
Formal Models of Language: Grammars
Paula Buttery

This handout provides details of the grammars used throughout the
course and associated methods for parsing.

0. Refresher of Discrete Maths

In the Formal Languages and Automata section of the Discrete Maths
course we defined a formal language as a set of strings over
an alphabet.

definition of a formal language

Alphabets An alphabet is specified by a finite set, Σ, whose ele-
ments are called symbols. Some examples are shown below:1

1 Note that e.g. the set of natural
numbers N = {0, 1, 2, 3, ...} cannot be
an alphabet because it is infinite.{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the 10-element set of decimal digits.

{a, b, c, ..., x, y, z} the 26-element set of lower case characters of
written English.

{aardvark, ..., zebra} the 250,000-element set of words in the Ox-
ford English Dictionary.2

2 Note that the term alphabet is over-
loaded: in formal language theory
it refers to the set of elements that
can combine to form strings: these
symbols can be numbers, characters,
English words or anything else as
long as they are all of the same type!
When discussing natural languages,
alphabet refers exclusively to the set
of characters used for orthographic
representations (i.e. writing down
the language’s words); the term lex-
icon is then used to refer to the set
that contains the language’s words as
elements.

Strings A string of length n over an alphabet Σ is an ordered n-
tuple of elements of Σ. And Σ∗ denotes the set of all strings over
Σ of finite length.

If Σ = {a, b} then ϵ, ba, bab, aab are examples of strings over Σ.

If Σ = {a} then Σ∗ = {ϵ, a, aa, aaa, ...}

If Σ = {cats, dogs, eat} then Σ∗ = {ϵ, cats, cats eat, cats eat dogs, ...}3

3 The spaces here are for readable
delimitation of the symbols of the
alphabet.

Languages Given an alphabet Σ any subset of Σ∗ is a formal

language over alphabet Σ.

In Discrete Maths you inductively defined subsets of Σ∗ (languages)
using axioms and rules. Below are some example axioms and
rules for generating a language, L, over the alphabet Σ = {a, b},
that contains strings of an a followed by zero or more b’s, i.e.
L = {a, ab, abb, abbb, ...}.

inductively defined languages

Axioms Axioms specify elements of Σ∗ that exist in L.

(a1)a

Induction Rules Rules show hypotheses above the line and con-
clusions below the line (also referred to as children and parents
respectively). The following is a unary rule where u indicates
some string in Σ∗:

u (r1)
ub



formal models of language: grammars 2

Derivations Given a set of axioms and rules for inductively defin-
ing a subset, L, of Σ∗, a derivation of a string u in L is: a finite
rooted tree with vertexes that are elements of L such that: the
root of the tree (towards the bottom of the page) is u itself; each
vertex of the tree is the conclusion of a rule whose hypotheses
are its children; each leaf of the tree is an axiom. Using our ax-
iom and rule, the derivation for the string abb is shown below:

(a1)a (r1)
ab (r1)
abb



formal models of language: grammars 3

1. Phrase Structure Grammars

Another way of generating a language is using a Phrase Struc-
ture grammar. Also referred to as a generative grammar, this
formalism uses a set of rewrite rules or production rules to
generate strings in the language.4 A phrase structure grammar over

4 This is opposed to constraint-based
grammars which allow all strings
in Σ∗ that have not otherwise been
constrained.

an alphabet Σ is defined by a tuple G = (N , Σ, S,P). We refer to
the language generated by grammar G as L(G).

Non-terminals N : Non-terminal symbols may be rewritten
using the rules of the grammar. We will denote the set of non-
terminal symbols as Nwhere N ∩ Σ = ∅. We generally use
capital letters as non-terminals symbols.

definition of generative grammar

Terminals Σ: Terminal symbols are elements of Σ and cannot
be rewritten. We generally use lower case symbols to refer to
terminals.

Start Symbol S: A distinguished non-terminal symbol S ∈ N .
This non-terminal provides the starting point for derivations.5

5 S is sometimes referred to as the
axiom but note that, whereas in the
inductively defined sets above the
axioms denoted the smallest members
of the set that could be combined in
some way to form new members, here
the axioms denote the existence of
particular derivable structures.

Phrase Structure Rules P : Phrase structure rules are pairs of
the form (w, v) usually written:

w → v, where w ∈ (Σ ∪ N )∗N (Σ ∪ N )∗ and v ∈ (Σ ∪ N )∗

That is, we have at least one non-terminal on the left mapping to
anything on the right. The symbol(s) on the left-hand side of a
rule is often referred to as the parent; and any non-terminals on
the right-hand side are called the daughters or children.

A phrase structure grammar, G, that generates the language L(G) =

{a, ab, abb, abbb, ...} is shown in Figure 1.

G = (N , Σ, S,P) where
N = {S, A, B}
Σ = {a, b}
S = S
P = {S → a, S → aB, B → bB, B → b}

Figure 1: The grammar that generates
L(G) = {a, ab, abb, abbb, ...}. Note that
it is possible to have more than one
rule containing the starting symbol on
the left-hand side.

In order to generate a string from a grammar we start with the des-
ignated starting symbol; then non-terminal symbols are repeatedly
expanded using the rewrite rules until there is nothing further left
to expand. The rewrite rules derive the members of a language
from their internal structure (or phrase structure—hence the name
phrase structure grammars). Figure 2 shows the derivation of the
3 smallest strings in L(G). We call such diagrams derivation trees
(although note that the root of the tree is drawn at the top of the
page).

Formally, given G = (N , Σ, S,P) and w, v ∈ (N ∪ Σ)∗ a derivation
definition of a derivation

step is possible to transform w into v if:

u1, u2 ∈ (N ∪ Σ)∗ exist such that w = u1αu2, and v = u1βu2



formal models of language: grammars 4

String a ab abb

Derivation

S

a

S

a B

b

S

a B

b B

b

Rules used S → a S → aB, B → b S → aB, B → bB, B → b

Figure 2: The derivation of the 3

smallest strings in L(G), derived from
the grammar, G, in Figure 1.

and

α → β ∈ P

this is written w =⇒
G

v

A string in the language L(G) is a member of Σ∗ that can be de-
rived in a finite number of derivation steps form the starting
symbol S. We use =⇒

G∗
to denote the reflexive, transitive closure

of derivation steps, consequently L(G) = {w ∈ Σ∗|S =⇒
G∗

w}.
equivalences of grammars

Two grammars are weakly equivalent if they derive the same
set of strings. They are strongly equivalent if they derive the
same set of strings with the same tree structures.

The Chomsky Hierarchy

Chomsky suggested that phrase structure grammars may be grouped
together by the properties of their production rules. He specified 4

types of grammar referred to as the Chomsky Hierarchy of
grammars:

Type Name Form of Rules

3 regular (A → Aa or A → aA) and A → a for A ∈ N and a ∈ Σ
2 context free A → α where A ∈ N and α ∈ (N ∪ Σ)∗

1 context sensitive αAβ → αγβ where A ∈ N and α, β, γ ∈ (N ∪ Σ)∗ and γ ̸= ϵ

0 recursively enumerable α → β where α, β ∈ (N ∪ Σ)∗ and α ̸= ϵ

Note that each rule-form in the hierarchy is a more specific ver-
sion of the rule-form of the type below: hence every regular lan-
guage is also a context free language etc.6 In the following, I will

6 For those who enjoy the details, note
that for CFGs, the RHS of a rule may
be the empty string, but in CSGs this
is not the case. So, strictly speaking,
not every CFG is context-sensitive. We
will not consider this point further
here...see the lecturer if you would like
some extra reading.

language classes

refer to a class of languages (e.g. the class of regular languages) as
being all the languages that can be generated by a particular type

of grammar. The term power is used to describe the expressivity
of each type of grammar in the hierarchy (measured in terms of
the number of subsets of Σ∗ that the type can generate—-that is,
the size of the associated language class). Type 0 (recursively enu-

power/expressivity of language types
merable) grammars are the most powerful in that they are the most



formal models of language: grammars 5

expressive (they can express the most subsets of Σ∗). Type 3 (regu-
lar grammars) are the least powerful (expressing the fewest subsets
of Σ∗)

Since a class is a set of languages, we can reason about the clo-
sure properties of classes of languages.7 For instance, we can prove

closure properties of languages

7 Recall from Discrete Maths that a set
is closed under an operation if
performing that operation on members
of the set always produces another
member of the same set. For instance,
the set of positive integers are closed
under addition, but are not closed un-
der subtraction (because the operation
of subtraction may result in a negative
integer).

that:8

8 proofs of these closures won’t be
examinable this year

• all Chomsky language classes are closed under the binary opera-
tion of union.

L(G1) ∪ L(G2) = L(G3) where G1, G2, G3 are all grammars of the
same type (e.g. the union of a context free language with another
context free language will yield a context free language).

• all Chomsky languages classes are closed under intersection with
a regular language.

L(G1) ∩ L(G2) = L(G3) where G1 is a regular grammar and
G2, G3 are grammars of the same type (e.g. the intersection of a
regular language with a context free language will yield another
context free language).

Further properties of the regular and context free language classes
are outlined in the following sections:

Type 3: Regular Languages

You studied regular languages in Discrete Maths. Recall that a lan-
guage is regular if it is equal to the set of strings accepted by some
deterministic finite-state automaton (DFA).

definition of a Deterministic Finite
AutomataA DFA is defined as M = (Q, Σ, ∆, s,F ) where:

• Q = {q0, q1, q2...} is a finite set of states.

• Σ is the alphabet: a finite set of the transition symbols.

• ∆ ⊆ Q× Σ ×Q is a function Q× Σ → Q which we write as δ.
Given q ∈ Q and i ∈ Σ then δ(q, i) returns a new state q′ ∈ Q

• s is a starting state

• F is the set of all end states

Example: for L(M) = {a, ab, abb, ...}
we require that M is defined as:

M=(

Q = {q0, q1, q2},

Σ = {a, b},

∆ = {(q0, a, q1), (q0, b, q2), (q1, a, q2),

(q1, b, q1), (q2, a, q2), (q2, b, q2)},

s = q0,

F = {q1}
)

q0start q1

q2

a

b

b

a

a, b

Given a DFA M = (Q, Σ, ∆, s,F ) the language, L(M), of strings
accepted by M can be generated by the regular grammar Greg =

(N , Σ, S,P) where:

regular language → regular grammar

• N= Q the non-terminals are the states of M

• Σ = Σ the terminals are the set of transition symbols of M

• S = s the starting symbol is the starting state of M



formal models of language: grammars 6

• P = qi → aqj when δ(qi, a) = qj ∈ ∆
or qi → ϵ when q ∈ F (i.e. when q is an end state)

We can also prove that regular grammars always generate regu-
lar languages by constructing a DFA whose set of accepted strings
will be the same as the strings generated by the regular grammar.9

9 Ask me or your supervisor if you
would like to see a proofRegular grammars come in two varieties: left-linear grammars,

where the grammar rules are always of the form A → Aa | a;
and right-linear grammars, where A → aA | a (for A ∈ N
and a ∈ Σ).10 Every left-linear grammar has a weakly equivalent

10 The rules here are written in a
concise Backus-Naur form where
A → Aa | a is shorthand for the two
rules A → Aa and A → a

right-linear grammar.

The pumping lemma for regular languages is used to prove that
a language is not regular. The pumping lemma property is:

pumping lemma for regular languages

All w ∈ L with |w| ≥ l can be expressed as a concatenation of
three strings, w = u1vu2, where u1, v and u2 satisfy:

– |v| ≥ 1 (i.e. v ̸= ϵ)

– |u1v| ≤ l

– for all n ≥ 0, u1vnu2 ∈ L (i.e. u1u2 ∈ L, u1vu2 ∈ L, u1vvu2 ∈
L, u1vvvu2 ∈ L, etc.)

To use the Pumping Lemma to prove that a language L is not
regular:11 for each l ≥ 1, find some w ∈ L of length ≥ l so that

11 For instance, to prove that L =
{anbn|n ≥ 0} is not regular. For each
l ≥ 1, consider w = albl ∈ L.

If w = u1vu2 with |u1v| ≤ l &
|v| ≥ 1, then for some r and s:

• u1 = ar

• v = as, with r + s ≤ l and s ≥ 1

• u2 = al−r−sbl

so u1v0u2 = arϵal−r−sbl = al−sbl

But al−sbl /∈ L so by the Pumping
Lemma, L is not a regular language

no matter how w is split into three, w = u1vu2, with |u1v| ≤ l and
|v| ≥ 1, there is some n ≥ 0 for which u1vnu2 is not in L.

Type 2: context free Languages

context free Grammars (CFG) give rise to the class of con-
text free languages. As described in the Chomsky Hierarchy table
above, a CFG is defined by, Gc f g = (N , Σ, S,P), where:

• N is a set of non-terminals

• Σ is a set of terminals

• S is the starting symbol S ∈ N

• P is the set of grammar rules P = {A → α | A ∈ N and
α ∈ (N ∪ Σ)∗}

Note that despite the flexibility on the right hand side of the
derivation rule, CFGs are most commonly written in something
called Chomsky Normal Form (CNF)12. That is, where every

12 Chomsky normal form is a require-
ment of some parsing algorithms.

Chomsky normal form
production rule has the form, A → BC, or, A → a, where, A, B, C ∈
N , and, a ∈ Σ. For every CFG there is a weakly equivalent CNF
alternative. For instance, the rule A → BCD may be rewritten as
the two rules, A → BX, and, X → CD. Figure 3 shows the weakly
equivalent trees which both have the symbols A, B, C in order at the
leaf nodes.

A

B C D

A

B X

C D

Figure 3: Partial derivations from
2 weakly equivalent context free
grammars: the second grammar in
Chomsky Normal Form



formal models of language: grammars 7

Whereas the set of strings accepted by a DFA was a regular lan-
guage, the set of strings accepted by a Push Down Automaton

(PDA) is a context free language. A PDA is similar to a DFA except
that is also has an associated stack (last-in-first-out memory). The
transition function for a PDA is based on the current state and tran-
sition symbol (as for a DFA) but also on the symbol currently at the
top of the stack. On transitioning from one state to the next we may
also push onto the stack or pop the stack. Diagrammatically we use
the notation a : A/B on the transitions (where a ∈ Σ and A, B ∈ Γ)
to indicate that we are encountering the transition symbol a and
popping A from the top of the stack to replace it with B. A transi-
tion of the form ϵ : ϵ/A corresponds to simply pushing A onto the
stack; a transition of the form ϵ : A/ϵ corresponds to popping A
from the stack. The initial stack symbol is often written as z0.

- in state qx on encountering transition symbol a transition to state
qy popping A from the top of the stack and pushing B onto the
stack

qx qy

a : A/B
BEFORE AFTER

A B
z0 z0

- in state qx transition to state qy pushing A onto the stack13

13 For those who enjoy the details,
the second ϵ symbol in ϵ : ϵ/A is
actually shorthand for a bunch of rules
since it is equivalent to having many
transitions ϵ : X/AX, ∀X ∈ Γ.

qx qy

ϵ : ϵ/A
BEFORE AFTER

z0 A
z0

- in state qx transition to state qy popping A from the stack

qx qy

ϵ : A/ϵ

BEFORE AFTER
A z0

z0

Example:
L(Gc f g) = {ab, aabb, aaabbb, ...}
that is L(Gc f g) = {anbn}
Gc f g = (N , Σ, S,P) where
N = {S, A, B, X}
Σ = {a, b}
S = S
P = {S → AX,

S → AB,
X → SB,
A → a,
B → b}

Mc f g = (Q, Σ, Γ, ∆, s,⊥,F ) where
Q = {q0, q1, q2}
Σ = {a, b}
Γ = {X, A, B, z0}
∆ = {(q0, ϵ, ϵ) → (q1, X), ...} as diagram
s = q0
⊥ = z0
F = {q1}

q0start

q1

q2

q3

q4q5

q6q7

ϵ : ϵ/X

ϵ : ϵ/B

ϵ : ϵ/A

ϵ : ϵ/A
a : A/ϵ

ϵ : X/B

b : B/ϵ

ϵ : ϵ/ϵ

b : B/ϵϵ : z0/z0

A PDA is defined as M = (Q, Σ, Γ, ∆, s,⊥,F ) where:

• Q = {q0, q1, q2...} is a finite set of states.

• Σ is the input alphabet: a finite set of the transition symbols.
definition of a Push Down Automaton

• Γ is the stack alphabet: a finite symbols that may be pushed and
popped from the stack.

• ∆ ⊆ (Q× (Σ ∪ ϵ)× Γ)× (Q× Γ∗) is a relation14 (Q× (Σ ∪ ϵ)×
14 Note that, for equivalence to all
CFGs, this is a relation rather than
a function (it was a function in the
definition of the DFA).

Γ) → (Q× Γ∗) which we write as δ. Given q ∈ Q, i ∈ Σ and
A ∈ Γ then δ(q, i, A) returns things like (q′, α), that is, a new state
q′ ∈ Q and replaces A at the top of the stack with α ∈ Γ∗

• s is the starting state



formal models of language: grammars 8

• ⊥ is the initial stack symbol

• F is the set of all end states

The pumping lemma for context free languages (CFLs) is used
to show that a language is not context free. The pumping lemma
property for CFLs is:

pumping lemma for context free
languages

All w ∈ L with |w| ≥ k can be expressed as a concatenation of
five strings, w = u1yu2zu3, where u1, y, u2, z and u3 satisfy:

– |yz| ≥ 1 (i.e. we cannot have y = ϵ and z = ϵ)

– |yu2z| ≤ k

– for all n ≥ 0, u1ynu2znu3 ∈ L (i.e. u1u2u3 ∈ L, u1yu2zu3 ∈ L,
u1yyu2zzu3 ∈ L etc.)

That is, every sufficiently long string in the language can be
subdivided into five segments such that the middle three segments
are less than some k, the second and fourth are not both null, and
no matter how many times the second and fourth elements are
simultaneously pumped, the resulting string is in the language .

To use the pumping lemma to prove that a language L is not
context free for each k ≥ 1, find some w ∈ L of length ≥ k so that
no matter how w is split into five, w = u1yu2zu3, with |yu2z| ≤ k
and |yz| ≥ 1, there is some n ≥ 0 for which u1ynu2znu3 is not in L.

Type 1: context sensitive Languages and Type 0: Recursively

Enumerable Languages

To complete the story, it is worth knowing that context sensitive
languages are those that are recognised by a Linear Bounded

automaton (LBA). This type of machine is similar to the PDA
described above except that, instead of a stack, there is a tape of
finite length on which symbols from Σ∗ may be written (i.e. the
automaton is not restricted to a last-in-first-out memory but may
read/write on the tape by moving left, right or staying stationary).

Linear Bounded Automata and Turing
MachinesThe recursively enumerable languages are those that are recog-

nised by a Turing machine,15 which is like an LBA without re-
15 You will cover Turing machines in
your Complexity Theory lectures so
I will not reproduce the definition
here—it is not examinable in this
course

striction on the tape length.



formal models of language: grammars 9

Parsing Phrase Structure Grammars

When we say we parse a string of a language we are referring to
one of two possible tasks:

1 The first meaning of parse refers to the task of deciding whether
some string belongs to a language (ie. for a given input string,

running time and class complexity
discovering whether there is a sequence of steps that start in
the starting state and end in an accepting state of an associated
automaton). This is referred to as the recognition problem.
We can define the complexity of a language class by finding
the length of the longest accepting computation (or the longest
running time) of Mclass on an input of length n.16

16 For instance, the recognition problem
for a string of length n in a regular lan-
guage is O(n). Informally, consider a
DFA Mreg: beginning in the start state,
for each input symbol i encountered
δ(q, i) is computed and a next state q′

returned. After all the input symbols
have been encountered we can return
a 1 if the final state is an accepting
state (that is if q′ ∈ F ). The maximum
number of steps is at most linear with
the length of the input string as one
computation of δ is required per sym-
bol encountered. This is a worst case
analysis: for instance, the language
of strings that start with a could be
recognised in constant time.

The complexity of each of the language classes in the Chomsky
hierarchy is show below.

Type Language Class Complexity

3 regular O(n)
2 context free O(nc)

1 context sensitive O(cn)

0 recursively enumerable undecidable

2 The second meaning of parse refers to the task of deriving the
parse structure

"correct" underlying structure of a string that is already known
to be in a language. This second meaning is what we refer to
when we parse sentences of natural language for computer
applications. Parsing is usually the first stage in a pipeline of
processes and the "correct" parse here would mean the one that
represents the most useful17 phrase structure of the sentence

17 As determined by the application.

(also referred to as constituent structure) given the words in the
sentence.

For reasons of compromise between efficiency and expressivity
it is desirable to model natural language using CFGs —although
arguably CFGs are not expressive enough to capture the phrase
structure of all natural language (see the Formal vs. Natural Lan-
guage handout).

The LR(k) shift-reduce parsers you have studied in Compiler Con-
struction are most useful for recognising the strings of deterministic
languages (that is, languages where no string has more than one
analysis) which have been described by an unambiguous grammar.
You have covered LR(k) shift-reduce parsers in detail in Compiler
Construction so I will not reproduce the formal definitions, but, as
an aide-memoire:

• The LR parsing algorithm has two actions: shift and reduce

• Initially the input string is held in the buffer and the stack is
empty.



formal models of language: grammars 10

• Symbols are shifted from the buffer to the stack

• When the top items of the stack match the RHS of a rule in the
grammar then they are reduced, that is, they are replaced with
the LHS of that rule.

Natural languages (and the phrase structure grammars used to
model them) are inherently ambiguous and is not well suited to
LR parsers which operate deterministically recognising a single
derivation without backtracking. The following describes the Earley
parser: this is a parser that uses a top-down approach to explore

Earley parser
the whole search space, recovering multiple derivations where
they exist. It uses a dynamic programming algorithm that records
partial derivations in a chart (a table) in order to parse strings. By
convention, each row in an Earley chart is referred to as an edge.
The algorithm can be used to both recognise whether a string is in a
language, and also derive the structure(s) of the string (by means of
recording the steps taken during recognition).

Given an input grammar Gc f g = (N , Σ, S,P) and input string
u the algorithm works top-down left-to-right exploring the space
of all possible derivation trees. The progress of the algorithm is en-
coded in something called a dotted rule or progress rule: a
rule of the form A → ●αβ | α●β | αβ● where A → αβ ∈ P .18 The

18 You will be familiar with this idea
from the shift-reduce parsers intro-
duced in the Compiler Construction
course

position of the dot in the dotted rule indicates progress. That is, it
indicates which symbols have already been used up deriving a por-
tion of the input string, and which symbols are left to be explored.
Rules of the form A → ●αβ have all symbols still to be explored;
rules of the form A → αβ● have been completely used up deriving a
portion of the string.19

19 For an illustration of a dotted rule
in use, consider the partial tree be-
low which has been derived when
attempting to parse the sentence they
can fish:

0

S

NP

N

they

VP

1 can 2 fish 3

In this example, the algorithm is
yet to explore the VP node of the
derivation tree but the NP node has
been fully explored. This would be
recorded in the chart as S → NP●VP.
The partial tree that has been derived
is consistent with the input string up
to the end of the word they—it spans
from position 0 to 1—this span is also
recorded in the chart. The chart edge
associated with this example might
look like the following:

id rule [start, end] hist

...
ei S → NP●VP [0, 1] hk

An edge in the chart (dynamic programming table) records a
dotted rule, and its span. The span refers to the portion of the
input string which is consistent with the partial tree. The edge
A → α●β [i, j] is recorded in the chart if it is consistent with the
input symbols up to i and spans the input up to j. More formally,
for input string u = a1...an and grammar Gc f g = (N , Σ, S,P), an
edge A → α●β [i, j] is added if:

- S =⇒
G∗

a1...ai Aγ where γ are symbols in u yet to be parsed

- and α =⇒
G∗

ai+1...aj

If we wish to discover the structure of a parse, an edge must
also contain a record of the immediately previous partial tree(s)
that made the current partial tree possible. This is accomplished by
giving each edge a unique id and recording their contribution to
the current edge in the history.

The chart is initialised with the edge S → ●αβ [0, 0]; and the
input string u = a1...an is recognised when we add the edge S →
αβ● [0, n].20

20 I am assuming only one starting
symbol. If there is more than one you
can add the rule S1 → ●S for a new
starting symbol S1.



formal models of language: grammars 11

The algorithm is detailed formally below with a helper example
from a toy grammar. Figure 4 shows the grammar rules for our toy
grammar and the input sentence we are trying to parse with its
numbered locations.

We wish to parse the sentence they can
fish using Gc f g = (N , Σ, S,P) where:
N = {S, NP, VP, PP, N, V, P}
Σ = {can, f ish, in, rivers, they...}
S = S
P = {S → NP VP

NP → N PP | N
PP → P NP
VP → VP PP | V VP | V NP | V
N → can | f ish | rivers | ...
P → in | ...
V → can | f ish | ... }

0 they 1 can 2 fish 3

Figure 4: A toy grammar and sentence
to parse

• Initialise the chart: The chart is initialised with S →
●αβ [0, 0].

id rule [start, end] hist

e0 S → ● NP VP [0, 0]

Figure 5: chart for toy example after
the initialisation

In rule induction notation this can be considered to be an axiom:

(induction step)
S → ●αβ [0, 0]

• Main body of algorithm: For each word in the sentence we
proceed through the 3 steps :

Prediction This step adds new edges to the chart and can be
thought of as expanding tree nodes in the top-down deriva-
tion. A non-terminal (tree node) is unexplored if it occurs in
any previous edges with a dot on its LHS. So for all edges in
the chart, find any non-terminals with a dot on their LHS and
expand them according to the rule set. They will appear with
a span of [n,n] where n is the end location of the edge that
is being expanded. Note that, an edge should only be added
if it does not already appear in the chart (this will guarantee
termination).

id rule [start, end] hist

e0 S → ● NP VP [0, 0]
e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]

Figure 6: chart for toy example after
the predict step

In rule induction notation we have the following rule:

A → α●Bβ [i, j]
(predict step) where B → γ ∈ P

B → ●γ [j, j]

Scan This step allows us to check if we have a node that is
consistent with the input sentence. If the input sentence is
u = a1...an we can add a new edge if A → ●a [i, j − 1] and
a = aj.

id rule [start, end] hist

e0 S → ● NP VP [0, 0]
e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]

Figure 7: chart for toy example after
the scan step

In rule induction notation we have the following rule:

A → ●a [i, j − 1]
(scan step) when a = aj

A → a● [i, j]

For natural language sentence parsing tasks, Σ can be the
finite set of words in the language (a very large set). As
such, when carrying out the predicting step from a rule like
NP → ● N we would end up adding a new edge for every
noun in the language. To save us from creating all these edges
we can privilege a set of the non-terminals and perform a
forward look-up of the next aj to see whether it will be con-
sistent. In our example this set would be NPo f S = {N, V, P},
that is, all the non-terminal symbols that represent the parts
of speech of the language (things like nouns, verbs, adjectives...).
So, during the scanning step, we find edges containing non-
terminals in NPo f S with a dot on their LHS and check if the
upcoming word is consistent with the part-of-speech. Iff it is
consistent then we add an edge to the chart.



formal models of language: grammars 12

Complete This step propagates fully explored tree nodes in the
chart. A node has been fully explored when it appears in a
dotted rule with a dot at the very RHS. The non-terminal on
the LHS of this rule (before the arrow) is the node that has
been fully explored. So, on finding an edge that contains a
rightmost dotted rule, propagate the dots in all edges that
were waiting for this node to complete: do so by adding a new
edge (rather than overwriting the old edge) so that the tree
structure can be retrieved later—the IDs of the edges involved
are added in a list in the history column of the chart. The
history can be used on parse completion to understand how
the tree structure was derived. Note that if any new rightmost
dotted rules are created by this step they should themselves
also be propagated.

id rule [start, end] hist

e0 S → ● NP VP [0, 0]
e1 NP → ● N [0, 0]
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]
e4 NP → N ● [0, 1] e3
e5 NP → N ● PP [0, 1] e3
e6 S → NP ● VP [0, 1] e4

Figure 8: chart for toy example after
the complete step. Note that only
completed edges have a history (edges
derived from prediction and scanning
steps do not). Some implementations
explicitly note the difference between
the two types of edge by referring to
the completed edges as the table/chart
and the other edges as the agenda.

In rule induction notation we have the following rule:

A → α●Bβ [i, k] B → γ● [k, j]
(complete step)

A → αB●β [i, j]

The running time of the Earley parser is O(n3). There are various
implementation optimisations that can be performed but all reduce
the constant factor rather than the exponent of the polynomial.

The following shows the full chart obtained when parsing the
sentence, they can fish with the Gc f g in Figure 9. The final column is
for your reference only and indicates which word we are processing
when the edges are added.21

21 Note that edge e34 exhibits an
instance of ambiguity packing, i.e
when analyses of the same type that
are covering the same portion of the
input string are packed into a single
entity; and e27 and e28, for instance,
demonstrate sub-tree sharing.



formal models of language: grammars 13

id rule [start, end] hist word n
e0 S → ● NP VP [0, 0] word 0
e1 NP → ● N [0, 0] word 1
e2 NP → ● N PP [0, 0]
e3 N → they ● [0, 1]
e4 NP → N ● [0, 1] (e3)
e5 NP → N ● PP [0, 1] (e3)
e6 S → NP ● VP [0, 1] (e4)
e7 PP → ● P NP [1, 1] word 2
e8 VP → ● V [1, 1]
e9 VP → ● V NP [1, 1]
e10 VP → ● V VP [1, 1]
e11 VP → ● VP PP [1, 1]
e12 V → can ● [1, 2]
e13 VP → V ● [1, 2] (e12)
e14 VP → V ● NP [1, 2] (e12)
e15 VP → V ● VP [1, 2] (e12)
e16 S → NP VP ● [0, 2] (e4,e13)
e17 VP → VP ● PP [1, 2] (e13)
e18 NP → ● N [2, 2] word 3
e19 NP → ● N PP [2, 2]
e20 VP → ● V [2, 2]
e21 VP → ● V NP [2, 2]
e22 VP → ● V VP [2, 2]
e23 VP → ● VP PP [2, 2]
e24 PP → ● P NP [2, 2]
e25 N → f ish ● [2, 3]
e26 V → f ish ● [2, 3]
e27 NP → N ● [2, 3] (e25)
e28 NP → N ● PP [2, 3] (e25)
e29 VP → V ● [2, 3] (e26)
e30 VP → V ● NP [2, 3] (e26)
e31 VP → V ● VP [2, 3] (e26)
e32 VP → V NP ● [1, 3] (e12,e27)
e33 VP → V VP ● [1, 3] (e12,e29)
e34 S → NP VP ● [0, 3] (e4,e32) or (e4,e33)

Parsing the sentence they can fish using
Gc f g = (N , Σ, S,P) where:

N = {S, NP, VP, PP, N, V, P}
Σ = {can, f ish, in, rivers, they...}
S = S
P = {S → NP VP

NP → N PP | N
PP → P NP
VP → VP PP | V VP | V NP | V
N → can | f ish | rivers | ...
P → in | ...
V → can | f ish | ... }

also
NPo f S = {N, V, P}

0 they 1 can 2 fish 3

Figure 9: Above is a repeat of Figure 4

for reference—a toy grammar with
sentence to parse



formal models of language: grammars 14

2. Dependency Grammars

A dependency tree is a directed graph representation of a string
dependency grammars

where the only nodes are the symbols in the string and each edge
represents a syntactic relationship between the symbols. A depen-
dency grammar is a grammar that derives dependency trees.
Formally Gdep = (Σ,D, s,⊥,P) where:

• Σ is the finite set of alphabet symbols

• D is the set of symbols to indicate whether the dependent sym-
bol (the one on the RHS of the rule) will be located on the left or
right of the current item within the string D = {L,R}

• s is the root symbol for the dependency tree (we will use s ∈ Σ
but sometimes a special extra symbol is used)

• ⊥ is a symbol to indicate a halt in the generation process

• P is a set of rules for generating dependencies:
P = {(α → β, d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D}

Diagrammatic representations of a
dependency tree for the string bacd f e
generated using Gdep = (Σ,D, s,⊥,P)
where:

Σ = {a... f }
D = {L,R}
s = a
P = {(a → b,L | c,R | d,R)

(d → e,R)
(e → f ,L)
(b →⊥,L | ⊥,R)
(c →⊥,L | ⊥,R)
( f →⊥,L | ⊥,R)}

a

b c d

e

f

b a c d f e

Figure 10: Above, two different style
dependency tree representations for
the string bacd f e. Notice that the
same rules would have been used to
generate the string bad f ec making
dependency grammars useful when
there is some degree of flexibility
in the symbol order of grammatical
strings in L(Gdep)

In dependency grammars we refer to the term on the LHS of a
rule as the head and the RHS as the dependent (as opposed to
parents and children in phrase structure grammars). An example de-
pendency tree is shown in Figure 10. A valid derivation tree is one
that is rooted in s and weakly connected (that is, when considered
as an undirected graph, the symbols in the string are connected).
Dependency trees can be described as being projective or non-
projective—loosely speaking, a projective tree can be drawn
without edges crossing whereas a non-projective tree cannot. The
difference has implications for parsing complexity.

With a small modification to the rules, a label can be added to
each generated dependency P = {(α → β : r, d) | α ∈ (Σ ∪ s), β ∈
(Σ ∪ ⊥), d ∈ D, r ∈ B} where B is the set of dependency labels.
When used for natural language parsing, dependency grammars
will often label each dependency with the grammatical function (or
the grammatical relation) between the words.

grammatical relations

For illustration, consider the sentence Alice plays croquet with pink
flamingos; a phrase structure constituency tree for this sentence is
shown in Firgure 11. A labelled dependency tree (in both formats)
for the same sentence is show below:22

22 The relation labels used here follow
Carroll et al., 1999. There are other
labelling conventions, most notably the
Universal Dependencies of Nivre et al.,
2016. Here nsubj is a subject relation;
dobj, iobj are direct and indirect object
relations; nmod is a noun modifier.
You will learn more about linguistic
dependencies in Natural Language
Processing.

alice plays croquet with pink flamingos

nsubj dobj

iobj dobj

nmod

root



formal models of language: grammars 15

plays

alice croquet with

flamingos

pink

nsubj dobj iobj

dobj

nmod

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

Figure 11: Above, the sentence Alice
plays croquet with pink flamingos derived
from some CFG.

Notice that these dependency trees could have been derived
from the phrase structure tree in Figure 11. This is possible because
the hand-coded rules used for the CFG have encoded a notion of
headedness via the names of the non-terminals. For instance, an NP
is a noun phrase, its head is a noun. By convention the head of an S
node is always the verb from the VP. Below is the phrase structure
tree from Figure 11 with the head symbols passed up the tree.

S{plays}

NP{alice}

N{alice}

alice

VP{plays}

VP{plays}

V{plays}

plays

NP{croquet}

N{croquet}

croquet

PP{with}

P{with}

with

NP{flamingos}

N{flamingos}

A{pink}

pink

N{flamingos}

flamingos

dependency grammar vs. CFG

By highlighting nodes that show the highest position of any
given head (indicated by the boxes) we reveal a tree strikingly sim-
ilar to our dependency tree. Since dependency grammars do not
encode hierarchical constituency, collapsing paths but retaining
connectedness will allow us to obtain the required dependency tree
(for instance the nodes highlighted in red or blue can be collapsed
with connectedness between heads remaining the same). From this
example you should be able to see that we can make a systematic
mapping from a phrase-structure tree to a dependency tree (by as-
suming a notion of headedness which passes up from one of the
children to the parent). Following this insight, it is possible to prove
that projective dependency grammars are weakly equivalent to
context-free grammars.23

23 The recognition problem for de-
pendency grammars exhibiting
unconstrained non-projective struc-
tures turns out to be NP-complete
(although this matters less when us-
ing data driven methods as outlined
below).



formal models of language: grammars 16

Parsing with Dependancy Grammars

The most commonly used methods for dependency parsing for
natural language involve a modification of the LR shift-reduce
parser for phrase structure grammars. The shift operator continues

shift-reduce dependency parsing
to move items of the input string from the buffer to the stack but
the reduce operator is replaced with the operations left-arc and
right-arc which reduce the top two stack symbols leaving the
head on the stack (that is, the rightmost or leftmost respectively).
The dependency rule that has been used to make the reduction is
recorded for recovery of the dependency tree after recognition of
the input string.

For illustration, consider L(Gdep) ⊆ Σ∗; during parsing the stack
may hold γab where γ ∈ Σ∗ and a, b ∈ Σ, and b is at the top of the
stack:

• left-arc reduces the stack to γb and records use of rule b → a

• right-arc reduces the stack to γa and records the use of rule
a → b

Example of shift-reduce parse for
the string bacd f e generated using
Gdep = (Σ,D, s,⊥,P) (note, we can
ignore α →⊥ rules here because we are
parsing rather than generating):

Σ = {a... f }
D = {L,R}
s = a
P = {(a → b,L | c,R | d,R)

(d → e,R)
(e → f ,L)}

stack buffer action record

bacdfe shift

b acdfe shift

ba cdfe left-arc a → b
a cdfe shift

ac dfe right-arc a → c
a dfe shift

ad fe shift

adf e shift

adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

b a c d f e

Figure 12: Above, shift-reduce parse
for the string bacd f e. Note that, for
a deterministic parse, lookahead is
needed.

For natural language there would be considerable effort in man-
ually defining P—this would involve determining the depen-
dencies between all possible words in the language; and creating
a deterministic language is impossible (since natural language
is inherently ambiguous). However, natural language parsing is
achieved deterministically by selecting parsing actions using a ma-
chine learning classifier. The features for the classifier include the
items on the stack and in the buffer at a given point as well as prop-
erties of those items (including word-embeddings for the items).
Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).
It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

To avoid the problem of early incorrect resolution of an ambigu-
ous parse, multiple competing parses can be recorded and a beam
search used to keep track of the best alternative parses.24

24 You may have read about Google’s
Parsey McParseface: this is an English
language dependency parser that
uses word-embeddings and a neural
network to score parse actions. A
beam search is used to compare
competing parses.



formal models of language: grammars 17

3. Tree Adjoining Grammars

Whereas in phrase structure grammar symbols were rewritten with
other symbols, in a Tree Adjoining Grammar trees are rewrit-
ten as other trees. Like a phrase structure grammar, a tree adjoining
grammar is defined by a set of terminals and non-terminals, as
well as a starting symbol; but rather than phrase structure rules
the grammar consists of sets of two types of elementary tree: ini-
tial trees and auxiliary trees that may be combined using the
operations of substitution and adjunction. As with a phrase
structure tree a complete derivation is one that has the starting
symbol at its root and terminal symbols only at the leaves. We can
define a tree adjoining grammar Gtag = (N , Σ, S, I ,A) where:

definition of a TAG

N is the set of non-terminals

Σ is the set of terminals

S is a distinguished non-terminal S ∈ N that will be the root of
complete derivations

I is a set of initial trees (also known as α trees). Internal nodes of
an α tree are drawn from N and the leaf nodes from Σ ∪N ∪ ϵ.

A is a set of auxiliary trees (also know as β trees). Internal nodes
of a β-tree are drawn from N and the leaf nodes from Σ ∪N ∪ ϵ.
One leaf of a β-tree is distinguished as the foot and will be the
same non-terminal as at its root (the foot is often indicated with
an asterisk).

A derivation is the result of recursive composition of elementary
trees via one of two operations:

• substitution: a substitution may occur when a non-terminal
TAGs substitution

leaf (that is, some A ∈ N ) of the current derivation tree is re-
placed by an α-tree that has A at its root. A schematic of a substi-
tution where X, A ∈ N :

X

A
,

A

⇒

X

A

current derivation α-tree resulting tree

• adjunction: an adjunction may occur when an internal non-
TAGs adjunction

terminal node of the current derivation (some B ∈ N ) tree is
replaced by a β tree that has a B at its root and foot.



formal models of language: grammars 18

X

B

,

B

B∗
⇒

X

B

B∗

current derivation β-tree resulting tree

L(Gtag) is the set of strings yielded from all of the possible de-
rived trees for Gtag = (Σ,N , S, I ,A). A string from L(Gtag) may be
recognised in polynomial time—O(n6) where n is the length of the
string. The class of tree adjoining languages turns out to be a su-
perset of the class of context free grammars but a subset of the class
context sensitive languages. As such, grammars weakly equivalent
to tree adjoining grammars are known as mildly context sensi-
tive languages. Tree adjoining grammars have been argued to have

mildly context sensitive
sufficient expressivity to capture all known natural languages (see
the Formal vs. Natural Language handout).

Recursively Enumerable
 Languages

Context Sensitive 
Languages

Mildly Context Sensitive 
Languages

Context Free 
Languages

Regular
Languages

Figure 13: A Venn diagram showing
the class of minimally context sensi-
tive languages within the Chomsky
hierarchy

The following is a toy example of a tree adjoining grammar for
English; we will use the grammar to derive the sentence Alice plays
croquet with pink flamingos. Gtag = (N , Σ, S, I ,A) where:

N = {S, NP, VP, PP, N, P, V, A}
Σ = {alice, plays, croquet, with, pink, f lamingos}
S = S

I = {

NP

N

alice ,

NP

N

croquet ,

NP

N

flamingos ,

S

NP VP

V

plays

NP

}

A = {

N

A

pink

N*

,

VP

VP* PP

P

with

NP

}

Notice that information about the way in which words func-
tion in a sentence has been captured in the elementary trees. For
instance, it is easy to see that plays is a verb that requires two argu-
ments or that pink and with will modify existing non-terminals with
extra information. When used to process natural language, gram-



formal models of language: grammars 19

mars that capture a word’s type information in this way are referred
to as lexicalized grammars. A derivation for Alice plays croquet with

lexicalized grammars
pink flamingos may be obtained as follows:

S

NP

N

alice

VP

V

plays

NP

N

croquet

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

flamingos

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

1. two substitutions 2. adjunction 3. substitution 4. adjunction

4. Categorial Grammars

In a classic categorial grammar all symbols in the alphabet are
associated with a finite number of types.25 Types are formed from

25 when used for modelling natural
language, these types reflect linguistic
grammatical function as did the tree-
lets in the tree adjoining grammar.
Hence a categorial grammar is also a
lexicalized grammar

primitive types using two operators, \ and /. If Pr is the set of
primitive types then the set of all types, Tp, satisfies:

- Pr ⊂ Tp

- if A ∈ Tp and B ∈ Tp then A\B ∈ Tp

- if A ∈ Tp and B ∈ Tp then A/B ∈ Tp

Due to this definition, it is possible to arrange types in a hierarchy:
a type A is a subtype of B if A occurs in B (that is, A is a subtype of
B iff A = B; or (B = B1\B2 or B = B1/B2) and A is a subtype of B1

or B2).

A relation, R, maps symbols in the alphabet Σ to members of Tp.
A grammar that associates at most one type to each symbol in Σ is
called a rigid grammar whereas a grammar that assigns at most k
types to any symbol is a k-valued grammar. We can define a classic
categorial grammar Gcg = (Σ, Pr, S,R) where:

definition of a categorial grammar

Σ is the alphabet/set of terminals

Pr is the set of primitive types

S is a distinguished member of the primitive types S ∈ Pr that will
be the root of complete derivations

R is a relation Σ × Tp where Tp is the set of all types as generated
from Pr as described above



formal models of language: grammars 20

A string has a valid parse if the types assigned to its symbols can
be combined to produce a derivation tree with root S. Types may be
combined using the two rules of function application:

function application

• Forward application is indicated by the symbol >:

A/B B
>

A

• Backward application is indicated by the symbol <:

B A\B
<

A

For illustration, below is a derivation
tree for the string xyz using the
grammar Gcg = (Σ, Pr , S,R) where:

Pr = {S, A, B}
Σ = {x, y, z}
S = S
R = {(x, A), (y, S\A/B), (z, B)}

x R
A

y
R

S\A/B
z RB

>
S\A

<
S

Note that classic categorial grammars have a simple correspon-
dence with context free grammars:

• Given a classic categorial grammar, Gcg, with lexicon Σ, then the
range of Gcg is the range of the relation R (that is, all of the types
in Tp that were assigned to a symbol in Σ).

• So Tp(Gcg) = {A|A ∈ range(R) or A is a subtype of range(R)}.

• To create a context free grammar Gc f g = (N , Σ, S,P) with strong
equivalence to Gcg = (Σ, Pr, S,R) we can define Gc f g as:
N = Pr ∪ range(R)

Σ = Σ
S = S
P = {B → A B\A|B\A ∈ Tp}

∪ {B → B/A A|B/A ∈ Tp}
∪ {A → a|R : a → A}

For a natural language example,
below is a derivation tree for the
string alice chases rabbits using the
grammar Gcg = (Σ, Pr , S,R) where:

Pr = {S, NP}
Σ = {alice, chases, rabbits}
S = S
R = {(alice, NP), (chases, S\NP/NP),

(rabbits, NP)}

alice RNP

chases R
S\NP/NP

rabbits RNP
>

S\NP
<

S

If we are to use a categorial grammar to model natural languages
we may need something more powerful than equivalence to a CFG.
There is a variant of categorial grammar called Combinatory

Categorial Grammar that exhibits equivalence to the mildly
context sensitive languages. A combinatory categorial grammar
allows function composition and type raising as well as the
function application described above. These extra rules are defined
below where A, B, C, T ∈ Tp:

• Function composition is indicated by the symbols B> and
function composition

B<:

A/B B/C B>A/C

B\C A\B
B<A\C

• Type-raising is indicated by the symbols T> and T<:
type raising

A T>T/(T\A)

A T<T\(T/A)


	0. Refresher of Discrete Maths
	1. Phrase Structure Grammars
	2. Dependency Grammars
	3. Tree Adjoining Grammars
	4. Categorial Grammars

