGLED

Quantum teleportation

New idea. We can make this precise using defects between
topological quantum field theories.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

300 / 3138.3 Modelling quantum procedures

Surfaces carry a commutative dagger Frobenius structure, so they
describe the behaviour of classical information.

We now consider interactions between TQFTs.

M

Measurement

P

Preparation

C

Controlled
operation

We require these to be unitary, because all processes in physics and
computer science are (arguably) unitary at a fundamental level.

This is a 123 TQFT with defects.

301 / 3138.3 Modelling quantum procedures

Here is the heuristic quantum teleportation diagram:

CORRECT

MEASURE

ENTANGLED

= RANDOM

We make it rigorous with this equation between topological defects.

301 / 3138.3 Modelling quantum procedures

Here is the heuristic quantum teleportation diagram:

M

C

=

We make it rigorous with this equation between topological defects.

302 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

We begin with the definition of quantum teleportation:

M

C =

302 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

We begin with the definition of quantum teleportation:

M

C =

303 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Apply C†:

M

=
C†

304 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Bend down a wire:

M

=
C†

304 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Bend down a wire:

M

=
C†

305 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Take adjoints:

M†

= C

306 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Apply M:

= C

M

307 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Bend up the surface:

= C

M

This is dense coding, another famous quantum procedure.

We have a topological proof of equivalence with teleportation,
independent of the Hilbert space formalism.

307 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Bend up the surface:

= C

M

This is dense coding, another famous quantum procedure.

We have a topological proof of equivalence with teleportation,
independent of the Hilbert space formalism.

307 / 3138.3 Modelling quantum procedures

We can use the topological formalism to prove interesting things.

Bend up the surface:

= C

M

This is dense coding, another famous quantum procedure.

We have a topological proof of equivalence with teleportation,
independent of the Hilbert space formalism.

308 / 3138.3 Modelling quantum procedures

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C
=

classical information

quantum informationcreation of an
entangled state

quantum
measurement

initial
quantum state

measurement
result

controlled
operation

undisturbed
quantum information

uniformly-distributed
classical data

( 1
0
0
1

)
(

1√
2

 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

)

((
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

))T

((
1 0
0 1

))

((1 1 1 1)T)

308 / 3138.3 Modelling quantum procedures

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C
=

classical information

quantum information

creation of an
entangled state

quantum
measurement

initial
quantum state

measurement
result

controlled
operation

undisturbed
quantum information

uniformly-distributed
classical data

( 1
0
0
1

)
(

1√
2

 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

)

((
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

))T

((
1 0
0 1

))

((1 1 1 1)T)

308 / 3138.3 Modelling quantum procedures

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C
=

classical information

quantum information

creation of an
entangled state

quantum
measurement

initial
quantum state

measurement
result

controlled
operation

undisturbed
quantum information

uniformly-distributed
classical data

( 1
0
0
1

)
(

1√
2

 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

)

((
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

))T

((
1 0
0 1

))

((1 1 1 1)T)

308 / 3138.3 Modelling quantum procedures

Theorem. Solutions to the teleportation equation in 2Hilb
correspond exactly to quantum teleportation schemes.

M

C
=

classical information

quantum informationcreation of an
entangled state

quantum
measurement

initial
quantum state

measurement
result

controlled
operation

undisturbed
quantum information

uniformly-distributed
classical data

( 1
0
0
1

)
(

1√
2

 1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

)

((
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 1
−1 0

))T

((
1 0
0 1

))

((1 1 1 1)T)

This is exactly the data that would appear in a quantum
information textbook.

309 / 3138.3 Modelling quantum procedures

Definition. In a pivotal dagger 2-category, a 4-valent vertex is
horizontally unitary when the following equations hold:

U U∗ =

U∗ U =

Warning: from here onwards we are dropping some scalar factors.

Theorem. A measurement vertex forms part of a teleportation
protocol if and only if it is horizontally unitary.

309 / 3138.3 Modelling quantum procedures

Definition. In a pivotal dagger 2-category, a 4-valent vertex is
horizontally unitary when the following equations hold:

U U∗ =

U∗ U =

Warning: from here onwards we are dropping some scalar factors.

Theorem. A measurement vertex forms part of a teleportation
protocol if and only if it is horizontally unitary.

309 / 3138.3 Modelling quantum procedures

Definition. In a pivotal dagger 2-category, a 4-valent vertex is
horizontally unitary when the following equations hold:

U U∗ =

U∗ U =

Warning: from here onwards we are dropping some scalar factors.

Theorem. A measurement vertex forms part of a teleportation
protocol if and only if it is horizontally unitary.

310 / 3138.3 Modelling quantum procedures

Given a measurement 2-morphism, we can define these composites:

:= := := :=

These form a commutative dagger Frobenius structure, since they
are the transport of the pair of pants across a unitary.

311 / 3138.3 Modelling quantum procedures
Theorem. Given a pair of measurement defects on the same wire,
the following properties are equivalent:

• The complementarity condition holds:

=

• This is horizontally unitary:

311 / 3138.3 Modelling quantum procedures
Theorem. Given a pair of measurement defects on the same wire,
the following properties are equivalent:

• The complementarity condition holds:

=

• This is horizontally unitary:

311 / 3138.3 Modelling quantum procedures
Theorem. Given a pair of measurement defects on the same wire,
the following properties are equivalent:

• The complementarity condition holds:

=

• This is horizontally unitary:

312 / 3138.3 Modelling quantum procedures
Proof.

= ⇔ =

⇔ = ⇔ =

