
Hoare logic and Model checking
Revision class

Christopher Pulte cp526
University of Cambridge

CST Part II – 2022/23

Hoare logic and separation logic

Structural rules in separation logic

We’ve used:

• frame rule
(in proof outlines: indentation)

• rule for existential variables
(in proof outlines: indentation)

• rule of consequence, as in Hoare Logic
(in proof outlines: sequence of state assertions)

1

The concept of ownership

Ownership of a heap cell is the permission to (safely)
read/write/dispose of it.

Essential: this ownership is not duplicable.

2



The concept of ownership (continued)

E.g.: use-after-free: dispose(X); [X ] := 5

Separation logic:

{X 7→ v}
dispose(X);
{emp}
proof fails
{X 7→ v}
[X] := 5
{X 7→ 5}

If ownership was duplicable:

{X 7→ v}
{X 7→ v ∗ X 7→ v}
dispose(X);
{X 7→ v}
[X] := 5
{X 7→ 5}

(This is very different from Hoare logic assertions that are freely
duplicable.)

3

Pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[⊥]](s) def
= ∅

[[>]](s) def
= Heap

[[P ∧ Q]](s) def
= [[P ]](s) ∩ [[Q]](s)

[[P ∨ Q]](s) def
= [[P ]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s) def
= {h ∈ Heap | h ∈ [[P ]](s) ⇒ h ∈ [[Q]](s)}

...

What is the meaning of pure assertion X = Y ?

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise 4

Semantics of pure assertions

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise

[[p(t1, . . . tn)]](s) = {h | [[p]]([[t1]](s), . . . , [[tn]](s))}

More generally, the semantics of a pure assertion in a stack s:

Informally: “check the pure assertion in s”; if it holds in s, return
the set of all heaps, if not return the empty set of heaps.

Formally: don’t worry about it, because we have not defined it.

5

Semantics of pure assertions, wrt. heap

Do pure assertions such as X = 1 or X = Y assert properties
about the heap? E.g. do they implicitly assert · · · ∧ emp
(ownership of the empty resource/heap)? No.

The meaning of >, for instance, is [[>]](s) = Heap, the set of all
heaps (not the set containing the empty heap).

6



Semantics of pure assertions, wrt. heap (continued)

The 2019 exam paper 8, question 7 asks:

{N = n ∧ N ≥ 0}
X := null; while N > 0 do (X := alloc(N, X); N := N −1)
{list(1, . . . , n)}

(I have not checked whether that year used different definitions
from ours, but) This seems to be missing emp in the
pre-condition: {N = n ∧ N ≥ 0 ∧ emp}

Why? {N = n ∧ N ≥ 0} makes no statement about the heap —
the precondition is satisfied by any heap (and suitable stack). But
without the emp requirement, we would not be able to prove the
post-condition {list(1, . . . , n)}, which asserts that the only
ownership is that of the list predicate instance.

7

Another error

Related: error in 2021 Paper 8 Question 8.

The pre-condition should have

· · · ∧ 1 ≤ S

instead of
· · · ∗ 1 ≤ S

.

8

Conjunction and separating conjunction

What are the differences between them and when to use which?
And how do they interact with pure assertions?

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

9

Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

p1 7→ v1 ∗ p2 7→ v2 vs. p1 7→ v1 ∧ p2 7→ v2

• p1 7→ v1 ∗ p2 7→ v2 holds for a heap h that is the disjoint union of
heaplets h1 and h2, where h1 contains just cell p1, with value v1,
and h2 just cell p2, with value v2. So: ownership of two disjoint
heap cells p1 and p2 with p1 6= p2.

• p1 7→ v1 ∧ p2 7→ v2 holds for a heap h that satisfies two assertions
simultaneously (is in the intersection of their interpretations):
(1) p1 7→ v1: h is a heap of just one heap cell, p1 with value v1

(2) p2 7→ v2: h is a heap of just one heap cell, p2 with value v2

So: ownership of just one heap cell, p1 = p2 with value v1 = v2.
10



Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

(p 7→ 1) ∗ Y = 0 vs. (p 7→ 1) ∧ Y = 0

• (p 7→ 1) ∗ Y = 0 holds for a stack s and a heap h where h is the
disjoint union of heaplets h1 and h2, such that h1 contains ownership
of one cell, p with value 1, and h2 is an arbitrary heap if s satisfies
Y = 0. So, s must map Y to 0 and h is the disjoint union of the
heaplet of just p with value 1 and an arbitrary disjoint heap h2.

• (p 7→ 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two
assertion simultaneously: p 7→ 1 and Y = 0. This means s must
map Y to 0 and h must be the heap consisting of just that one cell.

11

It is good to be careful about the unexpected interaction of the
usual logical connectives with the new separation logic connectives!

12

Program variable assignment vs heap assignment

(Program variable) assignment
X := E updates program variable X .

Heap assignment
[E1] := E2 (note the brackets) evaluates E1 and, if E1 evaluates to
a pointer to an allocated heap location `, writes to the heap at `.

E.g. heap assignment [X ] := E (note the brackets) reads program
variable X and, if the current value of X is a pointer to an
allocated heap location `, writes to the heap at `, leaving X
unchanged.

Whether to apply the rule for (program variable) assignment
from lecture 1, or the separation logic rule for heap assignment
depends on the command.

13

Assignment
Is there a special proof rule for X := null? No. This command
is a (program variable) assignment, so we would use the (program
variable) assignment rule from lecture 1. Separation logic inherits
all the partial correctness rules from Hoare logic from the first
lecture.

([X ] := null would have been a heap assignment.)

Proof for empty list triple?

{emp}
{null = null ∧ emp}
{[null/X ](X = null ∧ emp)}
X := null
{X = null ∧ emp}
{list(X , [])} 14



Step in lecture 5 proof for allocation

These are all applications of the rule of consequence, using some of
the properties of separation logic assertions from lecture 5
(interleaved as comments, in blue).

{(list(Y , α) ∧ X = x) ∧ HEAD = z}
∧ commutative

{(HEAD = z ∧ (list(Y , α) ∧ X = x)}
emp neutral element for ∗

{(HEAD = z ∧ (emp ∗ (list(Y , α) ∧ X = x))}
`BI (P ∧ Q) ∗ R ⇔ P ∧ (Q ∗ R) when P is pure

{(HEAD = z ∧ emp) ∗ (list(Y , α) ∧ X = x)}
`BI P ∗ Q ⇔ Q ∗ P

{(list(Y , α) ∧ X = x) ∗ (HEAD = z ∧ emp)}
15

More detailed proof outline for max

The max operation iterates over a non-empty list, computing its
maximum element:

Cmax ≡
X := [HEAD + 1];M := [HEAD];

while X 6= null do
(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

We wish to prove that Cmax satisfies its intended specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧ M = maxl(h :: α)}

16

More detailed proof outline for max
{list(HEAD, h :: α)}
{∃y . HEAD 7→ h, y ∗ list(y , α)}
X := [HEAD + 1];
{∃y . (HEAD 7→ h, y ∗ list(y , α)) ∧ X = y}
{HEAD 7→ h,X ∗ list(X , α)}
M := [HEAD];

{(HEAD 7→ h,X ∗ list(X , α)) ∧ M = h}
{(HEAD 7→ h,X ∗ emp ∗ list(X , α)) ∧ M = h}
{(plist(HEAD, [h],X) ∗ list(X , α)) ∧ M = h}
{(plist(HEAD, [h],X) ∗ list(X , α)) ∧ M = maxl([h])}
{∃β, γ. h :: α = β ++ γ ∧ (plist(HEAD, β,X) ∗ list(X , γ)) ∧ M = maxl(β)}
while X 6= null do
(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

{list(HEAD, h :: α) ∧ M = maxl(h :: α)}
17

Proof outlines

How much detail to give in proof outline in exam?

18



Model Checking

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”
CTL: ψ = A G ((Call2 ∧ E X Loc2) → A X Loc2)

Q: Can we express the same in LTL with
φ = G (Call2 ∧ (Loc1 ∨ Loc3)) → X Loc2?

This depends on the details of the elevator temporal model.1 In
any case, ψ and φ are not generally equivalent. The point is:
expressing properties of the tree of possible paths out of a given
state — such as asserting the existence of some path — is not
possible with LTL.

1I think — the way we have sketched the elevator in lecture 7 — it will not:
Loc1 ∨ Loc3 does not imply there exists a next step such that Loc2 holds.

19

LTL/CTL expressivity

An LTL formula not expressible in CTL: φ = (F p) → (F q).

a) CTL formula ψ1 = (A F p) → (A F q).
φ does not hold, ψ1 does.

1 : {} 2 : {p}3 : {}

b) CTL formula ψ2 = A G (p → (A F q)).
φ holds, ψ2 does not.

4 : {q} 5 : {p}

20

LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

1 : {p} 2 : {} 3 : {p}

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

• all paths π from 1 satisfy F A G p, so
• all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not
satisfied, because there exists a path π2 that goes to 2 from there.

21



It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.

22

Why have simulation relations and not simulation functions?

AP = AP ′ = {good}

1 : {}

2 : {good}

3 : {good}

4 : {}

5 : {good}

M M ′

M simulates M ′ 23

Good luck!

24


