Exercises for Hoare Logic

Jean Pichon-Pharabod

2019/2020

This exercise sheet is based on previous exercise sheets by Kasper Svendsen and by Mike Gordon. Mike Gordon's exercise sheet also contains additional exercises: https://www.cl.cam.ac.uk/teaching/1516/HLog+ModC/ MJCG-HL-Exercises.pdf.

Recommended exercises metatheory: 1, 22; practice: 2, 9, 35; specifications: 24, 25, 27; invariants: 12, 36, 37, 41; representation predicates: 47.

All the proof invariant exercises that do not involve separation logic can be formalised in Why3: http://why3.lri.fr/try/.
Exercise 1. Give a program C such that the following partial correctness triple holds, or argue why such a C cannot exist:

$$
\{X=x \wedge Y=y \wedge x \neq y\} C\{x=y\}
$$

Exercise 2. Show that the alternative assignment axiom

$$
\overline{\{P\} X:=E\{P[E / X]\}}
$$

is unsound by providing P and E such that

$$
\neg(\models\{P\} X:=E\{P[E / X]\})
$$

Exercise 3 (Soundness of Floyd's assignment axiom). Show that the alternative assignment axiom

$$
\frac{x \notin F V(P)}{\{P\} X:=E\{\exists x \cdot E[x / X]=X \wedge P[x / X]\}}
$$

is sound.

Exercise 4 (Relative completeness of Floyd's assignment axiom). Show that if we replace the assignment axiom by the following alternative assignment axiom

$$
\frac{x \notin F V(P)}{\{P\} X:=E\{\exists x \cdot E[x / X]=X \wedge P[x / X]\}}
$$

then the original assignment axiom is derivable.
Exercise 5. Show the soundness of the following rule:

$$
\frac{\vdash\{P\} C\{Q\} \quad \vdash\{P\} C\{R\}}{\vdash\{P\} C\{Q \wedge R\}}
$$

Exercise 6. Show the soundness of the following rule:

$$
\frac{\vdash\{P\} C\{R\} \quad \vdash\{Q\} C\{R\}}{\vdash\{P \vee Q\} C\{R\}}
$$

Exercise 7. Give a sound and relatively complete rule for a repeat C until B command (which is syntactic sugar for C; while not B do C).

Exercise 8. Prove that the following backwards reasoning sequenced assignment rule is derivable from the normal proof rules of Hoare logic:

$$
\frac{\{P\} C\{Q[E / X]\}}{\{P\} C ; X:=E\{Q\}}
$$

Exercise 9. Prove or give a counterexample for the following triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y\} \\
& X:=X+Y ; Y:=X-Y ; X:=X-Y \\
& \{Y=x \wedge X=y\}
\end{aligned}
$$

Exercise 10. Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y \wedge Y \geq 0\} \\
& \text { while } Y>0 \text { do }(X:=X+1 ; Y:=Y-1) \\
& \{X=x+y\}
\end{aligned}
$$

Exercise 11. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 12. Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y \wedge Y \geq 0\} \\
& Z:=0 \\
& A:=1 \\
& \text { while } A \leq Y \text { do }(Z:=Z+X ; A:=A+1) \\
& \{Z=x \times y\}
\end{aligned}
$$

Exercise 13. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 14. Recall that

$$
\begin{aligned}
& \vdash \forall x \cdot \operatorname{gcd}(x, x)=x \\
& \vdash \forall x, y \cdot \operatorname{gcd}(x, y)=\operatorname{gcd}(y, x) \\
& \vdash \forall x, y \cdot x>y \Rightarrow \operatorname{gcd}(x, y)=\operatorname{gcd}(x-y, y)
\end{aligned}
$$

Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y \wedge x>0 \wedge y>0\} \\
& \text { while } X \neq Y \text { do }(\text { if } X>Y \text { then } X:=X-Y \text { else } Y:=Y-X) \\
& \{X=Y \wedge X=\operatorname{gcd}(x, y)\}
\end{aligned}
$$

Exercise 15. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 16. Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y\} \\
& Z:=0 ; \\
& \text { while not }(X=0) \text { do } \\
& \qquad\left(\begin{array}{l}
\text { if } X \bmod 2=1 \text { then } Z:=Z+Y \text { else skip }) ; \\
Y:=Y \times 2 \\
X:=X \operatorname{div} 2
\end{array}\right) \\
& \{Z=x \times y\}
\end{aligned}
$$

Hint: $X=(X \operatorname{div} 2+X \operatorname{div} 2+X \bmod 2)$.

Exercise 17. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 18 (Fast exponentiation). Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge N=n \wedge n \geq 0\} \\
& Z:=1 ; \\
& \text { while } N>0 \text { do } \\
& \qquad\left(\begin{array}{l}
(\text { if } N \bmod 2=1 \text { then } Z:=Z \times X \text { else skip }) ; \\
N:=N \operatorname{div} 2 ; \\
X:=X \times X
\end{array}\right) \\
& \left\{Z=x^{n}\right\}
\end{aligned}
$$

Exercise 19. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 20 (Turing's large routine). Give a proof outline, and in particular loop invariants, for the following partial correctness triple:

$$
\begin{aligned}
& \{N=n \wedge n \geq 0\} \\
& R:=0 \\
& U:=1 ; \\
& \text { while } R<N \text { do } \\
& \qquad\left(\begin{array}{l}
S:=1 ; V:=U \\
\text { while } S \leq R \text { do } \\
(U:=U+V ; S:=S+1) \\
R:=R+1
\end{array}\right) \\
& \{U=\operatorname{fact}(n)\}
\end{aligned}
$$

Exercise 21. Give variants to obtain a total correctness triple for the same pre- and postcondition and command.

Exercise 22. Prove soundness of the separation logic heap assignment rule by proving that

$$
\models\left\{E_{1} \mapsto t\right\}\left[E_{1}\right]:=E_{2}\left\{E_{1} \mapsto E_{2}\right\}
$$

Exercise 23. Formalise and prove that if $X \mapsto t_{1} \wedge Y \mapsto t_{2}$, then X and Y alias, and t_{1} and t_{2} are equal.

Exercise 24. Give a triple specifying that a command C orders the values of X and Y, so that the smaller value ends in X, and the greater value in Y.

Exercise 25. Give a triple specifying that a command C computes into Z the sum of X and Y if R is 0 , and their product otherwise.

Exercise 26. Give a triple specifying that a command C sorts a list starting at X.

Exercise 27. Give a triple specifying that a command C concatenates a list starting at X with itself.

Exercise 28. Give a triple specifying that a command C appends the value of V to the start of a list starting at X if R is 0 , and to the end of a list at $Y($ not $X)$ otherwise.

Exercise 29. Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{N=n \wedge n \geq 0 \wedge X=0 \wedge Y=0\} \\
& \text { while } X<N \text { do }(X:=X+1 ; Y:=Y+X) \\
& \left\{Y=\sum_{i=1}^{n} i\right\}
\end{aligned}
$$

Exercise 30. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 31 (Euclid's algorithm). Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

$$
\begin{aligned}
& \{X=x \wedge Y=y\} \\
& R:=X ; \\
& Q:=0 ; \\
& \text { while } Y \leq R \text { do } \\
& \quad(R:=R-Y ; Q:=Q+1) \\
& \{x=R+y \times Q \wedge R<y\}
\end{aligned}
$$

Exercise 32. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 33 (Divisibility by 13). Give a proof outline, and in particular a loop invariant, for the following partial correctness triple:

```
\(\{X=x \wedge X \geq 0\}\)
while \(X \geq 52\) do
    \(X:=(X \operatorname{div} 10)+4 \times(X \bmod 10)\);
if \(X=0\) or \(X=13\) or \(X=26\) or \(X=39\) then \(Y:=1\) else \(Y:=0\)
\(\{Y=1 \Leftrightarrow x \quad \bmod 13=0\}\)
```

Exercise 34. Give a variant to obtain a total correctness triple (you might need to strengthen the precondition and the invariant).

Exercise 35. Give a proof outline for the following separation logic partial correctness triple:

```
\(\{\operatorname{list}(X, \alpha)\}\)
if \(X=\) null then \(Y:=\) null
else \((E:=[X] ; P:=[X+1] ; Y:=\operatorname{alloc}(E, P) ; \operatorname{dispose}(X) ; \operatorname{dispose}(X+1))\)
\(\{\operatorname{list}(Y, \alpha)\}\)
```

Exercise 36. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha)\} \\
& Y:=\text { null; } \\
& \text { while } X \neq \text { null do } \\
& \quad(Z:=[X+1] ;[X+1]:=Y ; Y:=X ; X:=Z) \\
& \{\operatorname{list}(Y, \operatorname{rev}(\alpha))\}
\end{aligned}
$$

where rev is mathematical list reversal, so that

$$
\begin{aligned}
\operatorname{rev}([]) & =[] \\
\operatorname{rev}([h]) & =[h] \\
\operatorname{rev}(\alpha++\beta) & =\operatorname{rev}(\beta)++\operatorname{rev}(\alpha)
\end{aligned}
$$

Exercise 37. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha)\} \\
& N:=0 ; \\
& Y:=X ; \\
& \text { while } Y \neq \text { null do } \\
& \quad(N:=N+1 ; Y:=[Y+1]) \\
& \{\operatorname{list}(X, \alpha) \wedge N=\operatorname{length}(\alpha)\}
\end{aligned}
$$

Exercise 38. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

```
\(\{N=n \wedge e m p\}\)
if \(N \leq 0\) then \(X:=\) null
\[
\left(\begin{array}{l}X:=\operatorname{alloc}(0, \text { null }) ; \\ P:=X ; \\ I:=1 ; \\ \text { while } I<N \text { do } \\ (Q:=\operatorname{alloc}(I, \text { null }) ;[P+1]:=Q ; P:=Q ; I:=I+1)\end{array}\right)
\]
\(\{\operatorname{list}(X, 0:: \ldots:: n-1::[]) \wedge N=n\}\)
```

Exercise 39. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

```
\(\{\operatorname{list}(X, \alpha)\}\)
\(Y:=\operatorname{alloc}(0\), null \() ; Y^{\prime}:=Y\);
\(Z:=\operatorname{alloc}(0\), null \() ; Z^{\prime}:=Z\);
while \(X \neq\) null do
    \(\binom{\left[Y^{\prime}+1\right]:=X ; Y^{\prime}:=X ; X:=[X+1] ;}{\) if \(X \neq\) null then \(\left(\left[Z^{\prime}+1\right]:=X ; Z^{\prime}:=X ; X:=[X+1]\right)\) else skip }
\(\left[Y^{\prime}+1\right]:=\) null;
\(\left[Z^{\prime}+1\right]:=\) null;
\(U:=[Y+1] ; \operatorname{dispose}(Y) ; \operatorname{dispose}(Y+1) ; Y:=U ;\)
\(U:=[Z+1] ; \operatorname{dispose}(Z) ; \operatorname{dispose}(Z+1) ; Y:=U\);
\(\left\{\exists \alpha_{1}, \alpha_{2} . \operatorname{length}(\alpha)=\operatorname{length}\left(\alpha_{1}\right)+\operatorname{length}\left(\alpha_{2}\right) \wedge\left(\operatorname{list}\left(Y, \alpha_{1}\right) * \operatorname{list}\left(Z, \alpha_{2}\right)\right)\right\}\)
```

Exercise 40. Give a proof outline, and in particular a loop invariant, for the same separation logic partial correctness triple, but with the following postcondition:
$\left\{\exists \alpha_{1}, \alpha_{2}\right.$. $\left.\operatorname{shuffle}\left(\alpha, \alpha_{1}, \alpha_{2}\right) \wedge\left(\operatorname{list}\left(Y, \alpha_{1}\right) * \operatorname{list}\left(Z, \alpha_{2}\right)\right)\right\}$, where

$$
\begin{aligned}
& \operatorname{shuffle}([],[],[]) \stackrel{\text { def }}{=} \\
& \operatorname{shuffle}(x:: \alpha, \beta, \gamma) \stackrel{\text { def }}{=}\left(\exists \beta^{\prime} . \beta=x:: \beta^{\prime} \wedge \operatorname{shuffle}\left(\alpha, \beta^{\prime}, \gamma\right)\right) \vee \\
&\left(\exists \gamma^{\prime} \cdot \gamma=x:: \gamma^{\prime} \wedge \operatorname{shuffle}\left(\alpha, \beta, \gamma^{\prime}\right)\right)
\end{aligned}
$$

Exercise 41. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha) \wedge \operatorname{sorted}(\alpha) \wedge Y=y\} \\
& \text { if } X=\text { null then } X:=\operatorname{alloc}(Y \text {, null }) \\
& \text { else }\left(\begin{array}{l}
P:=X ; E:=[P] ; \\
\text { if } Y \leq E \text { then } X:=\operatorname{alloc}(Y, X) \\
\text { else }\left(\begin{array}{l}
Q:=P ; \\
\text { while } E<Y \text { and } P \neq \text { null do } \\
\left(\begin{array}{l}
Q:=P ; P:=[P+1] ; \\
\text { if } P \neq \text { null then } E:=[P] \text { else skip }
\end{array}\right. \\
R:=\operatorname{alloc}(Y, P) ; \\
\\
Q+1]:=R
\end{array}\right.
\end{array}\right) \\
& \left\{\begin{array}{ll}
\alpha=\alpha_{1}+\alpha_{2} \wedge \\
\exists \alpha_{1}, \alpha_{2} . & \left(\forall i .0 \leq i<\text { length }\left(\alpha_{1}\right) \Rightarrow \alpha_{1}[i]<y\right) \wedge \\
& \left(\forall i .0 \leq i<\text { length }\left(\alpha_{2}\right) \Rightarrow y \leq \alpha_{2}[i]\right) \wedge \\
& \operatorname{list}\left(X, \alpha_{1}+[y]+\alpha_{2}\right)
\end{array}\right\}
\end{aligned}
$$

Exercise 42. Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:
$\{\operatorname{list}(X, \alpha)\}$
if $X=$ null then $Y:=$ null
else $\left(\begin{array}{l}P:=X ; E:=[P] ; Y:=\operatorname{alloc}(E, \text { null }) ; Q:=Y ; P:=[X+1] ; \\ \text { while } P \neq \text { null do } \\ \left(E:=[P] ; Q_{2}:=\operatorname{alloc}(E, \text { null }) ;[Q+1]:=Q_{2} ; Q:=Q_{2} ; P:=[P+1]\right)\end{array}\right)$
$\{\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \alpha)\}$
Exercise 43 (Index search). Give a proof outline, and in particular a loop
invariant, for the following separation logic partial correctness triple:

$$
\begin{aligned}
& \left\{X=x \wedge x \in_{\text {list }} \alpha \wedge \operatorname{list}(Y, \alpha)\right\} \\
& I:=0 ; Z:=Y ; S:=0 \\
& \text { while } S=0 \text { do } \\
& \left.\qquad \begin{array}{l}
E:=[Z] ; \\
\text { if } E=X \text { then } \\
S:=1 \\
\text { else } \\
\quad(Z:=[Z+1] ; I:=I+1)
\end{array}\right) \\
& \{\alpha[I]=x \wedge \operatorname{list}(Y, \alpha)\}
\end{aligned}
$$

where $\epsilon_{\text {list }}$ is list membership:

$$
\begin{gathered}
x \in_{\text {list }}[] \stackrel{\text { def }}{=} \perp \\
x \in_{\text {list }}(y:: \beta) \stackrel{\text { def }}{=}(x=y) \vee\left(x \in_{\text {list }} \beta\right)
\end{gathered}
$$

Exercise 44 (Prefix testing). Give a proof outline, and in particular a loop invariant, for the following separation logic partial correctness triple:

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta)\} \\
& P:=X ; Q:=Y ; S:=1 ; \\
& \text { while } S=1 \text { and } P \neq \text { null and } Q \neq \text { null do } \\
& \qquad\left(\begin{array}{l}
E:=[P] ; F:=[Q] ; \\
\text { if } E=F \text { then } \\
(P:=[P+1] ; Q:=[Q+1]) \\
\text { else } \\
S:=0
\end{array}\right. \\
& \{\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta) \wedge(S=0 \Leftrightarrow \neg(\alpha \sqsubseteq \beta \vee \beta \sqsubseteq \alpha))\}
\end{aligned}
$$

where \sqsubseteq is prefix relation:

$$
\begin{aligned}
{[] } & \sqsubseteq \beta \stackrel{\text { def }}{=} \top \\
h:: \alpha & \sqsubseteq \beta \stackrel{\text { def }}{=} \exists \gamma \cdot \beta=h:: \gamma \wedge \alpha \sqsubseteq \gamma
\end{aligned}
$$

Exercise 45 (Substring testing). Give a proof outline, and in particular a
loop invariant，for the following separation logic partial correctness triple：

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta)\} \\
& S:=1 ; P:=X ; Q:=Y ; \\
& \text { while }(S=1 \text { and } P \neq \text { null }) \text { do } \\
& \qquad\left(\begin{array}{l}
\text { if } Q=\text { null then } S:=0 \\
\text { else } \\
\qquad\left(\begin{array}{l}
E:=[P] ; F:=[Q] ; \\
\text { if } E=F \\
\text { else skip; } \\
Q:=[Q+1]
\end{array}\right. \\
\{(S=0 \Leftrightarrow(\alpha ⿷ \beta)) \wedge(\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta))\}
\end{array}\right.
\end{aligned}
$$

where 匹 is the（not－necessarily－contiguous）substring relation：

$$
\begin{aligned}
& {[] ⿷ \beta \stackrel{\text { def }}{=} \top } \\
& h:: \alpha \llbracket \beta \stackrel{\text { def }}{=}(\exists \gamma \cdot \beta=h:: \gamma \wedge \alpha \llbracket \gamma) \vee(\exists i, \gamma \cdot \beta=i:: \gamma \wedge h:: \alpha 匹 \gamma)
\end{aligned}
$$

Exercise 46 （Bubble sort）．Give a proof outline，and in particular loop invariants，for the following separation logic partial correctness triple：

$$
\begin{aligned}
& \{\operatorname{list}(X, \alpha)\} \\
& D:=0 ; \\
& \text { while } D=0 \text { do } \\
& \left.\qquad \begin{array}{l}
S:=1 ; P:=X ; \\
\text { while } P \neq \text { null do } \\
\left(\begin{array}{l}
Q:=[P+1] ; \\
\text { if } Q \neq \text { null then } \\
E:=[P] ; F:=[Q] ; \\
\text { if } E \leq F \text { then } \\
P:=Q \\
\text { else } \\
(S:=0 ;[P]:=F ;[Q]:=E)
\end{array}\right. \\
\text { else } \begin{array}{l}
\text { skip } \\
\text { if } S=1 \text { then } D:=1 \text { else skip }
\end{array} \\
\{\exists \beta \text {. sorted }(\beta) \wedge \text { permutation }(\alpha, \beta) \wedge \operatorname{list}(X, \beta)\}
\end{array}\right) ;
\end{aligned}
$$

Exercise 47．Give a representation predicate btree (t, τ) for binary trees， given a mathematical representation $\tau::=$ Leaf \mid Node $n \tau_{1} \tau_{2}$ ，where n is an integer．

Exercise 48. Give a representation predicate $\operatorname{clist}(t, \alpha)$ for circular lists.
Exercise 49. Give a representation predicate $\operatorname{list}^{\prime}(t, \alpha)$ for doubly-linked lists.

Exercise 50. Give a representation predicate $\operatorname{array}(t, \alpha)$ for arrays starting at location t, the contents of which is represented by the mathematical list α.

