Introduction to Probability
Lecture 3: Expectation properties, variance, discrete distributions
Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology
email: {mateja.jamnik, thomas.sauerwald}@cl.cam.ac.uk
Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable
Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

$$E\left[aX + b\right] = aE\left[X\right] + b$$

Proof:

Let the event be a roll of a 6-sided die, X its random variable, and Y another random variable where $Y = 3X + 1$. What are the expected values $E\left[X\right]$ and $E\left[Y\right]$?

Answer

We know from last time that $E\left[X\right] = 3.5$. Thus $E\left[Y\right] = 3 \cdot 3.5 + 1 = 11.5$.

Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

$$E[aX + b] = aE[X] + b$$

Proof:

Let the event be a roll of a 6-sided die, X its random variable, and Y another random variable where $Y = 3X + 1$. What are the expected values $E[X]$ and $E[Y]$?

Answer:

Example

Let the event be a roll of a 6-sided die, X its random variable, and Y another random variable where $Y = 3X + 1$. What are the expected values $E[X]$ and $E[Y]$?
Properties of expectation: additivity

Additivity of expectation

Expectation of a sum is equal to the sum of expectations: if X and Y are any random variables on the same sample space then

$$E[X + Y] = E[X] + E[Y]$$
Properties of expectation: additivity

Additivity of expectation

Expectation of a sum is equal to the sum of expectations: if \(X \) and \(Y \) are any random variables on the same sample space then

\[
E[X + Y] = E[X] + E[Y]
\]

Example

Let the events be rolls of 2 dice, and \(X \) the random variable for the roll of die 1, and \(Y \) for the roll of die 2. What is the expected value of the sum of the rolls of the two dice?

Answer

\[
E[X + Y] = E[X] + E[Y] = 3.5 + 3.5 = 7
\]
Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a function of X, so $Y = g(X)$. Let $p(x)$ be a PMF of X. Then

$$E[Y] = E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

LOTUS is also known as the expected value of a function of a random variable. Note that the properties of expectation let you avoid defining difficult PMFs.
Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a function of X, so $Y = g(X)$. Let $p(x)$ be a PMF of X. Then

$$
E[Y] = E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)
$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.
Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a function of X, so $Y = g(X)$. Let $p(x)$ be a PMF of X. Then

$$
E[Y] = E[g(X)] = \sum_{x: p(x) > 0} g(x)p(x)
$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as **expected value of a function of a random variable**.
- Note that the properties of expectation let you avoid defining difficult PMFs.
Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a function of X, so $Y = g(X)$. Let $p(x)$ be a PMF of X. Then

$$E[Y] = E[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as **expected value of a function of a random variable**.

- Note that the properties of expectation let you avoid defining difficult PMFs.

- Let X be a discrete RV, then:
 - $E[X^2]$ is know as the **second moment of X**.
 - $E[X^n]$ is know as the n^{th} moment of X.

Intro to Probability

Properties of expectation

5
Let X be a discrete random variable that ranges over the values $\{-1, 0, 1\}$, and respective probabilities $P[X = -1] = 0.2$, $P[X = 0] = 0.5$ and $P[X = 1] = 0.3$. Let another random variable $Y = X^2$ (second moment). What is $E[Y]$?

Note that $Y = g(X) = X^2$ and $E[Y] = E[g(X)] = \sum_{x: p(x) > 0} g(x) p(x)$, thus
Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable
Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).
Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: $E[X] = 3$.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!
Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: $E[X] = 3$.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!
- **Variance**, $V[X]$ defines a formal quantification of "spread".
- Several ways to quantify: it uses average square distance from the mean.

Intro to Probability

Variance
Definition of variance

Variance

The variance of a discrete random variable \(X \) with expected value (mean) \(\mu \) is:

\[
V[X] = E[(X - \mu)^2]
\]

When computing the variance, we often use a different form of the same equation:

\[
V[X] = E[X^2] - (E[X])^2
\]

Proof:

Note:

- \(V[X] \geq 0 \)
- AKA: Second central moment, or square of the standard deviation
Example with a die roll

Let X be the value on one roll of a 6-sided fair die. Recall that $E[X] = \frac{7}{2} = 3.5$. What is $V[X]$?

Answer

Using $V[X] = E[X^2] - (E[X])^2$:

Using $V[X] = E[(X - \mu)^2] = E[(X - E[X])^2]$:
Example of spread

Example

Let X, Y and Z be discrete random variables with the range $X : \{10\}$ and probability 1, and $Y : \{11, 9\}$ and $Z : \{110, -90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

Answer

- $E[X] = \sum x \cdot p(x) = 10 \cdot 1 = 10$
 - $E[X^2] = \sum x^2 \cdot p(x) = 100 \cdot \frac{1}{2} = 50$
 - $V[X] = E[X^2] - 20 \cdot 10 + 100 = 50 - 200 + 100 = 0$

- $E[Y] = \sum y \cdot p(y) = (11 \cdot \frac{1}{2}) + (9 \cdot \frac{1}{2}) = 10$
 - $E[Y^2] = \sum y^2 \cdot p(y) = 121 + 9 \cdot \frac{1}{2} = 122.5$
 - $V[Y] = E[Y^2] - 20 \cdot 10 + 100 = 122.5 - 200 + 100 = 22.5$

- $E[Z] = \sum z \cdot p(z) = (110 \cdot \frac{1}{2}) + (-90 \cdot \frac{1}{2}) = 10$
 - $E[Z^2] = \sum z^2 \cdot p(z) = 12100 + 81 \cdot \frac{1}{2} = 12140.5$
 - $V[Z] = E[Z^2] - 20 \cdot 10 + 100 = 12140.5 - 200 + 100 = 12040.5$
Let X, Y and Z be discrete random variables with the range $X : \{10\}$ and probability 1, and $Y : \{11, 9\}$ and $Z : \{110, -90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a) $\mathbb{E}[X] = \sum_x x p(x) = 10 \cdot 1 = 10$

$\mathbb{V}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}\left[(X - 10)^2\right]$

$= (X - 10)^2 p(x) = 0^2 \cdot 1 = 0$

\begin{itemize}
\item \textbf{Answer} \\
\end{itemize}
Example of spread

Let X, Y and Z be discrete random variables with the range $X : \{10\}$ and probability 1, and $Y : \{11, 9\}$ and $Z : \{110, -90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a) $E[X] = \sum_x x p(x) = 10 \cdot 1 = 10$

\[
V[X] = E[(X - E[X])^2] = E[(X - 10)^2]
\]

\[
= (X - 10)^2 p(x) = 0^2 \cdot 1 = 0
\]

b) $E[Y] = (11)(0.5) + (9)(0.5) = 10$

\[
\]

\[
= (11 - 10)^2(0.5) + (9 - 10)^2(0.5) = 1
\]
Let X, Y and Z be discrete random variables with the range $X : \{10\}$ and probability 1, and $Y : \{11, 9\}$ and $Z : \{110, -90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a) $E[X] = \sum_x xp(x) = 10 \cdot 1 = 10$

\[
V[X] = E[(X - E[X])^2] = E[(X - 10)^2] = (X - 10)^2 p(x) = 0^2 \cdot 1 = 0
\]

b) $E[Y] = (11)(0.5) + (9)(0.5) = 10$

\[
V[Y] = E[(Y - E[Y])^2] = E[(Y - 10)^2] = (11 - 10)^2 (0.5) + (9 - 10)^2 (0.5) = 1
\]

c) $E[Z] = (110)(0.5) + (-90)(0.5) = 10$

\[
V[Z] = E[(Z - E[Z])^2] = E[(Z - 10)^2] = (110 - 10)^2 (0.5) + (-90 - 10)^2 (0.5) = 100^2 = 10000
\]
Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.
Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.

\[
\text{SD}[X] = \sqrt{V[X]}
\]

Note:
- \(E[X]\) and \(V[X]\) are real numbers, not RVs.
- \(V[X]\) is expressed in units of the values in the range of \(X^2\).
- \(SD[X]\) is expressed in units of the values in the range of \(X\).
- For the spread example above: \(SD[X] = 0, SD[Y] = 1, SD[Z] = 100.\)
Properties of variance

- Property 1: \(V[X] = E[X^2] - (E[X])^2 \)
Properties of variance

- **Property 1:** \(\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \)
- **Property 2:** variance is **not** linear: \(\text{Var}(aX + b) = a^2 \text{Var}(X) \)
Properties of variance

- **Property 1:** \(\text{V}[X] = \text{E}[X^2] - (\text{E}[X])^2 \)

- **Property 2:** Variance is not linear: \(\text{V}[aX + b] = a^2 \text{V}[X] \)

Proof:

\[
\begin{align*}
\text{V}[aX + b] &= \text{E}[(aX + b)^2] - (\text{E}[aX + b])^2 \\
 &= \text{E}[a^2X^2 + 2abX + b^2] - (a\text{E}[X] + b)^2 \\
 &= a^2\text{E}[X^2] + 2ab\text{E}[X] + b^2 - (a^2(\text{E}[X])^2 + 2ab\text{E}[X] + b^2) \\
 &= a^2\text{E}[X^2] - (a^2(\text{E}[X])^2) = a^2(\text{E}[X^2] - (\text{E}[X])^2) \\
 &= a^2\text{V}[X]
\end{align*}
\]
Summary of expectation and variance for discrete RV

\[E[X] = \sum_{x: p(x) > 0} x \cdot p(x) \]

\[\text{Properties of Expectation} \]

\[E[X + Y] = E[X] + E[Y] \]

\[E[aX + b] = a \cdot E[X] + b \]

\[E[g(X)] = \sum_x g(x) \cdot p_X(x) \]

\[\text{Properties of Variance} \]

\[V[X] = E[(X - \mu)^2] \]

\[V[aX + b] = a^2 \cdot V[X] \]

\[V[X] = E[X^2] - (E[X])^2 \]
Parametric/standard discrete random variables

- There is deluge of classic RV abstractions that show up in problems.
- They give rise to significant discrete distributions.
- If problem fits, use precalculated (parametric) PMF, expectation, variance and other properties by providing parameters of the problem.

- We will cover the following RVs:
 1. Bernoulli
 2. Binomial
 3. Poisson
 4. Geometric
 5. Negative Binomial
 6. Hypergeometric
Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable
Bernoulli discrete random variable

A Bernoulli RV X maps "success" of an experiment to 1 and "failure" to 0. It is AKA indicator RV, boolean RV. X is "Bernoulli RV with parameter p", where $\mathbb{P}[\text{"success"}] = p$ and so PMF $p(1) = p$.

$$X \sim \text{Ber}(p)$$

Range: $\{0, 1\}$

PMF: $\mathbb{P}[X = 1] = p(1) = p$

$\mathbb{P}[X = 0] = p(0) = 1 - p$

Expectation: $\mathbb{E}[X] = p$

Variance: $\mathbb{V}[X] = p(1 - p)$

Examples: coin toss, random binary digit, if someone likes a film, the gender of a newborn baby, pas/fail of you taking an exam.
You watch a film on Netflix. At the end you click "like" with probability p. Define a RV representing this event.

Answer

X: 1 if "like"-d

$X \sim \text{Ber}(p)$

$P[X = 1] = p$, $P[X = 0] = 1 - p$
You watch a film on Netflix. At the end you click "like" with probability p. Define a RV representing this event.

Answer

Two fair 6-sided dice are rolled. Define a random variable X for a successful roll of two 6's, and failure for anything else.

Answer
Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: $\{0, 1, \ldots, n\}$

PMF: $k \in \{0, 1, \ldots, n\}$

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $E[X] = np$

Variance: $V[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.

Intro to Probability
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: \{0, 1, \ldots, n\}
PMF: $k \in \{0, 1, \ldots, n\}$

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $E[X] = np$
Variance: $V[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1.$
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: $\{0, 1, \ldots, n\}$

PMF: $k \in \{0, 1, \ldots, n\}$

$$P[X = k] = p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Expectation: $E[X] = np$

Variance: $V[X] = np(1-p)$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

\[X \sim Bin(n, p) \]

- **Range:** \{0, 1, \ldots, n\}
- **PMF:** $k \in \{0, 1, \ldots, n\}$

\[P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k} \]

- **Expectation:** $E[X] = np$
- **Variance:** $V[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.

Intro to Probability

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: $\{0, 1, \ldots, n\}$

PMF: $k \in \{0, 1, \ldots, n\}$

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $E[X] = np$

Variance: $V[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.
Binomial

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: $\{0, 1, \ldots, n\}$

Probability that X takes on the value k:

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation:
$$E[X] = np$$

Variance:
$$V[X] = np(1 - p)$$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: $\{0, 1, \ldots, n\}$

Probability that X takes on the value k:

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation:

$$E[X] = np$$

Variance:

$$V[X] = np(1-p)$$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.

Intro to Probability
A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range: \(\{0, 1, \ldots, n\} \)

PMF: \(k \in \{0, 1, \ldots, n\} \)

\[
P[X = k] = p(k) = \binom{n}{k} p^k (1-p)^{n-k}
\]

Expectation: $E[X] = np$

Variance: $V[X] = np(1-p)$

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} P[X = k] = 1$.
Example

Let X be the number of heads after a coin is tossed three times: $X \sim \text{Bin}(3, 0.5)$. What is the probability of each of the different values of X?

Answer

\begin{align*}
P[X = 0] &= \binom{3}{0} (0.5)^0 (1-0.5)^3 = 1/8 \\
P[X = 1] &= \binom{3}{1} (0.5)^1 (1-0.5)^2 = 3/8 \\
P[X = 2] &= \binom{3}{2} (0.5)^2 (1-0.5)^1 = 3/8 \\
P[X = 3] &= \binom{3}{3} (0.5)^3 (1-0.5)^0 = 1/8
\end{align*}
Binomial RV is sum of Bernoulli RVs

Let X be a Bernoulli RV: $X \sim Ber(p)$. Let Y be a Binomial RV: $Y \sim Bin(n, p)$. Binomial RV = sum of n independent Bernoulli RVs:

$$Y = \sum_{i=1}^{n} X_i, \quad X_i \sim Ber(p)$$

$$E[Y] = E\left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = np$$

Note: $Ber(p) = Bin(1, p)$
An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer
Another example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer

- X: # of bad bottles in a case (20 bottles)
Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer

- X: # of bad bottles in a case (20 bottles)
- $P\left[\text{have to give money back}\right] = P\left[X \geq 2 \right] = 1 - P\left[X = 0 \right] - P\left[X = 1 \right]$
Another example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer

- X: # of bad bottles in a case (20 bottles)
- $P[\text{have to give money back}] = P[X \geq 2] = 1 - P[X = 0] - P[X = 1]$
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.

Recall, when $X \sim Bin(n, p)$ then $P[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$ thus

$P[X \geq 2] = 1 - P[X = 0] - P[X = 1] = 1 - \binom{20}{0} 0.05^0 0.95^{20} - \binom{20}{1} 0.05^1 0.95^{19} = 0.26$.

Example

Intro to Probability Binomial discrete random variable 23
An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer

- X: # of bad bottles in a case (20 bottles)
- $\mathbb{P}[\text{have to give money back}] = \mathbb{P}[X \geq 2] = 1 - \mathbb{P}[X = 0] - \mathbb{P}[X = 1]
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.
- Bernoulli trial: check if a bottle is bad
Another example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

\[X: \# \text{ of bad bottles in a case (20 bottles)} \]
\[\mathbb{P} [\text{have to give money back}] = \mathbb{P} [X \geq 2] = 1 - \mathbb{P} [X = 0] - \mathbb{P} [X = 1] \]
\[X \text{ is a binomial RV with parameters } X \sim Bin(n = 20, p = 0.05). \]
\[\text{Bernoulli trial: check if a bottle is bad} \]
\[\mathbb{P} [\text{success}] = \mathbb{P} [\text{bottle is bad}] = 0.05 \]
\[\mathbb{P} [\text{failure}] = \mathbb{P} [\text{bottle is good}] = 0.95 \]
Another example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

\[X: \text{# of bad bottles in a case (20 bottles)} \]
\[\mathbf{P}[\text{have to give money back}] = \mathbf{P}[X \geq 2] = 1 - \mathbf{P}[X = 0] - \mathbf{P}[X = 1] \]
\[X \text{ is a binomial RV with parameters } X \sim \text{Bin}(n = 20, p = 0.05). \]
\[\text{Bernoulli trial: check if a bottle is bad} \]
\[\mathbf{P}[\text{success}] = \mathbf{P}[\text{bottle is bad}] = 0.05 \]
\[\mathbf{P}[\text{failure}] = \mathbf{P}[\text{bottle is good}] = 0.95 \]
\[\text{Recall, when } X \sim \text{Bin}(n, p) \text{ then } \mathbf{P}[X = k] = \binom{n}{k}p^k(1 - p)^{n-k} \text{ thus} \]
\[\mathbf{P}[X \geq 2] = 1 - \mathbf{P}[X = 0] - \mathbf{P}[X = 1] \]
Visualising Binomial PMFs

\[X \sim \text{Bin}(40, 0.3); \quad X \sim \text{Bin}(40, 0.5); \quad X \sim \text{Bin}(40, 0.7) \]