Scene Understanding — Geometry

Dr Fangcheng Zhong
Last Lecture

• Cross-view correspondence is crucial for motion tracking and 3D mapping
• Solution: feature tracking
Outline

• Feature tracking
 – detection, description, matching
 – SIFT, SURF, ORB
 – RANSAC

• Efficient geometric representations
 – featured point clouds
 – plane tracking
 – depth image

• Object tracking
 – face/body/gesture tracking
Feature Tracking

detection
description
matching
Feature Detection

Which makes a good feature to track?
Feature Detection

- Textureless regions can result in failure of motion tracking, 3D mapping, and related processing (hit test, occlusion, tracking)
Harris Corner Detection

- Weighted sum of second moment matrices over a window for each pixel

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

- Eigenvalues of \(M \) indicates whether the window represents a corner
- Harris corner response function

\[
R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2
\]
- Non-maximum suppression to refine the results
Harris Corner Detection

- ✓ Rotation invariant
- ✓ Invariant to additive (exposure) and multiplicative (contrast) changes

- ✗ Not invariant to scaling
SIFT Keypoint Detection

- Scale-Invariant Feature Transform
 - find the correct scale of the keypoint via Laplacian pyramids
SIFT Keypoint Detection

Difference of Gaussian (edge detector)

Gaussian pyramid

Laplacian pyramid
SIFT Keypoint Detection

- Search for key points from local extrema over scale and space
- Remove edge points
- Contrast threshold to refine the results
SIFT Keypoint Detection

- ✓ Invariant to a wide range of geometric transformations, including scale, rotation, and affine distortion
- ✗ Computationally expensive on large images
SURF Keypoint Detection

• Speeded-Up Robust Features
 – Approximate Difference of Gaussian with box filtering
 – Fast to compute with integral images
 – Can be computed in parallel for different scales
• ✔
 – Computationally efficient, well-suited for real-time applications
• ❌
 – Less invariant to rotations and affine distortions
FAST Algorithm

• Features from Accelerated Segment Test
 – Consider a circle of 16 pixels around a pixel \(p \)
 – \(p \) is a corner if there exists a set of 12 contiguous pixels in the circle which are all brighter (darker) than \(I_p + t \) (\(I_p - t \))
 – High-speed test with machine learning
 – Non-maximal suppression to refine the results
FAST Algorithm

- ✅ Faster than other existing corner detectors
- ❌ Not robust to high levels of noise and texture
- ❌ Not robust to rotation and scaling
Feature Descriptors

- Encode each detected keypoint into a feature vector for matching
SIFT Feature Descriptor

- Identify the principal orientation (from dominate gradient) and scale (from the pyramid) of the keypoint
- Rotate and scale the local patch of the keypoint accordingly
- Divide each patch into 4x4 subpatches and generate an 8-bin gradient histogram for each subpatch
- The descriptor is a 4x4x8=128 vector
SIFT Feature Descriptor

- Robust to a wide range of transformations
- Highly discriminative features, accurate for matching

- Intensive in both memory and computation
SURF Feature Descriptor

- Use wavelet responses in horizontal and vertical direction for orientation assignment
- Divide each patch into 4x4 subpatches and generate a 4d horizontal and vertical wavelet responses
- The descriptor is a 4x4x4=64 vector
SURF Feature Descriptor

• ✅
 – Faster matching (use of sign of Laplacian)
 – Robust to blurring and rotation

• ❌
 – Not robust to viewpoint change and illumination change
BRIEF Feature Descriptor

- **Binary Robust Independent Elementary Features**
 - small binary strings that are easy to compute and compare

- **Procedure**
 - select a patch around a keypoint
 - select a set of pixel pairs in that patch
 - for each pair, generate a binary number comparing pixel intensities
 \[b = \begin{cases}
 1 & \text{if } I(s_1) < I(s_2) \\
 0 & \text{otherwise}
 \end{cases} \]
 - concatenate all the binaries to a bit string
BRIEF Feature Descriptor

- ✅ Compact descriptor (binary, short length)
- ✅ Fast to compute (simple comparison)
- ✅ Fast to compare (hamming distance)

- ❌ Reduced accuracy
- ❌ Not robust to rotation and scale
- ❌ Not robust to high levels of noise
Oriented FAST and Rotated BRIEF (ORB)

• Fusion of FAST keypoint detector and BRIEF descriptor with modifications
 – Compute multiscale-features and orientation of keypoints
 – Add rotation compensation
 – Learn optimal sampling pairs
Feature Tracking

• Detector
 – Repeatability across multiple images (despite geometric and photometric transformations)
 – Precision & locality (occupies small an area of the image, robust to clutter and occlusion)

• Descriptor
 – Saliency & matchability (distinctive description, correspondence despite geometric and photometric distortions)
 – Compactness and efficiency
Feature matching

- Threshold distance for matching
- Higher threshold gives more good or bad pairs
- Fast matching algorithms
 - kd tree
 - k-nearest neighbors
 - Fast Library for Approximate Nearest Neighbors (FLANN)
Random Sample Consensus (RANSAC)

- An iterative method for estimating a mathematical model from a data set that contains outliers
- Reject outliers (incorrect correspondence) in motion tracking and 3D mapping
Featured Point Clouds

- 3D position
- feature vector
- normal
Plane Detection
Depth Image
Depth Image
Skybox Image
Face Tracking

- keypoints detection
- head pose estimation
- parametric face model (e.g. 3DMM)
Face Tracking
Hand Pose Tracking
Body Pose Tracking
Body Pose Tracking

ARKit body pose tracking
Object Tracking

ARKit object tracking

Prepare to scan -> Define bounding box -> Scan -> Adjust origin -> Test and Export