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Hoare logic and separation logic

Structural rules in separation logic

We’ve used:

• frame rule
(in proof outlines: indentation)

• rule for existential variables
(in proof outlines: indentation)

• rule of consequence, as in Hoare Logic
(in proof outlines: sequence of state assertions)
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The concept of ownership

Ownership of a heap cell is the permission to (safely)
read/write/dispose of it.

Essential: this ownership is not duplicable.
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The concept of ownership (continued)

E.g.: use-after-free: dispose(X); [X ] := 5

Separation logic:

{X 7→ v}
dispose(X);
{emp}
proof fails
{X 7→ v}
[X] := 5
{X 7→ 5}

If ownership was duplicable:

{X 7→ v}
{X 7→ v ∗ X 7→ v}
dispose(X);
{X 7→ v}
[X] := 5
{X 7→ 5}

(This is very different from Hoare logic assertions that are freely
duplicable.)
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Pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[⊥]](s) def
= ∅

[[>]](s) def
= Heap

[[P ∧ Q]](s) def
= [[P ]](s) ∩ [[Q]](s)

[[P ∨ Q]](s) def
= [[P ]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s) def
= {h ∈ Heap | h ∈ [[P ]](s) ⇒ h ∈ [[Q]](s)}

...

What is the meaning of pure assertion X = Y ?

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise 4

Semantics of pure assertions

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise

[[p(t1, . . . tn)]](s) = {h | [[p]]([[t1]](s), . . . , [[tn]](s))}

More generally, the semantics of a pure assertion in a stack s:

Informally: “check the pure assertion in s”; if it holds in s, return
the set of all heaps, if not return the empty set of heaps.

Formally: don’t worry about it, because we have not defined it.
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Semantics of pure assertions, wrt. heap

Do pure assertions such as X = 1 or X = Y assert properties
about the heap? E.g. do they implicitly assert · · · ∧ emp
(ownership of the empty resource/heap)? No.

The meaning of >, for instance, is [[>]](s) = Heap, the set of all
heaps (not the set containing the empty heap).
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Semantics of pure assertions, wrt. heap (continued)

The 2019 exam paper 8, question 7 asks:

{N = n ∧ N ≥ 0}
X := null; while N > 0 do (X := alloc(N, X); N := N −1)
{list(1, . . . , n)}

(I have not checked whether that year used different definitions
from ours, but) This seems to be missing emp in the
pre-condition: {N = n ∧ N ≥ 0 ∧ emp}

Why? {N = n ∧ N ≥ 0} makes no statement about the heap —
the precondition is satisfied by any heap (and suitable stack). But
without the emp requirement, we would not be able to prove the
post-condition {list(1, . . . , n)}, which asserts that the only
ownership is that of the list predicate instance.
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Another error

Related: error in 2021 Paper 8 Question 8.

The pre-condition should have

· · · ∧ 1 ≤ S

instead of
· · · ∗ 1 ≤ S

.
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Conjunction and separating conjunction

What are the differences between them and when to use which?
And how do they interact with pure assertions?

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)
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Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

p1 7→ v1 ∗ p2 7→ v2 vs. p1 7→ v1 ∧ p2 7→ v2

• p1 7→ v1 ∗ p2 7→ v2 holds for a heap h that is the disjoint union of
heaplets h1 and h2, where h1 contains just cell p1, with value v1,
and h2 just cell p2, with value v2. So: ownership of two disjoint
heap cells p1 and p2 with p1 6= p2.

• p1 7→ v1 ∧ p2 7→ v2 holds for a heap h that satisfies two assertions
simultaneously (is in the intersection of their interpretations):
(1) p1 7→ v1: h is a heap of just one heap cell, p1 with value v1

(2) p2 7→ v2: h is a heap of just one heap cell, p2 with value v2

So: ownership of just one heap cell, p1 = p2 with value v1 = v2.
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Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

(p 7→ 1) ∗ Y = 0 vs. (p 7→ 1) ∧ Y = 0

• (p 7→ 1) ∗ Y = 0 holds for a stack s and a heap h where h is the
disjoint union of heaplets h1 and h2, such that h1 contains ownership
of one cell, p with value 1, and h2 is an arbitrary heap if s satisfies
Y = 0. So, s must map Y to 0 and h is the disjoint union of the
heaplet of just p with value 1 and an arbitrary disjoint heap h2.

• (p 7→ 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two
assertion simultaneously: p 7→ 1 and Y = 0. This means s must
map Y to 0 and h must be the heap consisting of just that one cell.
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It is good to be careful about the unexpected interaction of the
usual logical connectives with the new separation logic connectives!
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Program variable assignment vs heap assignment

(Program variable) assignment
X := E updates program variable X .

Heap assignment
[E1] := E2 (note the brackets) evaluates E1 and, if E1 evaluates to
a pointer to an allocated heap location `, writes to the heap at `.

E.g. heap assignment [X ] := E (note the brackets) reads program
variable X and, if the current value of X is a pointer to an
allocated heap location `, writes to the heap at `, leaving X
unchanged.

Whether to apply the rule for (program variable) assignment
from lecture 1, or the separation logic rule for heap assignment
depends on the command.
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Assignment
Is there a special proof rule for X := null? No. This command
is a (program variable) assignment, so we would use the (program
variable) assignment rule from lecture 1. Separation logic inherits
all the partial correctness rules from Hoare logic from the first
lecture.

([X ] := null would have been a heap assignment.)

Proof for empty list triple?

{emp}
{null = null ∧ emp}
{[null/X ](X = null ∧ emp)}
X := null
{X = null ∧ emp}
{list(X , [])} 14



Step in lecture 5 proof for allocation

These are all applications of the rule of consequence, using some of
the properties of separation logic assertions from lecture 5
(interleaved as comments, in blue).

{(list(Y , α) ∧ X = x) ∧ HEAD = z}
∧ commutative

{(HEAD = z ∧ (list(Y , α) ∧ X = x)}
emp neutral element for ∗

{(HEAD = z ∧ (emp ∗ (list(Y , α) ∧ X = x))}
`BI (P ∧ Q) ∗ R ⇔ P ∧ (Q ∗ R) when P is pure

{(HEAD = z ∧ emp) ∗ (list(Y , α) ∧ X = x)}
`BI P ∗ Q ⇔ Q ∗ P

{(list(Y , α) ∧ X = x) ∗ (HEAD = z ∧ emp)}
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More detailed proof outline for max

The max operation iterates over a non-empty list, computing its
maximum element:

Cmax ≡
X := [HEAD + 1];M := [HEAD];

while X 6= null do
(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

We wish to prove that Cmax satisfies its intended specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧ M = maxl(h :: α)}
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More detailed proof outline for max
{list(HEAD, h :: α)}
{∃y . HEAD 7→ h, y ∗ list(y , α)}
X := [HEAD + 1];
{∃y . (HEAD 7→ h, y ∗ list(y , α)) ∧ X = y}
{HEAD 7→ h,X ∗ list(X , α)}
M := [HEAD];

{(HEAD 7→ h,X ∗ list(X , α)) ∧ M = h}
{(HEAD 7→ h,X ∗ emp ∗ list(X , α)) ∧ M = h}
{(plist(HEAD, [h],X) ∗ list(X , α)) ∧ M = h}
{(plist(HEAD, [h],X) ∗ list(X , α)) ∧ M = maxl([h])}
{∃β, γ. h :: α = β ++ γ ∧ (plist(HEAD, β,X) ∗ list(X , γ)) ∧ M = maxl(β)}
while X 6= null do
(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

{list(HEAD, h :: α) ∧ M = maxl(h :: α)}
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Proof outlines

How much detail to give in proof outline in exam?
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Model Checking

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”
CTL: ψ = A G ((Call2 ∧ E X Loc2) → A X Loc2)

Q: Can we express the same in LTL with
φ = G (Call2 ∧ (Loc1 ∨ Loc3)) → X Loc2?

This depends on the details of the elevator temporal model.1 In
any case, ψ and φ are not generally equivalent. The point is:
expressing properties of the tree of possible paths out of a given
state — such as asserting the existence of some path — is not
possible with LTL.

1I think — the way we have sketched the elevator in lecture 7 — it will not:
Loc1 ∨ Loc3 does not imply there exists a next step such that Loc2 holds.
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LTL/CTL expressivity

An LTL formula not expressible in CTL: φ = (F p) → (F q).

a) CTL formula ψ1 = (A F p) → (A F q).
φ does not hold, ψ1 does.

1 : {} 2 : {p}3 : {}

b) CTL formula ψ2 = A G (p → (A F q)).
φ holds, ψ2 does not.

4 : {q} 5 : {p}
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LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

1 : {p} 2 : {} 3 : {p}

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

• all paths π from 1 satisfy F A G p, so
• all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not
satisfied, because there exists a path π2 that goes to 2 from there.
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It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.
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Why have simulation relations and not simulation functions?

AP = AP ′ = {good}

1 : {}

2 : {good}

3 : {good}

4 : {}

5 : {good}

M M ′

M simulates M ′ 23

Good luck!
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