2 Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on top-down merge sort, contrasting it with insertion sort. State its worst-case and average-case complexity, with brief justification. (There is no need to present OCaml code.) [5 marks]

(b) Write brief notes on preorder, inorder and postorder tree traversal. Present efficient code for one of them and state, with justification, its worst-case complexity. [5 marks]

(c) The binary search tree \(t_1 \) is superseded by \(t_2 \) provided every (key, value) entry in \(t_1 \) is also present in \(t_2 \). Code an OCaml function to determine whether one binary search tree is superseded by another. Express its cost in terms of \(n_1 \) and \(n_2 \), the numbers of entries in \(t_1 \) and \(t_2 \), respectively. For full credit, the worst-case cost should be no worse than \(O(n_1 + n_2) \). [10 marks]

All code must be explained clearly. You may assume that any necessary OCaml data structures or functions are available.