Getting Started

- Course Home: https://www.cl.cam.ac.uk/teaching/2223/FoundsCS/

- Interactive online notebook: https://hub.cl.cam.ac.uk/

- This notebook corresponds to the printed notes that you should all have. **If you cannot login, email me immediately.**

- At the end of this lecture, will also explain the practicals: https://www.cl.cam.ac.uk/teaching/2223/OCaml/
• **Computers:** a child can use them; but nobody can fully understand them!
• **Computers:** a child can use them; but nobody can fully understand them!
• **Computers**: a child can use them; but nobody can fully understand them!
• **Computers:** a child can use them; but nobody can fully understand them!
Computers: a child can use them; but nobody can fully understand them!
• **Computers:** a child can use them; but nobody can fully understand them!
• **Computers**: a child can use them; but nobody can fully understand them!

• We can master complexity through *levels of abstraction*

• Focus on 2 or 3 levels at most!
• **Computers:** a child can use them; but nobody can fully understand them!

• We can master complexity through *levels of abstraction*

• Focus on 2 or 3 levels at most!

• **Recurring issues:**

 • *what services* to provide at each level

 • *how to implement them* using lower-level services

 • *the interface* by which two levels should communicate
• **Computers:** a child can use them; but nobody can fully understand them!
Example: Dates

- Abstract level: dates over a certain interval
Example: Dates

- **Abstract level:** dates over a certain interval

- **Concrete level:** typically 6 characters: YYMMDD
 - (where each character is represented by 8 bits)

- Date crises caused by inadequate internal formats:
 - *Digital’s PDP-10:* 12-bit dates (good for at most 11 years)
 - *Y2K crisis:* 48-bits could be good for lifetime of universe!

- Our choices of representations within a computer has long-ranging consequences.
Example: Floating Point Numbers

- Computers have *integers* (like 1066)
 and *floats* (like 1.066×10^3).

- A floating-point number is represented by two integers.

- The concept of a *data type* involves:
 - how a value is represented inside the computer
 - the suite of operations given to programmers
 - valid and invalid (or exceptional) results, such as “infinity”

- Computer arithmetic can yield incorrect answers due to *finite precision*!
Goals of Programming

• to describe a computation so that it can be done mechanically:
 • expressions compute values
 • commands cause effects
Goals of Programming

• to describe a computation so that it can be done mechanically:
 • expressions compute values
 • commands cause effects

• to do so efficiently and correctly, giving right answers quickly
Goals of Programming

- to **describe a computation** so that it can be done *mechanically*:
 - expressions compute values
 - commands cause effects
- to do so **efficiently and correctly**, giving right answers quickly
- to allow **easy modification** as our needs change
 - through an orderly *structure* based on *abstraction* principles
 - programmer should be able to predict effects of changes
Why Learn to Program in OCaml?

- It is interactive.
- It has a flexible notion of data type.
- It hides the underlying hardware: no crashes.
- Programs can easily be understood mathematically.
- It distinguishes naming from updating memory.
- It manages storage in memory for us.
The Practical Classes

https://www.cl.cam.ac.uk/teaching/2223/OCaml/

• Executed online in the hub.cl.cam.ac.uk server

• There are 5 ticks, each of which have a deadline for submission 10 days after they are issued (except last tick, which goes into Lent term).

• Exact dates for the first tick will be announced later today / over weekend by email.

• Some of you will be selected for in person "ticks" in the Lab to explain your workings.