
Foundations of Computer Science

Lecture #9: Sequences, or Lazy Lists

Anil Madhavapeddy

26th October 2022

 Warm-Up Warm-Up

Question 2: What does (cf y) return?

Question 1: What is the type of this function?

Out: val cf : 'a -> 'b -> 'a = <fun>

It returns a constant function.

In : let increment = add 1;;

let cf y x = y;;

Question 3: We have the following: let add a b = a + b;;  
Use a partial application of add to define an increment function:

In : let increment = ???

Step 1: analyze the right-hand side expression let f x y z = x z (y z)

Step 2: what are the unknown types?type (z) :
return-type (y) :
return-type (x) :

'a
'b
'c Step 3: set those types.

Step 4: infer the input types.input-type (y) :
input-type (x) :

'a

type (y) :
type (x) :
type (z) :

'a -> 'b

val f : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a

Step 5: infer all types.

function

'a -> 'b -> 'c
'a

What is the type of f?

Step 6: infer function type.let f x y z = x z (y z);;

'a -> 'b

 -> 'c

 Warm-Up Warm-Up

let rec exists p = function
| [] -> false
| x::xs -> (p x) || exists p xs

 Warm-Up Warm-Up

Question 4: Is this function tail-recursive? Why?

It is…

let rec exists p = function
| [] -> false
| x::xs ->
 if p x then
 true else
 exists p xs

Data Streams - IntroData Streams - Intro

perception

actiondecision-making and control interaction with the world

perception-action loops (basic building block of autonomy)

while(true)
get sensor data
act upon sensor data
repeat

An example:

Sequential programs - examples include:

Reactive programs - examples include:
• Control tasks

• flying a plane

• robot navigation (obstacle avoidance)

• Resource allocation

• computer processor

• Mobility-on-Demand (e.g. Uber)

• Exhaustive search

• search a book for a keyword

• search a graph for the optimal path

• Data processing

• image processing (enhance / compress)

• outlier removal / de-noise

“event-triggered”

“interactive”

“closed-loop”

“fully-defined”

Data Streams - IntroData Streams - Intro

A Pipeline

IX Foundations of Computer Science 97

Slide 901

A Pipeline

Producer → Filter → · · · → Filter → Consumer

Produce sequence of items

Filter sequence in stages

Consume results as needed

Lazy lists join the stages together

Two types of program can be distinguished. A sequential program accepts a
problem to solve, processes for a while, and finally terminates with its result. A
typical example is the huge numerical simulations that are run on supercomputers.
Most of our ML functions also fit this model.

At the other extreme are reactive programs, whose job is to interact with the
environment. They communicate constantly during their operation and run for as
long as is necessary. A typical example is the software that controls many modern
aircraft. Reactive programs often consist of concurrent processes running at the
same time and communicating with one another.

Concurrency is too difficult to consider in this course, but we can model simple
pipelines such as that shown above. The Producer represents one or more sources
of data, which it outputs as a stream. The Filter stages convert the input stream to
an output stream, perhaps consuming several input items to yield a single output
item. The Consumer takes as many elements as necessary.

The Consumer drives the pipeline: nothing is computed except in response to
its demand for an additional datum. Execution of the Filter stages is interleaved
as required for the computation to go through. The programmer sets up the data
dependencies but has no clear idea of what happens when. We have the illusion of
concurrent computation.

The Unix operating system provides similar ideas through its pipes that link
processes together. In ML, we can model pipelines using lazy lists.

A Pipeline

Lazy Lists — or Streams

IX Foundations of Computer Science 98

Slide 902

Lazy Lists — or Streams

Lists of possibly INFINITE length

• elements computed upon demand

• avoids waste if there are many solutions

• infinite objects are a useful abstraction

In ML: implement laziness by delaying evaluation of the tail

Lazy lists have practical uses. Some algorithms, like making change, can yield
many solutions when only a few are required. Sometimes the original problem
concerns infinite series: with lazy lists, we can pretend they really exist!

We are now dealing with infinite, or at least unbounded, computations. A po-
tentially infinite source of data is processed one element at a time, upon demand.
Such programs are harder to understand than terminating ones and have more ways
of going wrong.

Some purely functional languages, such as Haskell, use lazy evaluation every-
where. Even the if-then-else construct can be a function, and all lists are lazy. In
ML, we can declare a type of lists such that evaluation of the tail does not occur
until demanded. Delayed evaluation is weaker than lazy evaluation, but it is good
enough for our purposes.

The traditional word stream is reserved in ML parlance for input/output chan-
nels. Let us call lazy lists sequences.

Lazy Lists — or Streams

In OCaml: ‘streams’ reserved for input/output channels, so
we use term ‘sequences’

In OCaml: implement laziness by delaying evaluation of the tail

Lazy Lists in MLLazy Lists in OCaml

The type unit has one element: empty tuple ()

Uses:

• Can appear in data-structures (e.g., unit-valued dictionary)

• Can be the argument of a function

• Can be the argument or result of a procedure (seen later in course)

Behaves as a tuple, is a constructor, and allowed in pattern matching:

let f () = …

fun () -> E

Expression E not evaluated until the function is applied:

fun notation enables delayed evaluation!

let f = function
| () ->

Lazy Lists in MLLazy Lists in OCaml

apply xf to () to evaluate

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x, _)) = x
val head : 'a seq -> 'a = <fun>

let tail (Cons (_, xf)) = xf ()
val tail : 'a seq -> 'a seq = <fun>

IX Foundations of Computer Science 99

Slide 903

Lazy Lists in ML

The empty tuple () and its type unit

Delayed version of E is fn()=>E

datatype 'a seq = Nil sequences

| Cons of 'a * (unit -> 'a seq);

fun head (Cons(x,_)) = x;

fun tail (Cons(_,xf)) = xf();

Cons(x,x f) has head x and tail function x f

The primitive ML type unit has one element, which is written (). This element
may be regarded as a 0-tuple, and unit as the nullary Cartesian product. (Think of
the connection between multiplication and the number 1.)

The empty tuple serves as a placeholder in situations where no information is
required. It has several uses:

• It may appear in a data structure. For example, a unit-valued dictionary
represents a set of keys.

• It may be the argument of a function, where its effect is to delay evaluation.

• It may be the argument or result of a procedure. (See Lect. 12.)

The empty tuple, like all tuples, is a constructor and is allowed in patterns:

fun f () = . . .

In particular, fn() => E is the function that takes an argument of type unit and
returns the value of E as its result. Expression E is not evaluated until the function
is called, even though the only possible argument is (). The function simply delays
the evaluation of E .

Lazy Lists in MLLazy Lists in OCaml

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x, _)) = x
val head : 'a seq -> 'a = <fun>

let tail (Cons (_, xf)) = xf ()
val tail : 'a seq -> 'a seq = <fun>

Lazy Lists in MLLazy Lists in OCaml

apply xf to () to evaluate

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x, _)) = x
val head : 'a seq -> 'a = <fun>

let tail (Cons (_, xf)) = xf ()
val tail : 'a seq -> 'a seq = <fun>

IX Foundations of Computer Science 99

Slide 903

Lazy Lists in ML

The empty tuple () and its type unit

Delayed version of E is fn()=>E

datatype 'a seq = Nil sequences

| Cons of 'a * (unit -> 'a seq);

fun head (Cons(x,_)) = x;

fun tail (Cons(_,xf)) = xf();

Cons(x,x f) has head x and tail function x f

The primitive ML type unit has one element, which is written (). This element
may be regarded as a 0-tuple, and unit as the nullary Cartesian product. (Think of
the connection between multiplication and the number 1.)

The empty tuple serves as a placeholder in situations where no information is
required. It has several uses:

• It may appear in a data structure. For example, a unit-valued dictionary
represents a set of keys.

• It may be the argument of a function, where its effect is to delay evaluation.

• It may be the argument or result of a procedure. (See Lect. 12.)

The empty tuple, like all tuples, is a constructor and is allowed in patterns:

fun f () = . . .

In particular, fn() => E is the function that takes an argument of type unit and
returns the value of E as its result. Expression E is not evaluated until the function
is called, even though the only possible argument is (). The function simply delays
the evaluation of E .

The Infinite Sequence, k, k+1, k+2, …The Infinite Sequence, k, k+1, k+2, …

let tail (Cons(_, xf)) = xf ();;
val tail : 'a seq -> 'a seq

Recall:
force the evaluation

let rec from k = Cons (k, fun () -> from (k + 1));;
val from : int -> int seq = <fun>

let it = from 1;;
val it : int seq = Cons (1, <fun>)

let it = tail it;;
val it : int seq = Cons (2, <fun>)

tail it;;
- : int seq = Cons (3, <fun>)

Consuming a Sequence

IX Foundations of Computer Science 101

Slide 905

Consuming a Sequence

fun get(0,xq) = []

| get(n,Nil) = []

| get(n,Cons(x,xf)) = x :: get(n-1,xf());

> val get = fn : int * 'a seq -> 'a list

Get the first n elements as a list

xf() forces evaluation

The function get converts a sequence to a list. It takes the first n elements; it
takes all of them if n < 0, which can terminate only if the sequence is finite.

In the third line of get, the expression xf() calls the tail function, demanding
evaluation of the next element. This operation is called forcing the list.

Consuming a Sequence

force the list

let rec get n s =
 if n = 0 then []
 else
 match s with
 | Nil -> []
 | Cons (x, xf) -> x :: get (n - 1) (xf ())

get 2 (from 6)
 ⇒ get 2 (Cons (6, fun () -> from (6 + 1)))
 ⇒ 6 :: get 1 (from (6 + 1))
 ⇒ 6 :: get 1 (Cons (7, fun () -> from (7 + 1)))

 ⇒ 6 :: 7 :: get 0 (Cons (8, fun () -> from (8 + 1)))
 ⇒ 6 :: 7 :: []
 ⇒ [6; 7]

Sample EvaluationSample Evaluation

⇒ 6 :: 7 :: get 0 (from (7 + 1))

Joining Two SequencesJoining Two Sequences

let rec appendq xq yq =
 match xq with
 | Nil -> yq
 | Cons (x, xf) ->
 Cons (x, fun () -> appendq (xf ()) yq)

Joining Two SequencesJoining Two Sequences

IX Foundations of Computer Science 103

Slide 907

Joining Two Sequences

fun appendq (Nil, yq) = yq

| appendq (Cons(x,xf), yq) =

Cons(x, fn()=> appendq(xf(), yq));

A fair alternative. . .

fun interleave (Nil, yq) = yq

| interleave (Cons(x,xf), yq) =

Cons(x, fn()=> interleave(yq, xf()));

Most list functions and functionals have analogues on sequences, but strange
things can happen. Can an infinite list be reversed?

Function appendq is precisely the same idea as append (Lect. 3): it concate-
nates two sequences. If the first argument is infinite, then appendq never gets to its
second argument, which is lost. Concatenation of infinite sequences is not terribly
interesting.

The function interleave avoids this problem by exchanging the two arguments
in each recursive call. It combines the two lazy lists, losing no elements. Interleav-
ing is the right way to combine two potentially infinite information sources into
one.

In both function declarations, observe that each xf() is enclosed within a
fn()=>. . . . Each force is enclosed within a delay. This practice makes the
functions lazy. A force not enclosed in a delay, as in get above, runs the risk
of evaluating the sequence in full.

let rec appendq xq yq =
 match xq with
 | Nil -> yq
 | Cons (x, xf) ->
 Cons (x, fun () -> appendq (xf ()) yq)

let rec interleave xq yq =
 match xq with
 | Nil -> yq
 | Cons (x, xf) ->
 Cons (x, fun () -> interleave yq (xf ()))

Functionals for Lazy ListsFunctionals for Lazy Lists

let rec filter p = function
| [] -> []
| x::xs ->
 if p x then
 x :: filter p xs
 else
 filter p xs
val filter : ('a -> bool) -> 'a list -> 'a list = <fun>

We want:
val filterq : ('a -> bool) -> 'a seq -> 'a seq = <fun>

Functionals for Lazy Lists

IX Foundations of Computer Science 104

Slide 908

Functionals for Lazy Lists

filtering

fun filterq p Nil = Nil

| filterq p (Cons(x,xf)) =

if p x

then Cons(x, fn()=>filterq p (xf()))

else filterq p (xf());

The infinite sequence x , f (x), f (f (x)),. . .

fun iterates f x =

Cons(x, fn()=> iterates f (f x));

The functional filterq demands elements of xq until it finds one satisfying p.
(Recall filter, the analogous operation for ordinary lists.) It contains a force not
protected by a delay. If xq is infinite and contains no satisfactory element, then
filterq runs forever.

The functional iterates generalizes from. It creates the next element not by
adding one but by calling the function f.

Functionals for Lazy Lists

val filterq : ('a -> bool) -> 'a seq -> 'a seq = <fun>
val iterates : ('a -> 'a) -> 'a -> 'a seq = <fun>

What happens here?

IX Foundations of Computer Science 104

Slide 908

Functionals for Lazy Lists

filtering

fun filterq p Nil = Nil

| filterq p (Cons(x,xf)) =

if p x

then Cons(x, fn()=>filterq p (xf()))

else filterq p (xf());

The infinite sequence x , f (x), f (f (x)),. . .

fun iterates f x =

Cons(x, fn()=> iterates f (f x));

The functional filterq demands elements of xq until it finds one satisfying p.
(Recall filter, the analogous operation for ordinary lists.) It contains a force not
protected by a delay. If xq is infinite and contains no satisfactory element, then
filterq runs forever.

The functional iterates generalizes from. It creates the next element not by
adding one but by calling the function f.

let rec filterq p = function
| Nil -> Nil
| Cons (x, xf) ->
 if p x then
 Cons (x, fun () -> filterq p (xf ()))
 else
 filterq p (xf ())

let rec iterates f x =
 Cons (x, fun () -> iterates f (f x))

val filterq : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq

> let myseq = iterates (fun x -> x + 1) 1;;
val myseq : int seq = Cons (1, <fun>)

> filterq (fun x -> x = 1) myseq;;
- : int seq = Cons (1, <fun>)

> filterq (fun x -> x = 100) myseq;;
- : int seq = Cons (100, <fun>)
 
> filterq (fun x -> x = 0) myseq;;

……

Functionals for Lazy ListsFunctionals for Lazy Lists

Example:

> succ;;
- : int -> int = <fun>
> succ 1;;
- : 2 = int
> (=) 1 2
- : bool = false

> let myseq = iterates succ 1;;
val myseq : int seq = Cons (1, <fun>)
> filterq ((=) 1) myseq;;
- : int seq = Cons (1, <fun>)
> filterq ((=) 100) myseq;;
- : int seq = Cons (100, <fun>)
> filterq ((=) 0) myseq;;

……

Functionals for Lazy ListsReusing Functionals for Lazy Lists

Same Examples, but with no new functions:

Adding 1 has a built-in function!

“=“ function, partially applied

val filterq : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq
val get : int -> 'a seq -> 'a list

> val myseq = iterates (fun x -> x + 1) 1;;
val myseq : int seq Cons (1, <fun>)

> let it = filterq (fun x -> x mod 2 = 0) myseq;;
val it : int seq = Cons (2, <fun>)

> get 5 it;;
- : int list = [2; 4; 6; 8; 10]

Functionals for Lazy ListsFunctionals for Lazy Lists

Example:

Numerical Computations on Infinite SequencesNumerical Computations on Infinite Sequences

xn find sqrt(a)

let next a x = (a /. x +. x) /. 2.0

Numerical Computations on Infinite SequencesNumerical Computations on Infinite Sequences

Aside: Newton-Raphson Method

f(x) = x2 − k

x2 = k

f′￼(x) = 2x

Series is: So if we want to find sqrt(k) we use:

Numerical Computations on Infinite SequencesNumerical Computations on Infinite Sequences

Aside: Newton-Raphson Method

f(x) = x2 − k

x2 = k

f′￼(x) = 2x

Series is: So if we want to find sqrt(k) we use:

xn+1 =
1
2 (xn +

k
xn)

Numerical Computations on Infinite Sequences

IX Foundations of Computer Science 105

Slide 909

Numerical Computations on Infinite Sequences

fun next a x = (a/x + x) / 2.0;

Close enough?

fun within (eps:real) (Cons(x,xf)) =

let val Cons(y,yf) = xf()

in if abs(x-y) <= eps then y

else within eps (Cons(y,yf))

end;

Square Roots!

fun root a = within 1E~6 (iterates (next a) 1.0)

The Newton-Raphson method is widely used for computing square roots. The
infinite series x0, (a/x0 + x0)/2, . . . converges rapidly to

√
a. The initial ap-

proximation, x0, is typically retrieved from a table, and is accurate enough that
only a few iterations of the method are necessary. Calling iterates (next a)

x0 generates the infinite series of approximations to the square root of a using
the Newton-Raphson method. To compute

√
2, the resulting series begins 1, 1.5,

1.41667, 1.4142157, 1.414213562 . . . , and this last figure is already accurate to 10
significant digits!

Function within searches down the lazy list for two points whose difference
is less than eps. It tests their absolute difference. Relative difference and other
‘close enough’ tests can be coded. Such components can be used to implement
other numerical functions directly as functions over sequences. The point is to
build programs from small, interchangeable parts.

Function root uses within, iterates and next to apply Newton-Raphson
with a tolerance of 10−6 and a (poor) initial approximation of 1.0.

This treatment of numerical computation has received some attention in the
research literature; a recurring example is Richardson extrapolation [3, 4].

Numerical Computations on Infinite Sequences

xn find sqrt(a)

let next a x = (a /. x +. x) /. 2.0

let rec within eps = function
| Cons (x, xf) ->
 match xf () with
 | Cons (y, yf) ->
 if abs_float (x -. y) <= eps then y
 else within eps (Cons (y, yf))

xn+1 =
1
2 (xn +

k
xn)

Numerical Computations on Infinite Sequences

IX Foundations of Computer Science 105

Slide 909

Numerical Computations on Infinite Sequences

fun next a x = (a/x + x) / 2.0;

Close enough?

fun within (eps:real) (Cons(x,xf)) =

let val Cons(y,yf) = xf()

in if abs(x-y) <= eps then y

else within eps (Cons(y,yf))

end;

Square Roots!

fun root a = within 1E~6 (iterates (next a) 1.0)

The Newton-Raphson method is widely used for computing square roots. The
infinite series x0, (a/x0 + x0)/2, . . . converges rapidly to

√
a. The initial ap-

proximation, x0, is typically retrieved from a table, and is accurate enough that
only a few iterations of the method are necessary. Calling iterates (next a)

x0 generates the infinite series of approximations to the square root of a using
the Newton-Raphson method. To compute

√
2, the resulting series begins 1, 1.5,

1.41667, 1.4142157, 1.414213562 . . . , and this last figure is already accurate to 10
significant digits!

Function within searches down the lazy list for two points whose difference
is less than eps. It tests their absolute difference. Relative difference and other
‘close enough’ tests can be coded. Such components can be used to implement
other numerical functions directly as functions over sequences. The point is to
build programs from small, interchangeable parts.

Function root uses within, iterates and next to apply Newton-Raphson
with a tolerance of 10−6 and a (poor) initial approximation of 1.0.

This treatment of numerical computation has received some attention in the
research literature; a recurring example is Richardson extrapolation [3, 4].

Numerical Computations on Infinite Sequences

epsilon sequence

x0 : initial guess

> root 3.0;;
- : float = 1.73205080756887719

xn find sqrt(a)

let next a x = (a /. x +. x) /. 2.0

IX Foundations of Computer Science 105

Slide 909

Numerical Computations on Infinite Sequences

fun next a x = (a/x + x) / 2.0;

Close enough?

fun within (eps:real) (Cons(x,xf)) =

let val Cons(y,yf) = xf()

in if abs(x-y) <= eps then y

else within eps (Cons(y,yf))

end;

Square Roots!

fun root a = within 1E~6 (iterates (next a) 1.0)

The Newton-Raphson method is widely used for computing square roots. The
infinite series x0, (a/x0 + x0)/2, . . . converges rapidly to

√
a. The initial ap-

proximation, x0, is typically retrieved from a table, and is accurate enough that
only a few iterations of the method are necessary. Calling iterates (next a)

x0 generates the infinite series of approximations to the square root of a using
the Newton-Raphson method. To compute

√
2, the resulting series begins 1, 1.5,

1.41667, 1.4142157, 1.414213562 . . . , and this last figure is already accurate to 10
significant digits!

Function within searches down the lazy list for two points whose difference
is less than eps. It tests their absolute difference. Relative difference and other
‘close enough’ tests can be coded. Such components can be used to implement
other numerical functions directly as functions over sequences. The point is to
build programs from small, interchangeable parts.

Function root uses within, iterates and next to apply Newton-Raphson
with a tolerance of 10−6 and a (poor) initial approximation of 1.0.

This treatment of numerical computation has received some attention in the
research literature; a recurring example is Richardson extrapolation [3, 4].

let rec within eps = function
| Cons (x, xf) ->
 match xf () with
 | Cons (y, yf) ->
 if abs_float (x -. y) <= eps then y
 else within eps (Cons (y, yf))

let root a = within 1e-6 (iterates (next a) 1.0)

