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This exercise sheet is based on a previous exercise sheets by Dominic Mul-
ligan (marked DM) and Mike Gordon (marked MG). Some exercises are are
marked as easy (marked with an “E”), medium (marked with an “M”), or
hard (marked with a “H”) based on potentially misleading estimations.
Mike Gordon’s exercise sheet also contains additional exercises: https://
www.cl.cam.ac.uk/teaching/1516/HLog+ModC/MJCG-MC-Exercises.pdf.

1 Formal methods
Exercise 1.1. (DM, E) Compare and contrast the use of Hoare- (and Separation-
) Logic with Model Checking. When would one use one approach over the
other? What are the advantages and disadvantages of both?

Exercise 1.2. (DM, E) Compare and contrast testing with Model Checking.
What are the advantages of each? What are the disadvantages of each?

Exercise 1.3. (DM, E) Many properties of systems can be characterised as
“liveness” or “safety” properties. Informally, a liveness property asserts that
something “good” will eventually happen, whereas a safety property asserts
that something “bad” will never happen. Give three example liveness prop-
erties, and three example safety properties, that one may wish to establish
of the control software for a prototype driverless car.

Exercise 1.4. (DM, M) It is immediately obvious that an informal English-
language system description can feasibly be modelled formally in many dif-
ferent ways. Further, English-language specifications of a system’s behaviour
can also feasibly be translated into temporal formulae in many different ways,
potentially with slightly different meanings.
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Suppose, after graduation, you are tasked with verifying a heart pace-
maker for an important medical device manufacturer by your employer. Your
boss understands you sat through Part II “Hoare Logic and Model Checking”
whilst at Cambridge, and requests that you use your well-developed Model
Checking skills to provide the assurance that the customer requires. How
would you ensure that the formal model of the pacemaker that you produce
is an accurate reflection of the customer’s implemented system? How would
you ensure that the temporal properties that you are verifying are sufficient
to establish that the pacemaker is suitable for use in humans?

2 Models and abstraction
Exercise 2.1. (DM, M) Matache Cargo Company operate an extensive road
haulage fleet throughout Continental Europe and the British Isles. The com-
pany’s haulage network is described in pictorial form in Figure 1. Here, nodes
represent one of the company’s cargo depots, situated in various important
European locales, with edges between nodes asserting that an item of cargo
can be moved from one depot to the next in the network by one of the
company’s trucks, in a non-stop journey.

Suppose cargo items M and R originate in Madrid and Rome, respec-
tively. Describe the possible movements of the two goods throughout the
Matache Cargo Company’s haulage network as a transition system. Make
clear which state, or states, is the initial state. Note that goods can move
forwards and backwards through the network, and also may reside in any
one depot for an indeterminate length of time, waiting for available trucks
to move them on.

Exercise 2.2. (DM, M) Rawson, Rawson, Rawson, Woods, and Rawson
Ltd. operate a sugar processing plant in rural East Anglia. Raw beet sugar
is delivered to the processing plant by a truck from the Matache Cargo Com-
pany. A robotic crane then removes beet from the delivery truck and places
it into one of three hoppers, picking a hopper arbitrarily to avoid wearing
out any particular one (the company is infamously thrifty). Once a hop-
per is filled, beet is fed into Rawson, Rawson, Rawson, Woods, and Rawson
Ltd’s state of the art sugar extraction mechanism, with the hopper eventually
emptied of its content.

Using a suitable set of atomic propositions–e.g., truck_present, beets_in_truck,
crane_down, crane_up, and similar–produce a transition system which cap-
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Figure 1: The Matache Cargo Company depots and haulage network
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tures the possible state evolutions of the sugar processing plant described
above. As an initial state, assume that no delivery truck is present, all hop-
pers are empty, and the crane is in an upright position.

What difficulties did you have in translating the English language de-
scription of the sugar processing plant into a transition system? Did you
make any assumptions when constructing the transition system of the sugar
processing plant?

Exercise 2.3. (DM, E) Hardy Semiconductor of Yorkshire, plc. have pro-
duced a state-of-the-art non-deterministic increment/decrement subroutine,
suitable for use in the control software of robotic cranes. An excerpt of the
source code from this subroutine is below:

n := 1;
while (*) do:

n := n+1;
n := 0;

Here, (*) is another subroutine, where the source is elided to prevent in-
dustrial espionage, that non-deterministically evaluates to true or false each
time it is evaluated. Model this program as a transition system. Make clear
which states are the start states of the system.

Lastly, suggest a concrete representation for the transition system’s state
space.

Exercise 2.4. (DM, M) Svendsen Heavy Industries specialise in producing
derivative chemical products from two base elements: carbon (C), and oxygen
(O). Recall the following chemical reactions:

2O −→ O2

C +O −→ CO

2C +O2 −→ 2CO

C +O2 −→ CO2

Suppose the company’s lunatic chief scientist, Dr. Kasper, loads a reaction
vessel with 2 atoms of oxygen and 2 atoms of carbon one morning, and
thereafter randomly starts flicking temperature and pressure dials so that
the ensuing reactions are unpredictable. Use a transition system to model
the possible chemical reactions that take place within the reaction vessel,
using only the chemical reactions listed above.
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Lastly, suggest a concrete representation for the transition system’s state
space.

Exercise 2.5. (DM, M) Recall a model for LTL and CTL is a right-serial
transition system with an accompanying labelling function.

Suppose M1 = 〈S1, S1
0 ,→1,L1〉 and M2 = 〈S2, S2

0 ,→2,L2〉 are two mod-
els over the same set of atomic propositions. Define a binary operation on
models, M1 ./ M2, which produces a new model with state set S1 ] S2 (]
is disjoint union on sets). Show that M1 ./M2 is itself a model.

Exercise 2.6. (DM, H) Show that the simulation preorder M1 4 M2 be-
tween models is indeed a preorder, i.e. that it is reflexive and transitive.

Exercise 2.7. Cambridge graduates have recently founded a new semicon-
ductor design company, Pinecone RISC Machines (abbreviated PRM). They
plan on delivering a series of related semiconductor designs M1,M2, . . ., the
design details of which they have not finalised, and which they plan to keep
somewhat secret. To help their customers use their platform nonetheless,
they charge one of their employees, Allaster Wright, to write a PRM Plat-
form Reference Manual (abbreviated PRM PRM), which contains a model
M of their platform, such that any program that does not crash according to
the PRM PRM is guaranteed to not crash on any of the physical machines.
Formalise the relationship of these models.

Exercise 2.8. (MG) Consider a 3 × 3 array of 9 switches, which can each
be either on, or off. Toggling any switch will automatically toggle all its im-
mediate neighbours. For example, toggling switch 5 will also toggle switches
2, 4, 6, and 8, and toggling switch 6 will also toggle switches 3, 5, and 9.

1 2 3

4 5 6

7 8 9

1. Devise a state space and transition relation to represent the behaviour
of the array of switches.
You are given the problem of getting from an initial state in which
even numbered switches are on and odd numbered switches are off, to
a final state in which all the switches are off.
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2. Write down predicates on your state space that characterises the initial
and final states.

3. Explain how you might use a model checker to find a sequences of
switches to toggle to get from the initial to final state.

4. Devise a smaller state space and transition relation that take advantage
of the symmetries of the problem, and sketch a simulation relation.

You are not expected to actually solve the problem, but only to explain how
to represent it in terms of model checking

Exercise 2.9. (MG) Consider the following Euclidian division program,
DIV:

0 R := X;
1 Q := 0;
2 while Y ≤ R do
3 (R := R− Y ;
4 Q := Q+ 1)
5

1. Devise a state space and transition relation to represent the behaviour
of the program.
Hint: use the program counter.

2. Can you represent the property that DIV always terminates when
started in a state satisfying P in the form A G φ, for suitable φ? Justify
your answer.

3. Assume we have the following atomic properties:

• AtStart, which states that the program counter is 0;
• AtEnd, which states that the program counter is 5;
• InLoop, which states that the program counter is 3 or 4;
• YleqR, which states that y ≤ r; and
• Invariant, which states that x = r + (y × q).

Formalise these three properties as formulae in a suitable temporal
logic. You should state what logic you are using and briefly describe
why you chose it:
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(a) on every execution if AtEnd is true then Invariant is true and YleqR
is not true

(b) on every execution there is a state where AtEnd is true
(c) on any execution if there exists a state where YleqR is true then

there is also a state where InLoop is true

Exercise 2.10. (MG) Consider the following board, which represents the
initial state of the puzzle Peg Solitaire:

All the positions in the board, except the one in the middle, are occupied by
pegs, denoted by a black dot. A move consists of ‘jumping’ a peg over an
adjacent peg in the same row or column into a hole, and removing the peg
that was jumped over from the board (thereby reducing the number of pegs
on the board by one). The puzzle is to find a sequence of moves, starting
from the above configuration, to a configuration consisting of just one peg in
the middle:

Describe how you could formulate Peg Solitaire as a model checking problem.
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Exercise 2.11. (MG) Consider the following 2-thread program, JM1:

Thread 1 Thread 2
0 lock ` 0 lock `
1 x := 1 1 x := 2
2 unlock ` 2 unlock `
3 3

where lock ` only proceeds if ` = 0, and sets ` = 1, and unlock ` sets ` = 0
(so it’s the same as ` := 0).

1. Draw the computation tree of states 〈pc1, pc2, `, x〉 of JM1 starting at
state 〈0, 0, 0, 0〉 (that is, pc1 = 0 ∧ pc2 = 0 ∧ ` = 0 ∧ x = 0).
Let AP contains all atomic properties of the form �� ��c = v , which mean
state component c has value v.

2. Explain the meaning of each of the following LTL properties and say
whether it is true.

(a) F
�� ��pc1 = 3

(b) G
(�� ��` = 1 → F

�� ��` = 0
)

(c) G
(�� ��pc1 = 2 → X

�� ��pc1 = 3
)

(d) F
(�� ��pc1 = 1 ∧

�� ��pc2 = 1
)

(e) G
(�� ��pc1 = 3 → G

�� ��pc1 = 3
)

3. Explain the meaning of each of the following CTL properties and say
whether it is true

(a) E F
�� ��pc1 = 3

(b) E F A F
�� ��x = 1

(c) E F
(�� ��` = 0 ∧

�� ��x = 1
)

(d) E
(�� ��` = 0 U

�� ��x = 2
)

4. Explain the meaning of each of the following CTL∗ properties and say
whether it is true
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(a) A
((

F G
�� ��` = 0

)
∨ F

�� ��x = 2
)

(b) E
((

X
�� ��pc1 = 1

)
∧ F

�� ��pc1 = 3
)

(c) A
((

X
�� ��pc1 = 1

)
→ F

�� ��pc1 = 3
)

(d) A
(

G
(�� ��pc1 = 1 → X G

�� ��x = 1
))

Exercise 2.12. Consider an aquarium filled with fish labelled with integers
≥ 2, where several fish can have the same label. Fish swim around, and when
a fish labelled with k meets a fish labelled with n, it eats it when k divides
n.

1. Devise a state space and transition relation to represent the behaviour
of the aquarium.

2. Write down a predicate on your state space that characterises peace
amongst the fish.
Hint: This is a concurrent version of Eratosthenes’ sieve for the γ-
calculus, via the Chemical Abstract Machine.

3 LTL
Exercise 3.1. (DM, E) Explain the difference between G F p and F G p, for
an atomic property p. Do they express the same property? Do they imply
each other?

Exercise 3.2. (DM, E) Suppose halt, power_on, deadlock, and enabled
are atomic propositions. Provide LTL formulae that capture the essence of
the following temporal properties, or argue why they cannot be captured as
LTL formulae:

1. “If the power is on, then it is always the case that the system will
eventually halt”.

2. “The machine will eventually deadlock or halt”.

3. “If the power is on and the system is enabled then the machine will
deadlock infinitely often”.
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4. “If the machine deadlocks then the power will eventually be turned
off”.

5. “If the power is on then it is possible for the machine to get to a state
where it is not enabled and thereafter deadlocked”.

6. “The machine will always deadlock infinitely often until the power is
turned off”.

Exercise 3.3. (DM, M) Suppose M is the following model:

• States are taken to be the natural numbers strictly less than 6, i.e.
S = {0, 1, 2, 3, 4, 5}. The initial state is 0.

• The transition relation is → = {(s, t) | s− t ≤ 3 for all s, t ∈ S}. Here
s− t is a truncating subtraction on the natural numbers with cutoff
0, so 3 − 5 = 0, and 3 − 1 = 2 (i.e. if t is greater than or equal to s,
then s− t = 0, otherwise subtraction behaves as one would expect).

• If AP = {e, o} is the set of atomic propositions, then the labelling
function L : S → AP is given by:

L(s) = e if s is even, or L(s) = o otherwise

Draw out the model, and then show or refute the following:

1. Show that M is a valid model, in that it is right-serial, i.e. for every
s ∈ S there exists a t ∈ S such that s→ t.

2. Exhibit a path π in M such that π |= G e.

3. Exhibit a path π in M such that π |= G (e → X o).

4. Exhibit a path π in M such that π |= F (o ∧ X e).

Exercise 3.4. (DM, E) Define bi-implication φ1 ↔ φ2 as a derived con-
nective. Derive a precise meaning for π |= φ1 ↔ φ2.

Exercise 3.5. (DM, M) Define the release temporal modality φ1 R φ2 as
the dual of the until temporal modality, that is:

φ1 R φ2
def
= ¬((¬φ1) U (¬φ2))

Describe in words an intuitive semantics for the release modality. Derive a
precise meaning for π |= φ1 R φ2.
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Exercise 3.6. (DM, M) Define the weak until temporal modality φ1 WU φ2

as:

φ1 WU φ2
def
= (φ1 U φ2) ∨ G φ1

Describe in words an intuitive semantics for the weak until modality. Derive
a precise meaning for π |= φ1 WU φ2.

Exercise 3.7. (DM, H) Extend LTL with past temporal connectives:
G−1 φ, F−1 φ, X−1 φ, and φ1 U−1 φ2. Describe any changes to the notion of
model that you must make to accommodate these past connectives. Derive
precise meanings for π |= G−1 φ, π |= F−1 φ, and so on.

Exercise 3.8. (DM, M) Define a notion of semantic equivalence for LTL
formulae, φ ≡ ψ, by:

φ1 ≡ φ2
def
= ∀M.∀π ∈ M. ((M, π |= φ1) ↔ (M, π |= φ2))

Show that this “equivalence” is indeed an equivalence relation, by demon-
strating that it is reflexive, symmetric, and transitive.

Exercise 3.9. (DM, M) Show the following semantic equivalences hold (where
φ and ψ are arbitrary LTL formulae):

1. > ∨ φ ≡ >

2. φ1 ∧ φ2 ≡ φ2 ∧ φ1

3. ¬(φ1 ∨ φ2) ≡ (¬φ1) ∧ (¬φ2)

Exercise 3.10. (DM, H) Show the following semantic equivalences hold
(where φ and ψ are arbitrary LTL formulae):

1. ¬(X φ) ≡ X (¬φ)

2. F (φ1 ∨ φ2) ≡ (F φ1) ∨ (F φ2)

3. G (φ1 ∨ φ2) ≡ (G φ1) ∧ (G φ2)

Exercise 3.11. (DM, H) Define an ordering on LTL formulae, φ1 � φ2, by:

φ1 � φ2
def
= ∃φ′. φ1 ∨ φ′ ≡ φ2
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1. Show that this ordering is well-defined with respect to semantic equiv-
alence. That is, if φ1 ≡ φ2 and φ3 ≡ φ4 then φ1 � φ3 implies φ2 � φ4.

2. Show that φ � > and ⊥ � φ for all LTL formulae φ.

3. Show that the ordering is a preorder, that is, it is reflexive and transi-
tive.

Exercise 3.12. (DM, M) Define a notion of validity for LTL formulae, |= φ,
by:

|= φ
def
= ∀M.∀π ∈ M.M, π |= φ

Show that if φ ≡ > then |= φ. Derive as a consequence of this fact that
|= φ ∨ ¬φ is an LTL validity.

Exercise 3.13. (DM, H) Show:

1. If |= φ1 ∧ φ2 then |= φ1, and also |= φ2.

2. If |= φ1 and |= φ2 then |= φ1 ∧ φ2.

3. If |= φ1 then |= φ1 ∨ φ2.

4 CTL
Exercise 4.1. (DM, E) Suppose there are five philosophers sat around a
table. Write philosopher_1_eats to assert that the first philosopher is
eating, philosopher_2_eats to assert that the second philosopher is eating,
and so on and so forth. Express the following claims about the state of the
philosophers as CTL formulae:

1. “Philosopher 2 is the first philosopher to eat”.

2. “Whenever philosopher 4 has finished eating, he cannot eat again until
philosopher 1 has finished”.

3. “Philosophers 5 and 3 will never eat at the same time”.

Exercise 4.2. (DM, E) Suppose p and q are atomic propositions. Provide
natural language translations for the following CTL formulae:

1. E (p U q)
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2. A (G p)

3. E F (p → A G q)

Exercise 4.3. (DM, E) Write a CTL formula that expresses the fact that
deadlock never occurs.

Exercise 4.4. (DM, M) Suppose M is the following model:

• States are taken to be the natural numbers strictly less than 6, i.e.
S = {0, 1, 2, 3, 4, 5}. The initial state is 0.

• The transition relation is → = {(s, t) | for all s ∈ S, t ∈ S}, i.e. all
states may transition to any other state, with the underlying graph of
the transition relation being fully connected.

• The set of atomic propositions AP = S ∪ {e, o} with the labelling
function L : S → P(AP ) given by:

L(s) = {s, e} if s is even, or L(s) = {s, o} otherwise

Note that the labelling function labels every state s with its own
“name”, allowing us to refer to an explicit state within formulae.

Show (or refute) the following:

1. Show that M is a valid model, in that it is right-serial.

2. Show how one can encode in CTL the following claim: “every path
beginning in state 3 has an infinite number of ‘e’ labels along it”.

3. Show how one can encode in CTL the following claim: “beginning in
state 1 it is possible to eventually reach state 1 again using a path that
passes through state 2”.

4. Show 0 |= A G (1 → E F (2 ∧ e)).

Exercise 4.5. (DM, M) Define the existential weak until temporal modal-
ity E (ψ1 WU ψ2), by:

E (ψ1 WU ψ2)
def
= E (ψ1 U ψ2) ∨ E G ψ1

Describe in words an intuitive semantics for the existential weak until modal-
ity. Derive a precise meaning for s |= E (ψ1 WU ψ2).
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Exercise 4.6. (DM, H) Show s |= A G A F p if and only if ∀π ∈ Paths(s). π[i] |=
p for infinitely many i.

Exercise 4.7. (DM, M) Show that semantic equivalence ψ1 ≡ ψ2 is an
equivalence relation, i.e. that it is reflexive, symmetric, and transitive.

Exercise 4.8. (DM, M) Show that if ψ1 ≡ ψ2 and ψ3 ≡ ψ4 then:

• ψ1 ∧ ψ3 ≡ ψ2 ∧ ψ4

• ψ1 → ψ3 ≡ ψ2 → ψ4

• A (ψ1 U ψ3) ≡ A (ψ2 U ψ4)

That is, semantic equivalence commutes with the structure of formulae.

Exercise 4.9. (DM, E) Show ¬¬ψ ≡ ψ, i.e. that negation is involutive.

Exercise 4.10. (DM, M) Show ψ1 ∨ (ψ2 ∧ ψ3) ≡ (ψ1 ∨ ψ2) ∧ (ψ1 ∨ ψ3), i.e.
that disjunction distributes over conjunction.

Exercise 4.11. (DM, H) Show that E F (ψ1 ∨ ψ2) and (E F ψ1) ∨ (E F ψ2)
are semantically equivalent.

Exercise 4.12. (DM, E) Show that ψ1∧ψ2 and ψ1∨ψ2 are not semantically
equivalent.

Exercise 4.13. (DM, H) Show that A F (ψ1 ∨ ψ2) and (A F ψ1) ∨ (A F ψ2)
are not semantically equivalent.

5 CTL model checking
Exercise 5.1. (DM, H) Prove that every CTL formula has an equivalent
Existential Normal Form (ENF) formula. Sketch a recursive algorithm, based
on your proof, that converts a CTL formula into its ENF equivalent.

Does the size of a formula increase or decrease when converted to ENF
with your translation? Speculate on how this may affect the perennial LTL
vs. CTL debate.

Exercise 5.2. (DM, E) Convert the following formulae into Existential Nor-
mal Form:
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1. A F (ψ1 ∨ ψ2)

2. > ∨ ((E F ⊥) ∧ ψ)

3. F (G (ψ1 → A F ψ2))

Exercise 5.3. (DM, H) Show that E (ψ1 U ψ2) satisfies an expansion law,
in that:

E (ψ1 U ψ2) ≡ ψ2 ∨ (ψ1 ∧ E X E (ψ1 U ψ2))

Exercise 5.4. (DM, H) Show that E G Φ satisfies an expansion law, in
that:

E G ψ ≡ ψ ∧ E X E G ψ

Exercise 5.5. (DM, E) Show that if ψ1 ≡ ψ2 then Sat(ψ1) = Sat(ψ2) (in a
fixed model, M).

Exercise 5.6. (DM, E) Describe Sat(ψ1 → ψ2) and Sat(⊥) (in a fixed
model, M).

Exercise 5.7. (DM, M) Suppose M is the following model:

• States are taken to be the natural numbers strictly less than 6, i.e.
S = {0, 1, 2, 3, 4, 5}. The initial state is 0.

• The transition relation is → = {(s, t) | for all s ∈ S, t ∈ S}, i.e. all
states may transition to any other state, with the underlying graph of
the transition relation being fully connected.

• The set of atomic propositions AP = {e, o} with the labelling function
L : S → P(AP ) given by:

L(s) = {e} if s is even, or L(s) = {o} otherwise

Compute the following:

1. Convert A G (e → E X o) into Existential Normal Form.

2. Compute the satisfaction-set of the Existential Normal Form formula,
obtained above, in model M using the recursive labelling algorithm
presented in lectures. Fully explain your working.

3. Show, or refute, the claim that M, 0 |= A G (e → E X o).
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6 NuSMV case studies
As a first step in becoming familiar with NuSMV, replay some of the NuSMV
model checking examples, provided in lectures, on your own machine. Make
sure you try both the NuSMV interactive and batch (command-line) modes.
Use the interactive mode to generate example execution traces for all of the
examples.

When familiar with the use of NuSMV, try the following exercises. Note
that in all cases aspects of the scenario being modelled are intentionally
left vague. Correctly modelling a particular scenario is as much an art as
a science, and in each case you should provide arguments why your SMV
models correctly capture the scenario at hand.

Exercise 6.1. (DM, H) Suppose Cambridgeshire County Council employ
you to ensure that all traffic lights in the county are “safe”. To check that
you are qualified for the role, as a first step they wish you to model the
interaction of a set of traffic lights at a simple crossroads with no pedestrian
crossings.

In particular, in this simplified scenario, two roads–one heading north-
south, and the other east-west–meet and the flow of traffic is mediated by a
set of traffic lights. In the United Kingdom, traffic lights progress from red
(meaning stop), to red-amber (meaning prepare to go), to green (meaning
go), to amber (meaning prepare to stop), back to red.

Complete the following:

1. Describe some plausible properties in natural language that this set of
traffic lights should possess, to convince Cambridgeshire County Coun-
cil that the traffic lights are “safe” for deployment on public roads.

2. Model the traffic lights in NuSMV, using the SMV modelling language.
Argue why your formal model correctly captures the scenario described
above, and describe any assumptions made when modelling the traffic
lights in NuSMV, if any.

3. Translate two of your natural language properties, described above,
into LTL and show that your implementation meets these properties,
using NuSMV’s LTL model checking facilities.

Exercise 6.2. (DM, H) Recall the following chemical reactions from Dr. Kasper’s

16



experiments, described previously:
2O −→ O2

C +O −→ CO

2C +O2 −→ 2CO

C +O2 −→ CO2

Dr. Kasper would like to know if, given a certain number of input carbon
and oxygen atoms, there is any way for the contents of his reaction vessel
to progress to a state where it contains three molecules of CO2. Model
the contents of the reaction vessel in NuSMV, assuming that the number of
atoms and molecules of each type never exceeds 32. Use NuSMV’s LTL model
checking facilities to provide an answer to the question above. Describe any
assumptions made when modelling the chemical reactions in NuSMV, if any.
Exercise 6.3. (DM, H) Impressed with your earlier success modelling a
simple crossroads, Cambridgeshire County Council now request that you es-
tablish the safety of a more complex traffic lights arrangement. A single lane
tunnel has traffic lights at both ends. Each traffic light has sensors which
detect whether a car is waiting at the lights. Provided the tunnel is clear
of traffic, a traffic light with cars waiting by it will eventually turn “green”,
allowing the waiting traffic through the tunnel. The state of the lights does
not change unless there is waiting traffic.

Model this scenario in NuSMV. Establish, via NuSMV’s LTL model
checking facilities, that your model does not permit traffic waiting at a traffic
light to “go” whilst cars are passing through the tunnel in the opposite direc-
tion. Argue why your formal model correctly captures the scenario described
above, and describe any assumptions made when modelling the traffic lights
in NuSMV, if any.
Exercise 6.4. (DM, M) Recall the Matache Cargo Company’s haulage net-
work, mentioned previously. Model the movement of the goods M and R
through this network in NuSMV, and establish by CTL model checking that
it is possible for both goods to be delivered to Edinburgh from their starting
locations. (In NuSMV, use the CTLSPEC block command embedded in an
SMV source file, or the check_ctlspec command in interactive mode, to
model check a CTL formula.

Can you use NuSMV to automatically generate a series of movements for
the two goods through the network so that they will eventually be delivered
to Edinburgh? How?
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Exercise 6.5. (DM, M) NuSMV’s non-determinism can be used to check
the correctness of purely combinatorial circuits (i.e. circuits with no state).
Here, the use of NuSMV “degenerates” to using the tool to merely check all
possible truth assignments to the inputs of a circuit.

Recall that the truth table for a half-adder circuit is (where A and B are
inputs and C and S are outputs):

A B C S
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 0

Recall also that a half-adder circuit can be implemented as a combination of
an XOR and an AND gate. Write a NuSMV module implementing a half-
adder in terms of an XOR and AND gate, and provide 4 LTL formulae that
serve to demonstrate the correctness of your implementation, based on the
truth table above. Use NuSMV’s LTL model checking facilities to show that
your half-adder module correctly implements a half-adder circuit.

7 Miscellaneous
Exercise 7.1. (DM, E) Suppose p and q are atomic propositions. In each
of the two cases below, find a pair of LTL and CTL formulae that correctly
capture the claims:

1. “p will never happen”.

2. “Whenever p happens, eventually q will happen”.

Exercise 7.2. (DM, H) Suppose p is an atomic proposition. Show that
the LTL formula F G p and the CTL formula A F A G p describe different
properties.

Hint: find a model that separates the two properties, in that one holds
and the other does not in that particular model.

Exercise 7.3. (DM, H) Recall the grammar of CTL∗ state and path formulae
from the lecture slides. Give plausible definitions, based on those for LTL
and CTL, for the two satisfaction relations s |= ψ and π |= φ where ψ is a
CTL∗ state formula and φ is a CTL∗ path formula.
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