Program Synthesis

MPhil ACS module P230 - Alan Blackwell

You do the rest!

Principles of program synthesis, from HCI perspective

» The user experience of ML-based synthesis:
The user says: “Here is an example of what | want to do”
Followed by: “You do the rest”

» System response:“OK, I'll do others the same way”
How does it know what “others” are!?
How does it know what “the same way” is?

» Usability issues:
How to specify applicability?
How to control generalisation?
How to understand what was inferred?
How to modify the synthesised program?

Classic programming by example

» Keyboard macros — demo in Emacs

» Get a plain text file containing semi-structured text

» <Ctrl+x> (starts macro recording

» Perhaps search for context, cut and paste, add text ...

» Remember to go to known location (e.g. start of next line)
» <Ctrl+x>) ends recording

» <Ctrl+x> e plays back once

» <ESC> 1 0 0 <Ctrl+x> e repeats 100 time

Value proposition

» The next generation of Al:“Intelligent tools”

» If a user knows how to perform a task on a computer, that should be sufficient to
create a program to perform the task.
Early research aimed to achieve “programming in the user interface”

» Macro recorders are one model, but they are “too literal”
Do only what they are shown (no generalisation)
Unable to adjust for different cases (no inference)

» Other models:
Automation of repetitive activities
Creation of custom applications

» Machine learning problem is to create a model of user intent
|deally informed by prior likelihood — from this user, and other users

Classic mixed-initiative programming by example

» Allen Cypher’s “Eager” created at Apple research in 1990

Implemented as extension to Hypercard (event capture + injection)
Machine learning implemented in LISP

» Scenario — create a script to produce a list of subject lines from messages

-t

w File Edit Go Tools Objects For

= Maill =———T¢
A MESSAGE =
Subject{Where were you?

From: JONES3

Allen -

[had expected to see you
junch yesterday. VWhat
Moo

. ppened?

< File Edit Go Tools Objects For & File JJEW 6o Tools Objects Font $
Mail ______.____EZH Undo %2 S
..................... Lt KL
;] fopy g
BT s)[Feda necessary V1. S| | E_— — Paste Text U |
From:tmiller ... e T T
JO—— R b New Card %N
Allen, e W Delete Card |
i Cut Card
...... I'd rathernotdoallof .. el g B
this paperwork. butitwill | Il | et . S
.......e wo ll..n e ...g.n.......' Background SgB ke
Jeny... lcon... Eud
sSubjects ®

a) copy first subject b) type "1. " and paste subject

< File Edit Go Tools Objects For « File Edit Go Tools Objects For
NEHEE——————— B 1 ==————" Mail —F—F——=[I=
& MESSAGE % | & MESSAGE o

Subiject:

From: Taylor2.

sasasssnssatessn N e e e N B e P T TR PR PR

..

c) go to next message d) copy second subject

(Go Tools Objects Font §!

< File Edit Go Tools Objects For

.....................

Lopy
Paste Tent
{{oar

\‘-:’({-
‘Nt e

......................

......................

New Card BN
Delete Card

Cut Card

Copy Card

.....................

Text Style... 3T

icon... > 4
ubnjec

.3 File
Undo ;4 NE
l.an| tu el

..

..

.........

..

......

=————— Mail BB
& MESSAGE o
| 7y Per—, |

Subject- Where were you4

e) type "2. " and paste subject

f) Eager appears

= File Edit Go Tools Objects Font S! < File Go Tools Objects Font S

212
l.anecessaryevil.. ... £t S
£ opt A
2. Lost folders L

£ 69 Paste Tent #U
{{ear

..

... wenare seneenn

..................... New Card 4, i R ———
Delete Card
Cut Card

CopyCard |

......................................

Texnt Style... ®T
Background)

* Subjects ® r icon... %1

]
7 »

g) anticipate typing "3. " h) anticipate paste

= File Edit Go Tools Objects For
[

Mail

r . g
> 1 .t

G MESSAGE [

Subject: Where were you?.
From:JONES3. ...

< File Edit Go Tools Objects For
Mail =E |

& MESSAGE ©

Subject{Expeniment} ...
From: Robinson ..

i) anticipate going to next message

j) user clicks on Eager

= File Edit Go Tools Objects Font §!
List STE

« File Edit Go Tools Objects For
Mail mTE |

T MESSAGE o |l 1.anecessaryevil... R

3. Wherewereyou? . .
4. Experiment

[Do One Pass]
B~ [Finish The Task ‘_]

trial | cancel | (More options)

T [Save A Copy

k) finish the task l) Eager finishes

Chimera

Programming by demonstration in the graphics domain

» Classic example: David Kurlander’s Chimera
Infers constraints via heuristics, from snapshots of drawing editor state
Users can generalise a “graphical macro” in editable history of operations

rxl

Macro Builder

Make-Argument - 2 Make-Argument - 2 Toggle-Slope - 1 Toggle-Slope - 1 Make-Normals-Hot - 2 Make-Normals-Hot - 2 Drag - 3
Text Input: fixed Text Input: moved]]
EI 0 90 (& 4
1 |
Macro Ops ¥ . i . —) (== S
) Ps ¥) Gran: 0| 1] 2| 3| 4[5 Editable:))

» D. Kurlander Graphical Editing by Example (1993)
PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93

https://youtu.be/JbrJQW25ekI?t=7m9s

ToonTalk

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

rrrrrr

rrrrrr

er

a"=t-.=.- '

L nnﬂnﬂn n
ue

{

pnnnnnnnnnnnn
‘-llllllln-

Vo

N

Ken Kahn’s ToonTalk — user control of generalisation

SRRSO R N A N D R U AR A

JuguuuUuLUuUUuUuUuy
POUUUUUUUUOUUUU U
JUUOUUUUUUUUUUOUUL

._CCCCII.P,. N
LCCCr:r_. .
.:LCCC;!_F.. j

Ken Kahn’s ToonTalk — user control of generalisation

Juuuuyu
Yoo W
Jou’
Jui
o

J L

Jd

e . .
ERERURN: i Juu
TUUUUUULUUU LYy

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Tiﬁ Wﬂ

T

7
I UuUuUl
3 ,W s) U U4
| | SHUUUL
W.m” LU U UL
DUt c r,
hcccccccccccccrr e

hcccccccccccccrrrrr J
JUUUUUUUUUUUuuu U™
JuUduuuuuu ik
JUduuuuug !
JuuuuuuoL),
;cccccccr :
._CC...C.CCCC. }
JUUUUUUy }
._CCC..C.‘CCC.: i
.—CCCCCCC -—-—

Ken Kahn’s ToonTalk — user control of generalisation

T 8 ot sl
i

BT e

|l el - - - o - - |l ol S el

i

{{{fH

o
v

Ken Kahn’s ToonTalk — user control of generalisation

UUuUUUUUUUY
Juuuuuuuuv
k@ouuuuUUULUL
yjuuuu. FuuUUULUUUUL

JUUUUUUL L UUUUUUUu U U U
JUUUU LS b
LCCCCr.. i
JUUUUE JUL
JUUUUGE D

JUU U il Juy
d U U U (e Ju:

YU Ut
B ASEL L B TR e CCCCCC::_.CCr

Ken Kahn’s ToonTalk — user control of generalisation

yuuuuy ;
JUUUUuuUduuuy
UUUUuUuUuUuUUuuui
UUUUUUUUUUUU
UUUUUUUUUuUuUUl
UUuJUuuuuuy

VU UL W
l-.lr_»—m—_-.r—

Generalising a constraint with Dusty

Generalising a constraint with Dusty

FEEEEl el
FEFFFTTTTT,

Generalisation

Why is the generalisation step so significant?

» Generalisation from examples is fundamental to mental abstraction

Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
Any automated action (i.e. programming) does require abstraction

» So program synthesis requires the user to conceptualise their problem in an
abstract way
Programming by example is a strategy for achieving this ...
... the user can become comfortable with individual cases, while
... the system formulates abstractions at the same time the user does.

» Essential that user & system can “discuss’” what they are concluding:
So is this what you want me to do!?

No, here is a case where you should do something else.
Oh, | see, so like this?

The Attention Investment model of abstraction use

» Programming is not like direct manipulation, so the standard rules of usability
(Shneiderman’s direct manipulation principles) do not apply:
Incremental action
Fully visible state
Immediate feedback
Easily reversible actions

» Making abstractions is cognitively hard, because actions take place in the future, and
they apply to multiple potential contexts.
Automating repetitive actions does save time and (mental) effort
But formulating and refining abstractions costs time and mental effort!

What leads a user to approach their tasks in this way?
Richard Potter’s “Just In Time Programming”
Rosson and Carroll’s “Paradox of the Active User”
Bainbridge’s “Ironies of Automation”
Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)

AUTOMATION

&3 I3 I3 3 B3

“T SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD |JRITE A PROGRAM AUTOMATING IT!™
THEORY:
WRITIN
A
WORK > FREE
\JORK ON- AURHATON THE
ORIGINAL TASK
TME

URlTlNE
Work] / REIRINNNG NO TME FOR
ORIGINAL TASK
ANYVIORE

TME
Cic | <prev N Ruoon | Nexr> | >

PERMANENT LINK TO THIS cOMIC: HTTPS://xkcD.com/1319/
IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTPS://IMGS.XKCD.COM/COMICS/AUTOMATION.PNG

SWYN: See What You Need

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble

wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wuabbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble

wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wuabbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobblé tries to nobble
wubbse tries to nobble
wobblé tries to nobble
wibble wobblé tries to nobble
wobblée tries to nobble
tries to nobble
wobblée tries to nobble
e wabble tries to nobble
w1bbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wibble wabbse tries to nobble
wibble wobble tries to nobble
wibblel wobble tries to nobble
wibble wobble tries to nobble
wobble tries to nobble
wibblel wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wibble wubbse tries to nobble
wobble tries to nobble
wibblel wobble tries to nobble
wobble tries to nobble
wobble tries to nobble
e wobble tries to nobble
e wwabble tries to nobble
mbbb'bbb'b'le tries to treuble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
m'b'bre wobble tries to nobble
wu-bbse trles to nobble
- 1o nobble
< 1o nobble
‘0 nobble
. nobble
mb_iu.'u: wouvwuic uies w hobble
e wuabble tries to nobble
m-bbb-bbb'b-le tries to trouble
wibbne wobble tries to nobble

EJEJEJEJ

Communicating inference to the user

> (0]0044)1223[356][0-9]+

0 0044
— _/
» Find one of the following: Y
a) either the sequence “0”
b) the sequence “0044” 122f
» followed by the sequence “1223” any one of {3,5,6}
» followed by any one of {0-9}
any one of these characters:*“3”or “5”or “6”
» followed by at least one, possibly more, of the following:
any one of these characters: any one from“0” to “9”

0 35
0044 | 122 ¢ 09

Structured text editing as an ML application

» Aimed at the kind of things people did with sed/awk/perl
Many automated text operations involved regexps
But users found these the hardest thing to understand ...
.. research agenda for machine learning: sed/awk/perl/swyn

» Similar goals to Witten and Mo’s TELS (1989)

Learning Text Editing Tasks from Examples
See Cypher book chapter 8

» Luke Church demonstrated working solution (2007)
Recursive language model “Structured Prediction by Partial Match”
Prior expectation based on harvested corpus of regular expressions

Example applications

Working in a data-centric paradigm: FlashFill for Excel

» Building on this paper by Sumit Gulwani (MSR Redmond)
Automating String Processing in Spreadsheets using Input-Output Examples, Proc. POPL 201 |
https://www.microsoft.com/en-us/research/publication/automating-string-processing-
spreadsheets-using-input-output-examples/

» Live Demo
Paste a list of semi-structured text data into the left column
Type an example transform result in top cell to the right, then <Enter>
Press <Ctrl+E>

» “Synthesises a program from input-output examples”
How do you choose the examples!?
How do you know what will happen?
Using this ‘program’ as a component of a larger system is still a research topic

Visualising abstract structure: Data Noodles

>

» Applies a transformation paradigm
Directed search for fold/unfold transforms that will achieve the demonstrated result

» Search procedure uses off-the-shelf program synthesis toolkit
PROSE SDK from Gulwani team at MSR Redmond

» Custom-built front-end
The “spreadsheet” is purely for familiarity of presentation
No actual spreadsheet calculation is performed
Drag-and-drop target previews allow user to anticipate inference

Noodles preserve and visualise the demonstrated actions

Allow reasoning about causality from example to synthesised program
Potentially support modification/correction of examples

https://www.youtube.com/watch?v=hyCVBxfx7VE

The Programmer’s Assistant project from 1978 onwards

» Implemented as Knowledge-Based Emacs (KB-Emacs)
PhD project of Charles Rich at MIT

Aimed to recognise cognitive plan elements within source code

» In practice, programmer-assist features in modern IDEs are implemented using
heuristics rather than Al models

Syntax-directed editing

Auto-complete of standard constructs

Refactoring

Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
Navigate-by-completion for library APls

And of course ... Github Labs’ CoPilot

» Is it just predictive text with a domain-specific language model?

» It is a recommender system!
(so, who wrote the code it’s recommending?)

» Is it a (clunky) syntax-directed editor / code completion IDE!?

» Is it an unpredictable and amusing diversion!?
Who needs code that looks as though it might be correct, but probably isn’t?

» Is it the fastest way to submit trivial exercises for a coding class?
Like practicing scales on a piano?

