
Discrete Mathematics
Exercises 7 – Solutions with Commentary
Marcelo Fiore Ohad Kammar Dima Szamozvancev

9. On bijections
9.1. Basic exercises

1. a) Define a function that has (i) none, (ii) exactly one, and (iii) more than one retraction.

b) Define a function that has (i) none, (ii) exactly one, and (iii) more than one section.

� The general pattern (for finite sets) is that the domain of sections is smaller than (or
equal to) the codomain so elements can be “selected” from a larger set. Conversely, the
domain of a retraction is greater than or equal to the codomain, so a group of elements
can be “collapsed” into one. The section-retraction condition states that a section at a ∈ A
selects one of the elements that get mapped to a by the retraction.

2. Let n be an integer.

a) How many sections are there for the absolute-value map x 7→ |x |: [−n..n]→ [0..n]?

The absolute value function maps two integers k and −k to the same natural number
|k| (other than 0), so a section for this map can select either of the two integers. The
codomain [0..n] has size n+ 1 but 0 can only be mapped to 0 ∈ [−n..n]; for the
remaining n inputs we have 2 choices each, giving us 2n possible sections.

b) How many retractions are there for the exponential map x 7→ 2x : [0..n]→ [0..2n]?

The retraction only needs to map the powers of two back to their exponents, leaving
2n − n naturals in [0..2n] that are not in the range of the exponential map and
therefore are not constrained by the section-retraction condition. Since each of these
can be mapped to any of the #[0..n] = n+ 1 possible inputs, the exponential map
has (n+ 1)2

n−n retractions.

3. Give an example of two sets A and B and a function f : A→ B such that f has a retraction but
no section. Explain how you know that f has these properties.

See §9.1.1.

4. Prove that the identity function is a bijection and that the composition of bijections is a bijection.

To show that the identity idA : A→ A is a bijection , it is sufficient to exhibit a two sided
inverse, namely idA itself. Since it is the unit of composition, we have idA ◦ idA = idA, which
is both the left and right inverse condition.

Let f : A→ B and g : B→ C be bijections, with respective inverses f −1 and g−1. We need to
show that the composite g ◦ f : A→ C is a bijection. Consider the function f −1◦ g−1 : C → A,
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and calculate using the inverse properties of f and g :

( f −1 ◦ g−1) ◦ (g ◦ f ) = f −1 ◦ (g−1 ◦ g) ◦ f = f −1 ◦ idB ◦ f = f −1 ◦ f = idA

(g ◦ f ) ◦ ( f −1 ◦ g−1) = g ◦ ( f ◦ f −1) ◦ g−1 = g ◦ idB ◦ g−1 = g ◦ g−1 = idC

Thus, f −1 ◦ g−1 is a two-sided inverse of g ◦ f , making it into a bijection.

5. For f : A→ B, prove that if there are g, h: B→ A such that g ◦ f = idA and f ◦ h = idB then
g = h. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

We show that if a map f : A→ B has two opposite-sided inverses, they must be equal.
Assume g, h: B→ A satisfy g ◦ f = idA and f ◦h = idB . We consider the composite g ◦ f ◦h
and calculate:

g ◦ ( f ◦ h) = g ◦ idB = g (g ◦ f ) ◦ h= idA ◦ h= h

and since composition is associative, we have that g = h.

Assume a function f : A→ B has two inverses f1
−1, f2

−1 : B→ A. Then, in particular, they
satisfy f1

−1 ◦ f = idA and f ◦ f2
−1 = idB , so by the first part, we have that f1

−1 = f2
−1.

9.2. Core exercises
1. We say that two functions s : A → B and r : B → A are a section-retraction pair whenever

r ◦ s = idA; and that a function e : B→ B is an idempotent whenever e ◦ e = e. This question
demonstrates that section-retraction pairs and idempotents are closely connected: any section-
retraction pair gives rise to an idempotent function, and any idempotent function can be split
into a section-retraction pair.

a) Let f : C → D and g : D→ C be functions such that f ◦ g ◦ f = f .

(i) Can you conclude that f ◦ g is idempotent? What about g ◦ f ? Justify your answers.

Both are idempotent, since by associativity of ◦ and the assumption we have:

( f ◦ g) ◦ ( f ◦ g) = ( f ◦ g ◦ f ) ◦ g = f ◦ g

(g ◦ f ) ◦ (g ◦ f ) = g ◦ ( f ◦ g ◦ f ) = g ◦ f

(ii) Define a map g ′ using f and g that satisfies both

f ◦ g ′ ◦ f = f and g ′ ◦ f ◦ g ′ = g ′

Let g ′ = g ◦ f ◦ g . Then:

f ◦ g ′ ◦ f = f ◦ g ◦ ( f ◦ g ◦ f ) = f ◦ g ◦ f = f

g ′ ◦ f ◦ g ′ = g ◦ ( f ◦ g ◦ f ) ◦ g ◦ f ◦ g = g ◦ ( f ◦ g ◦ f ) ◦ g = g ◦ f ◦ g = g ′
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� Straightforward questions intended to get you used to “the algebra of functions”:
calculating with compositions of functions, rather than their values at arguments.

b) Show that if s : A→ B and r : B → A are a section-retraction pair then the composite
s ◦ r : B→ B is idempotent.

Let s : A→ B and r : B→ A be a section-retraction pair with r ◦ s = idA. We show that
s ◦ r : B→ B is idempotent as follows:

(s ◦ r) ◦ (s ◦ r) = s ◦ (r ◦ s) ◦ r = s ◦ idA ◦ r = s ◦ r

where we use assumption along with the associativity of composition and neutrality
of the identity function.

c) Show that for every idempotent e : B→ B there exists a set A (called a retract of B) and a
section-rectraction pair s : A→ B and r : B→ A such that s ◦ r = e.

Let e : B→ B be an idempotent function. We need to show that there exists a set A
such that e can be split into the composition e = s ◦ r where s : A→ B and r : B→ A
form a section-retraction pair.

Take A to be the subset { e(x) | x ∈ B } ⊆ B, i.e. the direct image of B under e.
Let s : A→ B be the subset injection A↣ B, and r : B → A be e with its codomain
restricted to its range. That is:

s(x) = x r(y) = e(y)

Now, the composite s◦r maps x ∈ B to e(x) ∈ Awhich is then injected to B unchanged,
so s◦r = e. The reverse composite r◦s maps an element y : A to e(y), but by definition
of A there must be an x ∈ B such that y = e(x), and by the idempotence of e we
have that e(y) = e(e(x)) = e(x) = y ; thus, r ◦ s = idA and the two maps form a
section-retraction pair.

� This is a rather abstract exercise which establishes a connection between idem-
potent maps and section-retraction pairs, namely: every sr-pair gives rise to an
idempotent map, and every idempotent map can be split into a sr-pair.

Idempotent maps are functions which do not need to be applied more than once:
f ( f (x)) = f (x), so in general f n(x) = f (x) for any natural number n. Examples are
the absolute value function |−|: Z→ Z, sorting algorithms and other “normalisation”
procedures (once something is brought into a standardised, normal form, it should
not change if normalised again), mapping a set X to its closure under some property
ClP(X ) (e.g. for an arbitrary relation R, taking the transitive closure of Cltrans(R) should
be a no-op), pressing the an elevator or road crossing indicator button, etc.

Section-retraction pairs normally capture the idea of sorting a set of elements B into
disjoint groupings labelled by A: the retraction r : B→ A maps an element b ∈ B to
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its group label in A, while the section s : A→ B selects a particular element s(a) ∈ B
labelled by a ∈ A. Clearly the group that a particular element of the group belongs
to will be the starting group, giving rise to the required one-sided inverse condi-
tion. Examples are cities grouped by countries, students grouped by subject/college,
products grouped by brands, employees grouped by department, and so on (you can
probably find even more examples in the Databases course).

A common characteristic of all of these is that the set of entities is larger than the
set of groups, and each group has at least one element (since the section has to
select something). This is usually visualised as a vertical internal diagram, where
the retraction r maps several entities in B to a single element in A, and the section
s maps an element in A to one of the elements that is mapped to it by r . As this
representation demonstrates, elements in B get clustered by which group they belong
to, which equips B with an implicit partitioning (see §10.2.3). The section then selects a
“representative element” of each partition. The section-retraction condition r◦s = idA

simply states that the representative elements are in the clusters they represent –
certainly desirable! For the example of cities grouped by countries, the representative
element of each city cluster may be the capital city (and let’s assume every country
has exactly one capital), which of course has to be in the country it is a capital of.
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Section-retraction parts only have a one-directional inverse property r ◦ s = idA;
nevertheless, the reverse composite s ◦ r – not required to be the identity – cannot be
completely arbitrary either. As shown in the exercise, it has to be an idempotent map:
once we do one round trip between B and A, we are “stuck” no matter how many new
round trips we do. Mathematically, we have found the fixed point of an endofunction,
i.e. the value x such that f (x) = x . It is easy to see that every idempotent map
e : B → B has a fixed point e(x) for all x ∈ B, since the idempotence condition
e(e(x)) = e(x) is precisely a fixed point equation. Graphically, we can see that
following any 2-step path from x ∈ B will lead us to the representative element, from
which any round trip is merely the identity map. The composite s ◦ r can therefore be
seen as a function on B, representing the mapping of any element in a cluster to its
representative; for example, any city to the capital of its country, any student to their
college student union president, any employee to their department manager.
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Now, we consider a different problem: we start with a set B and an endomap e : B→
B satisfying e ◦ e = e. As before, idempotence clusters elements in B since one
application of e maps them to a unique representative and any new applications will
simply loop on the representatives.
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The question is: can we recover the set A and the section-retraction pair that induces
e just from B and e? While we can’t expect to be able to do this exactly – we’d need
to figure out the names of colleges only based on the students – we can do the next
best thing: find a decomposition which will be isomorphic to the original grouping.
Looking at the diagram, it should be quite clear which elements act as representatives
of the clusters and can therefore be abstractly characterised: all the outputs of the
idempotent map e, i.e. the set of fixed points of e. Thus, we take the retract A to
be nothing more than the subset A ≜ { f (x) | x ∈ B }. Intuitively, we exploit the
(simplified) fact that the set of capitals/presidents/managers is isomorphic to the
set of countries/colleges/departments. Now, we need to find s : A→ B and r : B→ A
satisfying r ◦ s = idA and s◦ r = e. Since A is a subset of B, there is a canonical section
s : A→ B that embeds A into its superset: s(x ∈ A) = x ∈ B. Conversely, the retraction
that maps B to A is the idempotent function e itself, with its codomain restricted
to its range: r(y ∈ B) = e(y). The composite s ◦ r is an application of e followed
by an “identity” map, so we clearly have s ◦ r = e. To prove the section-retraction
condition, take an x ∈ A and consider r(s(x)) = r(x) = e(x), which is not exactly
what we need; however, we know that x ∈ A so it must be of the form x = e(y) for
some y ∈ B. Thus, r(s(x)) = r(s(e(y))) = e(e(y)) = e(y) = x , as required.

10. On equivalence relations
10.1. Basic exercises

1. Prove that the isomorphism relation ∼= between sets is an equivalence relation.

Reflexive. The identity idA : A→ A is a bijection (§9.1.4), so we have the isomorphism A ∼= A
for all sets A.

Symmetric. Assume A ∼= B; that is, there is a bijection f : A→ B. Its inverse f −1 : B→ A is
a bijection too, so we have the isomorphism B ∼= A, as required.

Transitive. Assume A ∼= B and B ∼= C with respective bijections f and g . Then the composite
g ◦ f : A→ C is a bijection too (§9.1.4) and exhibits the isomorphism A ∼= C .

2. Prove that the identity relation idA on a set A is an equivalence relation, and that A/idA
∼= A.
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The identity relation idA : A→ A is equal to the equality relation { (x , y) ∈ A× A | x = y }
which is an equivalence relation.

The quotient set A/idA is the set of equivalence classes of A under the equality relation:
A/idA = { [a]= ⊆ A | a ∈ A}. The equivalence class [a]= contains all elements that are
equal to a, which of course is a itself since sets have no repeated elements. Hence every
equivalence class is the singleton set, and we can construct a bijection f : A→ A/idA by
mapping x ∈ A to { x } ∈ A/idA, and the inverse f −1 mapping { y } to y .

3. Show that, for a positive integer m, the relation ≡m on Z given by

x ≡m y ⇐⇒ x ≡ y (mod m)

is an equivalence relation. What are the equivalence classes of this relation?

We have already proved that congruence is reflexive, transitive and symmetric in §congEquiv,
so it is indeed an equivalence relation. The equivalence classes of congruence modulo
m are the congruence classes km = {n ∈ Z | (m | k − n) }, and the quotient Z/≡m is
isomorphic to the set Zm of integers modulo m.

4. Show that the relation ≡ on Z×Z+ given by

(a, b)≡ (x , y) ⇐⇒ a · y = x · b

is an equivalence relation. What are the equivalence classes of this relation?

Reflexive. We have to show that (a, b)≡ (a, b) for a ∈ Z and b ∈ Z+; by definition, this is
a · b = a · b, which is true by reflexivity of equality.

Symmetric. Assume (a, b) ≡ (x , y); that is, a y = x b. By symmetry of equality we have
x · b = a · y which implies (x , y)≡ (a, b), as required.

Transitive. Assume (a, b) ≡ (x , y) and (x , y) ≡ (m, n); then, 1⃝ a · y = x · b and 2⃝
x · n = m · y . We have to show that 3⃝ a · n = m · b. Multiplying both sides of 1⃝ by n, then
rearranging and applying 2⃝, we have the following:

a · y · n= x · b · n= x · n · b = m · y · b

Since y ∈ Z+, it is nonzero and we can divide both sides of a · y · n = m · b · y to get 3⃝, as
required.

An equivalence class of this relation for a pair (a, b) contains all pairs (x , y) such that
a · y = x · b; in other words, a

b =
x
y . Thus, the relation expresses the equality of fractions,

with an equivalence class corresponding to different “representations” of the same fraction,
and a representative element for every class being the fraction in lowest terms. The quotient
set Z×Z+/≡ has elements corresponding to rational numbers (represented by an infinite
number of distinct, but equivalent fractions of integers) so it is isomorphic to Q.
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10.2. Core exercises
1. Let E1 and E2 be two equivalence relations on a set A. Either prove or disprove the following

statements.

a) E1 ∪ E2 is an equivalence relation on A.

The statement is false. Let A = { a, b, c } and consider the equivalence relations
E1 = { (a, a), (a, b), (b, a), (b, b), (c, c) } and E2 = { (a, a), (b, b), (b, c), (c, b), (c, c) }.
Then, the union E1 ∪ E2 contains the pairs (a, b) and (b, c) but not the pair (a, c), so
the union – while still being reflexive and symmetric – is not transitive.

b) E1 ∩ E2 is an equivalence relation on A.

Let E1 and E2 be two equivalence relations on A. We show that E1∩E2 is an equivalence
relation as well.

Reflexive. Let a be an element of A. Since E1 and E2 are reflexive, they both contain
the pair (a, a) – and thus so does their intersection.

Symmetric. Take the pair (a, b) ∈ E1 ∩ E2; it is both in E1 and E2. Since E1 and E2 are
symmetric, we have (b, a) ∈ E1 and (b, a) ∈ E2, so (b, a) ∈ E1 ∩ E2, as required.

Transitive. Let (a, b) and (b, c) be pairs of elements in E1 ∩ E2; they must be both
in E1 and E2. As the individual relations are transitive, we also have (a, c) ∈ E1 and
(a, c) ∈ E2, so (a, c) is also in the intersection E1 ∩ E2, as required.

2. For an equivalence relation E on a set A, show that [a1]E = [a2]E iff a1 E a2, where

[a]E = { x ∈ A | x E a }.

Let E be an equivalence relation on A, and take two elements a1, a2 ∈ A.

(⇒) Assume [a1]E = [a2]E ; we need to prove that a1 E a2. By definition of equivalence
classes and set equality, all elements x ∈ A are related to a1 if and only if they are related
to a2: x E a1 ⇐⇒ x E a2. In particular, for x = a1, we have a1 E a1 ⇐⇒ a1 E a2; but E is
reflexive, so a1 E a1 and from this a1 E a2 follows.

(⇐) Assume a1 E a2 and prove that for all x ∈ A, x E a1 if and only if x E a2. If x E a1, then
by assumption and the transitivity of E, x E a2. Conversely, if x E a2, we can chain this with
the opposite assumption a2 E a1 to get x E a1, as required.

3. For a function f : A→ B define a relation ≡ f on A by the rule: for all a, a′ ∈ A,

a ≡ f a′ ⇐⇒ f (a) = f (a′)

a) Show that for every function f : A→ B, the relation ≡ f is an equivalence relation on A.

Reflexive. We need to show that for all a ∈ A, a ≡ f a, or equivalently, f (a) = f (a) –
but the latter holds by reflexivity.
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Symmetric. Assume a ≡ f b, that is, f (a) = f (b). Then f (b) = f (a), so b ≡ f a,
proving that ≡ f is symmetric.

Transitive. Assume a ≡ f b and b ≡ f c, that is, f (a) = f (b) and f (b) = f (c). By
transitivity of equality, f (a) = f (c), so a ≡ f c, as required.

b) Prove that every equivalence relation E in a set A is equal to ≡q, where q : A↠ A/E is the
quotient function q(a) = [a]E .

Let E be an equivalence relation on A. We need to show that for all a, b ∈ A, a E b if
and only if a ≡q b, or, by definition, [a]E = [b]E . But this follows directly from §10.2.2.

c) Prove that for every surjection f : A↠ B,

B ∼=
�

A/≡ f

�

Let f : A↠ B be a surjection. We prove the isomorphism by exhibiting a bijection
g : B→
�

A/≡ f

�

with a two-sided inverse g−1 :
�

A/≡ f

�

→ B.

Let g map a b ∈ B to the set { a ∈ A | f (a) = b }; this is a non-empty set since f is a
surjection, and it is an equivalence class of elements under ≡ f because any a1, a2 in
the set gets mapped to b by f and therefore f (a1) = b = f (a2) implies a1 ≡ f a2.

Let g−1 be a mapping from an equivalence class [a]≡ f
of an a ∈ A to f (a) ∈ B.

We show that for all b ∈ B, g−1(g(b)) = b. By definition of g , g(b) = { a ∈ A | f (a) =
b } which is nonempty by the surjectivity of f ; let a be one of its representative
elements so that g(b) = [a]≡ f

. Then, g−1([a]≡ f
) = f (a), but by assumption, f (a) = b,

so we indeed have g−1 ◦ g = idB .

Conversely, let [a]≡ f
∈
�

A/≡ f

�

be the equivalence class of an element a ∈ A. We
then have g(g−1([a]≡ f

)) = g( f (a)) = { a′ ∈ A | f (a′) = f (a) }. But this set is
precisely { a′ ∈ A | a′ ≡ f a }, the equivalence class [a]≡ f

of a. Thus, g ◦ g−1 = idA/≡ f
,

and the bijection g exhibits the isomorphism B ∼=
�

A/≡ f

�

, as required.

� As before, the best way to get an intuition for this question is to draw a diagram.
A useful visualisation of functions – similar to the clustering representation in §9.2.1 –
is as elements of the domain stacked over the elements of the codomain that they
are mapped to, with the individual mapping arrows left implicit (and functionality
captured by the fact that a dot in A can only be over exactly one dot in B).
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If the function is an injection, each column can at most one element; if it is a surjection
(like f here), each column must have at least one element. The equivalence relation
≡ f in this question relates two elements in A precisely when they are in the same
column, and since f is a surjection, the elements of A are all partitioned into disjoint,
non-empty columns. Since each column is above an element in B, there is a bijection
between the set of partitions (i.e. the set A quotiented by ≡ f ) and B, exhibited by a
mapping between b ∈ B and the stack of A elements that get mapped to b (sometimes
called the fiber over b).
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