Foundations of Computer Science
Lecture #9: Sequences, or Lazy Lists

Anil Madhavapeddy
26th October 2022

‘ Warm-Up I

Question 1: What is the type of this function?
let cf v x = v;;

Out: val cf : 'a -=> 'b -> 'a = <fun>

Question 2: What does (cf y) return?

It returns a constant function.

Question 3: We have the following: let add a b = a + b;;
Use a partial application of add to define an increment function:
In : let increment = ?22?7?

In : let increment = add 1;;

‘ Warm-Up I

What is the type of £?
let £ xy z =x2 (y 2) Step 1: analyze the right-hand side expression

{um&:mmu

Step 2: what are the unknown types?

type (z) : a

return-type (y) : b

return-type (x) : 'C Step 3: set those types.
input-type (y) : 'q Step 4: infer the input types.
input-type (x) : a->'b

type (y) : a->'b Step 5: infer all types.

type (x) : a->'b->'c

type (z) : a

let £ xyv 2z =x 2 (y 2);; Step6:infer function type.

val £ : ('a -=> 'b -> '¢) -=> ('a -> 'b) -> 'a -> 'c

‘ Warm-Up I

Question 4: [s this function tail-recursive? Why?

let rec exists p = function

| [1 -> false

| x::xs -> (p x) || exists p xs
It is...

let rec exists p = function

| [] -> false
| x::xs >
i1f p x then
true else
exists p Xxs

‘Data Streams - IntroI
An example:

perception-action loops (basic building block of autonomy)

m

decision-making and controlW interaction with the world

while(true)
get sensor data
act upon sensor data
repeat

‘Data Streams - IntroI

Sequential programs - examples include: “hi.tvmc&a&mac&”

e Exhaustive search
e search a book for a keyword
* search a graph for the optimal path
e Data processing
* image processing (enhance / compress)
e outlier removal / de-noise

Reactive programs - examples include: ‘\QVQMEM%rLSSQer"
e Control tasks “tntkeractive”
+ flying a plane “closed-Loop’

e robot navigation (obstacle avoidance)
 Resource allocation

e computer processor

 Mobility-on-Demand (e.g. Uber)

Producer

‘A PipelineI

— | Filter | = --- — | Filter | —

Produce sequence of items
Filter sequence In stages

Consume results as needed

Lazy lists join the stages together

Consumer

‘Lazy Lists — or Streams'

Lists of possibly INFINITE length
® clements computed upon demand
® avoids waste if there are many solutions

® Infinite objects are a useful abstraction

In OCaml: implement laziness by delaying evaluation of the tail

In OCamil: ‘streams’ reserved for input/output channels, so
we use term ‘sequences’

Lazy Lists in OCamII

The type unit has one element: empty tuple ()

Uses:

e Can appear in data-structures (e.g., unit-valued dictionary)

* Can be the argument of a function

e Can be the argument or result of a procedure (seen later in course)

Behaves as a tuple, is a constructor, and allowed in pattern matching:

let £ () = .. let £ = function
O -

Expression E not evaluated until the function is applied:
fun () -> £

L‘fuy\ notation enables de_twjec& evaluation!

‘Lazy Lists in OCamII

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x,)) = X

I

val head : 'a seq -> 'a = <fun>

‘Lazy Lists in OCamII

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x,)) = X

I

val head : 'a seq -> 'a = <fun>

let tail (Cons (, xf)) = xf ()
val tail : 'a seq -> 'a seq = <fun>

‘Lazy Lists in OCamII

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x,)) = X
val head : 'a seqg -> 'a = <fun>
let tail (Cons (, xf)) = xf ()

val tail : 'a seq -> 'a seqg®= <fun>

apply x xf to () ko evaluate

[Cons (x, xfg has head x and tail function x f

‘The Infinite Sequence, &, k+1, k+2 I

let rec from k = Cons (k, fun () -> from (k + 1));;
val from : int -> int seq = <fun>

let it from 1;;
val it : int seq = Cons (1, <fun>)

let it tail 1it;;
val it : int seq = Cons (2, <fun>)

tail it;;
- : 1nt seq = Cons (3, <fun>)

Recall: |
let tail (Cons(_, xf)) = xf ();; “FOT'@;Q the evaluakion
val tail : 'a seq -> 'a seqg

‘Consuming a Sequence'

let rec get n s =
if n = 0 then []
else
match s with
| Nil -> []

| Cons (x, xf) -> x ::

Get the first n elements as a list

Xt () forces evaluation

force the List

L

get (n - 1) (xf ())

‘Sample EvaluationI

get 2 (from 6)
= get 2 (Cons (6, fun () -> from (6 + 1)))
= 6 :: get 1 (from (6 + 1))

f e

- 6 :: get 1 (Cons (7, fun () -> from (7 + 1)))

= 6 :: 7 :: get 0 (from (7 + 1))

|
o)}
~

:: get 0 (Cons (8, fun () -> from (8 + 1)))
e o [J []
= [6; 7] -

|
(o)
~

‘Joining Two Sequences'

let rec appendq xg yq =
match xgq with
| Nil -> yqg
| Cons (x, xf) ->
Cons (x, fun () -> appendqg (xf ()) vq)

‘Joining Two Sequences'

let rec appendq xg yq =
match xgq with
| Nil -> yq
| Cons (x, xf) ->
Cons (x, fun () -> appendqg (Xf ()) vq)

A fair alternative. ..
let rec interleave xq yqg =
match xgq with
| Nil -> yg
| Cons (x, xf) ->
Cons (x, fun () -> interleave yq (xf ()))

‘Functionals for Lazy ListsI

let rec filter p = function
| 11 -> [
| x::xs >
i1f p x then
X :: filter p xs
else
filter p xs
val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

We want:

val filterqg : ('a -> bool) -> 'a seq -> 'a seq = <fun>

‘Functionals for Lazy ListsI

filtering

let rec filterqg p = function
| Nil -> Nil
| Cons (x, xf) ->
1if p X then
Cons (x, fun () -> filterqg p (Xf ()))
else

filterq p (xf ()M What happens here?

The infinite sequence x, f(x), f(f(x)),...

let rec iterates f x
Cons (x, fun () -> 1iterates f (f x))

val filterqg : ('a -> bool) -> 'a seq -> 'a seq = <fun>

val iterates : ('a -> 'a) -> 'a -> 'a seq = <fun>

‘Functionals for Lazy ListsI

Example:
val filterqg : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq

> let myseq = iterates (fun x -> x + 1) 1;;
val myseq : int seq = Cons (1, <fun>)

> filterqg (fun x -> x = 1) myseq;;
- : int seq = Cons (1, <fun>)

> filterqg (fun x -> x = 100) myseq;;
— : 1int seq = Cons (100, <fun>)

> filterqg (fun x -> x = 0) myseq;;

‘Reusing Functionals for Lazy Lists'

Same Examples, but with no new functions:

> succ;;

- ¢ int -> int = <fun>

> succ 1; ;W/A(i(ii%g 1 has a bui&%m %unﬁﬁomf
—: 2 = int

> (=) 1 2

- ¢ bool = false

> let myseq = iterates succ 1;;

val myseq : int seq = Cons (1, <fun>)

> filterqg ((=) 1) myseq;;

- : 1nt seq = Cons (1, <fun>)

> filterqg ((=) 100) myseq;;

- : int seq = 100, <fun>)

> filterq ((=) 0) myseqi; w_u function, partially appi&eci

‘Functionals for Lazy ListsI

Example:

val filterqg : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq

val get : int -> 'a seq -> 'a list

> val myseq = iterates (fun x -> x + 1) 1;;

val myseq : int seq Cons (1, <fun>)

> let it = filterqg (fun x -> x mod 2 = 0) myseq;;
val it : int seq = Cons (2, <fun>)

> get 5 1it;;
- ¢ 1int list = [2; 4; 6; 8; 10]

‘Numerical Computations on Infinite Sequences'
find sqrt(a)

)

let nextva x=(a/. x+. x) /. 2.0

‘Numerical Computations on Infinite Sequences'

Aside: Newton-Raphson Method

Series is: So if we want to find sgrt(k) we use:
_ f(@o) 0 _

L1 = To — /(20) x“=k
_ g S xX)=x*—k

Lo = I f’(wl) f()

Ty = 5 J(x) =2x

L4 =

‘Numerical Computations on Infinite Sequences'

Aside: Newton-Raphson Method

Series is: So if we want to find sgrt(k) we use:
T

v]f((;;)) =k

Ty = T1 — j{((zll)) Jx) = x*—k

T3 = 5 J(x) =2x

Ty =

Ty =

1 k
xn+1=5 xn_l_x_

‘Numerical Computations on Infinite Sequences'
find sqri(

&:’ X
v

let nextva x=(a/. x+. x) /. 2.0

Close enough?

let rec within eps = function
| Cons (x, xf) ->
match xf () with
| Cons (Y, Yf) -2
1if abs float (x -. y) <= eps then y
else within eps (Cons (y, vf))

An+1 ::EZ X, +—

‘Numerical Computations on Infinite Sequences'
find sqri(a) -

D

let nextva x=(a/. x+. x) /. 2.0

Close enough?

let rec within eps = function
| Cons (x, xf) ->
match xf () with
| Cons (Y, Yf) -2
1if abs float (x -. y) <= eps then y

else within eps (Cons f . efe
s ((¥, ¥1)) Xo @ thitial quess

Square Roots! /

let root a = within le-6 (iterates (next a) 1.0)

apsitam sequence

> root 3.0;;
- ¢ float = 1.73205080756887719

