
Hoare logic

Lecture 2: Examples in Hoare logic

Christopher Pulte cp526

University of Cambridge

CST Part II – 2022/2023

Recap

In the previous lecture, we introduced Hoare logic, which uses

Hoare triples to specify the behaviour of imperative programs by

relating the initial state of a program with its terminate state.

Today, we will use Hoare logic to specify and verify some simple

programs.

1

Proof outlines

Proof outlines

Derivations in Hoare logic are often more readable when given as

proof outlines instead of proof trees. A proof outline of a

command is an annotation of the command with the pre- and

postcondition of each sub-command. . .

Instead of writing

⊢ {(X + 1)× 2 = 4} X := X + 1 {X × 2 = 4} ⊢ {X × 2 = 4} X := X × 2 {X = 4}
⊢ {(X + 1)× 2 = 4} X := X + 1;X := X × 2 {X = 4}

we can write

{(X + 1)× 2 = 4}
X := X + 1;

{X × 2 = 4}
X := X × 2

{X = 4} 2

Proof outlines

. . .and where sequences of assertions indicate uses of the rule of

consequence. We elide sides of the rule of consequence that do not

change the assertion. We also elide (but need to check!) the

derivations of implications between assertions.

Instead of writing
...

⊢FOL X = 1 ⇒ X + 1 = 2 ⊢ {X + 1 = 2} X := X + 1 {X = 2}

...

⊢FOL X = 2 ⇒ X = 2

⊢ {X = 1} X := X + 1 {X = 2}
we can write

{X = 1}
{X + 1 = 2}
X := X + 1

{X = 2}
3

Proof outline for the integer square root

{X = x ∧ x ≥ 0}
{X = x ∧ x ≥ 0 ∧ 0× 0 ≤ x}
S := 0;

{X = x ∧ x ≥ 0 ∧ S × S ≤ x}
while (S + 1)× (S + 1) ≤ X do (

{X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ (S + 1)× (S + 1) ≤ X}
{X = x ∧ x ≥ 0 ∧ (S + 1)× (S + 1) ≤ x}
S := S + 1

{X = x ∧ x ≥ 0 ∧ S × S ≤ x}
){X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ ¬((S + 1)× (S + 1) ≤ X)}
{X = x ∧ S × S ≤ x ∧ x < (S + 1)× (S + 1)}

4

Factorial

Specifying a program computing factorial

We wish to verify that the following command computes the

factorial of X , and stores the result in Y :

while X ̸= 0 do (Y := Y × X ;X := X − 1)

First, we need to formalise the specification:

• Factorial is only defined for non-negative numbers,

so X should be non-negative in the initial state.

• The terminal state of Y should be equal to the factorial of the

initial state of X .

• The implementation assumes that Y is equal to 1 initially.

5

A specification of a program computing factorial

This corresponds to the following partial correctness triple:

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X ̸= 0 do (Y := Y × X ;X := X − 1)

{Y = x!}

Here, ‘!’ denotes the usual mathematical factorial function.

Note that we used an auxiliary variable x to record the initial value

of X and relate the terminal value of Y with the initial value of X .

6

How does one find a good invariant?

...

⊢FOL P
′ ⇒ P

⊢ {P ∧ B} C {P}
⊢ {P} while B do C {P ∧ ¬B}

...

⊢FOL P ∧ ¬B ⇒ Q ′

⊢ {P ′} while B do C {Q ′}

Here, P is an invariant, meaning that it

• must hold initially;

• must be preserved by the loop body when B is true; and

Moreover, to be useful, it must imply the desired postcondition

when B is false.

7

Analysing the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X ̸= 0 do (Y := Y × X ;X := X − 1)

{Y = x!}

How does this program work? P

8

Observations about the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X ̸= 0 do (Y := Y × X ;X := X − 1)

{Y = x!}

iteration Y X

0 1 x

1 1× x x − 1

2 1× x × (x − 1) x − 2

3 1× x × (x − 1)× (x − 2) x − 3
...

...
...

x 1× x × (x − 1)× (x − 2)× · · · × 1 0

Y is the value computed so far, and X ! remains to be computed.
9

An invariant for the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X ̸= 0 do (Y := Y × X ;X := X − 1)

{Y = x!}

Take I to be Y × X ! = x! ∧ X ≥ 0.

(We need X ≥ 0 for X ! to make sense.) P

10

Proof outline for the implementation of factorial

{X = x ∧ X ≥ 0 ∧ Y = 1}
{Y × X ! = x! ∧ X ≥ 0}
while X ̸= 0 do (

{Y × X ! = x! ∧ X ≥ 0 ∧ X ̸= 0}
{(Y × X)× (X − 1)! = x! ∧ (X − 1) ≥ 0}
Y := Y × X ;

{Y × (X − 1)! = x! ∧ (X − 1) ≥ 0}
X := X − 1

{Y × X ! = x! ∧ X ≥ 0}
){Y × X ! = x! ∧ X ≥ 0 ∧ ¬(X ̸= 0)}
{Y = x!}

11

Fibonacci

A verified Fibonacci implementation

We wish to verify that the following command computes the N-th

Fibonacci number (indexed from 1), and stores the result in Y .

This corresponds to the following partial correctness Hoare triple:

{1 ≤ N ∧ N = n}
X = 0;

Y := 1;

Z := 1;

while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{Y = fib(n)}

Recall that the Fibonacci sequence is defined by

fib(1) = 1, fib(2) = 1, ∀n > 2. fib(n) = fib(n − 1) + fib(n − 2)

Moreover, for convenience, we assume fib(0) = 0.
12

A verified Fibonacci implementation

Reasoning about the initial assignment of constants is easy.

How can we verify the loop?

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{Y = fib(n)}

First, we need to understand the implementation. P

13

Observations about the implementation of Fibonacci

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{Y = fib(n)}

iteration 0 1 2 3 4 5 6 · · · n − 1

Y 1 1 2 3 5 8 13 · · · fib(n)

X 0 1 1 2 3 5 8 · · · fib(n − 1)

Z 1 2 3 4 5 6 7 · · · n

14

Analysing the implementation of Fibonacci

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{Y = fib(n)}
Z is used to count loop iterations, and Y and X are used to

compute the Fibonacci number:

Y contains the current Fibonacci number,

and X contains the previous Fibonacci number.

This suggests trying the invariant

Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0.

(We need Z > 0 for fib(Z − 1) to make sense.)
15

Trying an invariant for the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
{I}
while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{I ∧ ¬(Z < N)}
{Y = fib(n)}

Take I ≡ Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0.

Then we have to prove:

• ⊢FOL (X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n) ⇒ I

• ⊢ {I ∧ (Z < N)} Y := X + Y ;X := Y − X ;Z := Z + 1 {I}
• ⊢FOL (I ∧ ¬(Z < N)) ⇒ Y = fib(n)

Do all these hold? Only the first two do. (Exercise.)
16

A better invariant for the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ;X := Y − X ;Z := Z + 1)

{Y = fib(n)}
While Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 is an invariant,

it is not strong enough to establish the desired postcondition.

We need to know that when the loop terminates, Z = n.

It suffices to strengthen the invariant to:

Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n

P
17

Proof outline for the loop of the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
{Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n}
while Z < N do

({Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n ∧ Z < N}
{X + Y = fib(Z + 1) ∧ (X + Y)− X = fib(Z) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
Y := X + Y ;

{Y = fib(Z + 1) ∧ Y − X = fib(Z) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
X := Y − X ;

{Y = fib(Z + 1) ∧ X = fib(Z) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
{Y = fib(Z + 1) ∧ X = fib((Z + 1)− 1) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
Z := Z + 1

{Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n})
{Y = fib(Z) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n ∧ ¬(Z < N)}
{Y = fib(n)} 18

Verification condition generation

Architecture of a verifier

Program to be verified & spec.

Program with loop invariants & spec.

Set of verification conditions

Reduced set of VCs

End of proof

human expert

VC generator

automated

theorem prover

human expert

19

Verification condition generation

Finding invariants is difficult (as we will see in the next lecture).

However, we can write a simple recursive function VC that takes a

precondition P, an annotated program C in which loop invariants

are provided as annotations, and a postcondition Q, and returns a

set of assertions (called “verification conditions”) such that, if they

all hold, then {P} |C| {Q} holds (where |C| is C without the

annotations).

Formally,

∀C,P,Q. (∀R ∈ VC (P, C,Q). ⊢FOL R) ⇒ (⊢ {P} |C| {Q})

3
20

Summary

We have used Hoare logic to verify a few simple examples, and

seen how finding invariants is the core difficulty.

Writing out full proof trees or even proof outlines by hand is

tedious and error-prone, even for simple programs.

However, the trivia can be mechanised, leaving only finding

invariants and proving difficult implications to the user.

In the next lecture, we will formalise the intuitions we gave in the

first lecture, and prove soundness of Hoare logic.

21

