Sequence Level Training with Recurrent Neural Networks

Presentation by Alex Caiqi Zhang Original Paper: [arxiv]

What We Can Learn

- How to combine RNN with REINFORCE in text generation.
 - To solve exposure bias and word level loss function.
- How the authors derive new models from existing ones step by step.
 - $\circ \quad \mathsf{XENT} \to \mathsf{DAD} \to \mathsf{E2E} \to \mathsf{MIXER}$
 - Beneficial to our own research.

Backgrounds

Task: Text Generation

- Text summarization
- Machine translation
- Image captioning

Popular Models (back to 2016):

- N-grams [1]
- Feed-forward neural networks [2]
- RNN [3]

Improved backing-off for M-gram language modeling, Kneser & Ney, 1995
 Hierarchical probabilistic neural network language model, Morin & Bengio, 2005
 Recurrent neural network based language model, Mikolov et al., 2010

Drawbacks of the Current Models

- Exposure bias
 - Models are trained to predict the next word given the previous ground truth words as input.
 - Models are tested to generate an entire sequence by feeding the generated words as input.
- Word level training loss function
 - Popular choice: the cross-entropy loss used to maximize the probability of the next correct word.
 - But results are evaluated in sequence level.

Consequences of the Drawbacks

- Exposure bias
 - Different distribution of inputs: words drawn from the data distribution VS

words drawn from the model distribution.

- Errors may accumulate along the way.
- Word level training loss function
 - Hard to optimize the whole sequence.

Proposed Solution: MIXER

- Mixed Incremental Cross-Entropy Reinforce
- Two basic ideas:
 - Incremental learning
 - Hybrid loss function which combines both REINFORCE and cross-entropy
- Advantages:
 - Avoids exposure bias
 - ✓ Sequence level training
 - \circ **V**End to end

Cross Entropy Training (XENT)

- The model learns to **greedily** predict the the next word at each time step (without considering the whole sequence).
- Predictions are produced by either taking the argmax or by sampling from the distribution over words.
- Properties:
 - XAvoids exposure bias
 - XSequence level training
 - XEnd to end

Data As Demonstrator (DAD)

- Addresses exposure bias by mixing the ground truth training data with model predictions.
- At each time step and with a certain probability takes as input:
 - the prediction from the model at the previous time step
 - the ground truth data
- Properties:
 - Avoids exposure bias
 - XSequence level training
 - XEnd to end

- Annealing schedules:
 - At the beginning, the algorithm **always** chooses the **ground truth words**.
 - As the training progresses the model predictions are selected more often.
 - This has the effect of making the model somewhat more aware of how it will be used at test time.

Drawbacks of DAD

- At every time step the target labels are always selected from the ground truth data, regardless of how the input was chosen
 - The history of predicted words is not considered
 - E.g., Ground truth is: *I took a long walk*.
 - What we have now: *I took a walk …*
 - DAD will force the model to predict the word "walk" a second time
- Gradients are not back-propagated through the samples drawn by the model
- The XENT loss is still at the word level.

End-to-end Backprop (E2E)

- Perhaps the most natural and naïve approach approximating sequence level training
- Can also be interpreted as a computationally efficient approximation to **beam search**
- Properties:
 - VAvoids exposure bias
 - VEnd to end
 - XSequence level training

End-to-end Backprop (E2E)

- The key idea: at time step *t*+1 we propagate as input the top *k* words predicted at the previous time step (instead of the ground truth word)
 - \circ we take the output distribution over words from the previous time step t
 - pass it through a k-max layer
 - this layer zeros all but the k largest values and re-normalizes them to sum to one
- Compared to beam search, this can be interpreted as fusing the *k* possible next hypotheses together into a single path.
 - makes the whole process differentiable and trainable using standard back-propagation.

End-to-end Backprop (E2E)

- In practice we also employ a schedule
 - we use only the ground truth words at the beginning.
 - gradually let the model use its own top-k predictions as training proceeds.
- Properties (recap):
 - VAvoids exposure bias
 - VEnd to end
 - XSequence level training

Mixed Incremental Cross-Entropy Reinforce (MIXER)

• The proposed method avoids the exposure bias problem, and also directly optimizes

for the final evaluation metric.

- An extension of the REINFORCE algorithm
- Properties:
 - Avoids exposure bias
 - VEnd to end
 - Sequence level training

REINFORCE

- Agent: RNN model
- Environment: the words and the context vector it sees as input at every time step.
- **Policy:** defined by the parameters of this agent; results in the agent picking an action.
- Action: predicting the next word in the sequence at each time step.
- **Reward:** once the agent has reached the end of a sequence, it observes a reward
 - We can choose any reward function (e.g. BLEU/ROUGE-2)

REINFORCE Training

- We have a training set of optimal sequences of actions.
- During training we choose actions according to the current policy and only observe a reward at the end of the sequence (or after maximum sequence length).
 - comparing the sequence of actions from the current policy against the optimal action sequence results in reward
- The goal of training is to find the parameters of the agent that maximize the expected reward
 - we define our loss as the negative expected reward

Drawbacks of REINFORCE

- Random policy to start with.
 - This assumption can make the learning for large action spaces very challenging.
 - Text generation is such a setting where the cardinality of the action set is in the order of 10^4 (the number of words in the vocabulary).

From REINFORCE to MIXER

- First, change the initial policy of REINFORCE.
 - MIXER starts from the optimal policy and then slowly deviates from it to let the model explore and

make use of its own predictions.

• Start off with a much better policy than random!

```
Data: a set of sequences with their corresponding context.

Result: RNN optimized for generation.

Initialize RNN at random and set N^{XENT}, N^{XE+R} and \Delta;

for s = T, 1, -\Delta do

if s == T then

| train RNN for N^{XENT} epochs using XENT only;

else

| train RNN for N^{XE+R} epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from

the model) in the remaining T - s steps;

end

end
```

Algorithm 1: MIXER pseudo-code.

TASK	N^{XENT}	N^{XE+R}	Δ
summarization	20	5	2
machine translation	25	5	3
image captioning	20	5	2

From REINFORCE to MIXER

• Second, introduce model predictions during training with an annealing schedule in order to

gradually teach the model to produce stable sequences.

• Repeat this process until **only** REINFORCE is used to train the whole sequence.

```
Data: a set of sequences with their corresponding context.

Result: RNN optimized for generation.

Initialize RNN at random and set N^{XENT}, N^{XE+R} and \Delta;

for s = T, 1, -\Delta do

if s == T then

| train RNN for N^{XENT} epochs using XENT only;

else

| train RNN for N^{XE+R} epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from

the model) in the remaining T - s steps;

end

end
```

Algorithm 1: MIXER pseudo-code.

MIXER

- Mixed Incremental Cross-Entropy Reinforce
- Two basic ideas:
 - Incremental learning
 - Hybrid loss function which combines both REINFORCE and cross-entropy
- Advantages:
 - Avoids exposure bias
 - ✓ Sequence level training
 - \circ **V**End to end

Experiments

- Text summarization:
 - Model: conditional Elman RNN with 128 hidden units
 - Dataset: a subset of Gigaword corpus [4] as explained in [5]
- Machine translation:
 - Model: an LSTM with 256 hidden units
 - Dataset: German-English (IWSLT 2014)
- Image captioning:
 - Model: LSTM with 512 hidden units
 - Dataset: MSCOCO [6]

[4] English gigaword, Graff et al., Technical report, 2003

[5] A neural attention model for abstractive sentence summarization, Rush et al., EMNLP, 2015

[6] Microsoft coco: Common objects in context, Lin et al., Technical report, 2014

Experiments

Beam Search Results

- Beam search always improves performance, although the amount depends on the task.
- Greedy performance of MIXER is **competitive** with baselines using beam search.
- MIXER is several times faster since it relies only on greedy search.

Limitations

- The actual performance of the model is highly dependent on the reliability of the test metrics.
 - BLEU often consider the overlap between generated and real sentences, while ignoring attributes such as semantic fluency and diversity of the sentences.
 - High score \rightarrow Low quality
- The expected gradient computed using mini-batches under REINFORCE typically exhibit **high variance**, and without proper context-dependent normalization, is typically unstable [7].

