types,
polymorphism

variants,
functions

variants,
functions,
recursion

functions as
values

— Solution notes —

COMPUTER SCIENCE TRIPOS Part IA — 2014 — Paper 1

1 Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on polymorphism in OCaml, using lists and standard list

(d)

functions such as @ (append) and List.map. [4 marks]
Answer: Key points are that polymorphism assigns a type to every expression — at
compile time — while at the same time allowing natural genericity. For instance, the

elements of a list must have the same type, but it can be any type. The type of append,
'a list -> 'a list -> 'a list, indicates that it combines two lists of the same type,
returning another list of that type. The type of map, ('a -> 'b) -> 'a list -> 'b list,
indicates that it transforms a list of one type to another, as indicated by the type ('a => 'b)
of the function.

Explain the meaning of the following declaration and describe the corresponding
data structure, including the role of polymorphism.

type 'a se = Void | Unit of 'a | Join of 'a se * 'a se

[4 marks]

Answer: This declares a variant type containing three constructors: Void, Unit and Join.
The latter two constructors require arguments, while Void is a constant. This is a tree-like
data structure with unlabelled binary branching (Join), labelled leaves (Unit) and unlabelled
leaves (Void). Type 'a se is polymorphic, as indicated by the type variable 'a, which shows
that 'a is the type of the labels. Functions involving the new type can be declared using
pattern matching.

Show that OCaml lists can be represented using this variant type by writing the
functions encode_list of type 'a list -> 'a se and decode_list of type
'a se -> 'a list, such that decode_list (encode_list xs) = xs for every
list xs. [3 marks]

Answer:

let rec encode_list = function
| [1 -> Void
| x::xs -> Join (Unit x, encode_list xs)

exception Not_a_list
let rec decode_list = function

| Void -> []
| Join (Unit x, v) ->
X :: decode_list v

| _ -> raise Not_a_list

Consider the following function declaration:

let rec cute p = function

functions as
values

(e)

— Solution notes —

| Void -> false
| Unit x -> p x
| Join (u, v) ->
cute p u || cute p v

What does this function do, and what is its type? [4 marks]

Answer: The function cute has type ('a -> bool) -> 'a se -> bool, and cute p s
returns true if and only if s contains an element of the form Unit x, where p x is true.
It is analogous to the function exists, for lists.

Consider the following expression:
fun p -> cute (cute p)

What does it mean, and what is its type? Justify your answer carefully.
[5> marks]

Answer: This is a function of type ('a -> bool) -> 'a se se -> bool. Through the
fun binder, it takes an argument p, which has type 'a -> bool. Now cute p has type
'a se —> bool, and because cute is polymorphic, cute (cute p) is well-defined and has
type 'a se se -> bool.

Now if fun p -> cute (cute p) is applied to some specific p and then to a term s, it returns
true if and only if s contains an element of the form Unit x, where cute p x is true. Thus
the expression is like cute but for type 'a se se -> bool, that is, for the data structure
nested in itself.

