
Discrete Mathematics
Exercises 6 – Solutions with Commentary
Marcelo Fiore Ohad Kammar Dima Szamozvancev

6. On relations
6.1. Basic exercises

1. Let A= {1,2, 3,4 }, B = { a, b, c, d } and C = { x , y, z }.
Let R= { (1, a), (2, d), (3, a), (3, b), (3, d) }: A→ B
and S = { (b, x), (b, y), (c, y), (d, z) }: B → C .

Draw the internal diagrams of the relations. What is the composition S ◦ R: A→ C?
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The composite S ◦ R is the relation { (2, z), (3, x), (3, y), (3, z) }.

2. Prove that relational composition is associative and has the identity relation as the neutral
element.

Let R: A→ B, S : B → C , and T : C → D be three relations. We show that their composition
is associative: T ◦ (S ◦R) = (T ◦R) ◦R. Take a pair (a, d) ∈ T ◦ (S ◦R); by the definition of
relational composition, there must be a c ∈ C such that (a, c) ∈ S ◦R and c T d ; expanding
the former, there must be a b ∈ B such that a R b and b S c. But then (b, d) ∈ T ◦ S via c,
and (a, d) ∈ (T ◦ S) ◦ R via b. The converse proof follows analogously from the definition,
so we conclude that relational composition is associative.

Let R: A→ B be a relation. We show that idB ◦R = R = R ◦ idA. Take a pair (a, b) ∈ idB ◦R;
there must exist a b′ ∈ B such that a R b′ and b′ idB b, but since the identity relation is the
equality, we have that b′ = b and therefore (a, b) ∈ R. Conversely, to show that (a, b) ∈ R
is also in idB ◦ R, we observe that b can be used as the intermediate step in showing that
(a, b) ∈ R and (b, b) ∈ idB . The right inverse proof is analogous, so we conclude that the
identity relation is the two-sided unit of relational composition.

3. For a relation R: A→ B, let its opposite, or dual relation, Rop : B → A be defined by:

b Rop a ⇐⇒ a R b

For R, S : A→ B and T : B → C , prove that:

a) R ⊆ S =⇒ Rop ⊆ Sop
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Assume R ⊆ S and show that for all b Rop a, b Sop a. By the definition of opposite
relations, b Rop a if a R b, but by assumption, a S b and thus b Sop a, as required.

b) (R∩ S)op = Rop ∩ Sop

By the previous part and UP of intersections, we have that (R ∩ S)op ⊆ Rop and
(R∩ S)op ⊆ Sop, so (R∩ S)op ⊆ Rop ∩ Sop. Conversely, take a pair (b, a) in Rop and Sop;
then, (a, b) is both in R and S so it is in the intersection and (b, a) ∈ (R∩ S)op.

c) (R∪ S)op = Rop ∪ Sop

For (b, a) ∈ (R∪ S)op, we calculate as follows:

(b, a) ∈ (R∪ S)op ⇐⇒ (a, b) ∈ (R∪ S)

⇐⇒ (a R b ∨ a S b)

⇐⇒ (b Rop a ∨ b Sop a)

⇐⇒ (b, a) ∈ Rop ∪ Sop

d) (T ◦ S)op = Sop ◦ T op

We calculate as follows:

(T ◦ S)op = { (c, a) | (c, a) ∈ (T ◦ S)op }

= { (c, a) | (a, c) ∈ T ◦ S }

= { (c, a) | ∃b ∈ B. a S b ∧ b T c }

= { (c, a) | ∃b ∈ B. b Sop a ∧ c T op b }

= { (c, a) | (c, a) ∈ Sop ◦ T op }= Sop ◦ T op

As before, these questions concern the equality of sets which can be established in several
ways; three possibilities (universal properties, bi-implication reasoning and set compre-
hension reasoning) are demonstrated here.

6.2. Core exercises
1. Let R, R′ ⊆ A× B and S, S′ ⊆ B × C be two pairs of relations and assume R ⊆ R′ and S ⊆ S′.

Prove that S ◦ R ⊆ S′ ◦ R′.

Assume (a, c) ∈ (S ◦ R). Hence, there exists b ∈ B such that a R b and b S c. Then, since
(a, b) ∈ R and R ⊆ R′, we have that (a, b) ∈ R′; similarly, (b, c) ∈ S′. By the definition of
composition, this implies that (a, c) ∈ S′ ◦ R′, as required.

� A simple, but useful lemma which states that subset relationships can be applied on
both operands of relational composition. We have seen similar properties for powersets
(§5.2.2(a)), Cartesian products (§5.2.4(a)) and disjoint unions (§5.2.5(a)). As usual, special
cases of this property can be derived by expanding only one of the two operands: for
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example, S′ ◦ R and S ◦ R′.

2. Let F ⊆ P(A× B) and G ⊆ P(B × C) be two collections of relations from A to B and from B to
C , respectively. Prove that

�
⋃

G
�

◦
�
⋃

F
�

=
⋃

{S ◦ R | R ∈ F , S ∈ G }: A→ C

Recall that the notation {S ◦ R: A→ C | R ∈ F , S ∈ G } is common syntactic sugar for the
formal definition { T ∈ P(A× C) | ∃R ∈ F . ∃S ∈ G. T = S ◦ R }. Hence,

T ∈ {S ◦ R ∈ A→ C | R ∈ F , S ∈ G } ⇐⇒ ∃R ∈ F . ∃S ∈ G. T = S ◦ R

(⊆)We show:
�⋃

G
�

◦
�⋃

F
�

⊆
⋃

{S ◦ R | R ∈ F , S ∈ G }.

Assume (a, c) ∈
�⋃

G
�

◦
�⋃

F
�

. Hence, there exists b ∈ B such that (a, b) ∈
⋃

F and
(b, c) ∈
⋃

G. Then, by the definition of big unions, we have a R b for some R ∈ F and
b S c for some S ∈ G so it follows that (a, c) ∈ S ◦ R for some R ∈ F and S ∈ G. That is,
(a, c) ∈
⋃

{S ◦ R | R ∈ F , S ∈ G }.

(⊇) By the universal property of unions, we have that
⋃

{S ◦ R | R ∈ F , S ∈ G } ⊆
�⋃

G
�

◦
�⋃

F
�

if and only if S ◦ R ⊆
�⋃

G
�

◦
�⋃

F
�

for all R ∈ F and S ∈ G. This is the case by
§6.2.1 and the fact that R ⊆

⋃

F for all S ∈ F and S ⊆
⋃

G for all S ∈ G, since the big
unions are upper bounds.

� One direction required a direct proof of membership, but the other direction was of the
form
⋃

U ⊆ X and therefore could be approached via the universal property of big unions
as the least upper bound of a family of sets; to show that it is below X , it is sufficient to
show that every element of the family U is below X .

What happens in the case of big intersections?

One direction follows in both cases from the universal property of intersections:
�
⋂

G
�

◦
�
⋂

F
�

⊆
⋂

{S ◦ R | R ∈ F , S ∈ G }

However, the other inclusion fails. Consider a pair (a, c) ∈
⋂

{S ◦ R | R ∈ F , S ∈ G }: it
means that for all R ∈ F and S ∈ G, there exists a bR,S ∈ B such that (a, bR,S) ∈ R and
(bR,S, c) ∈ S. We need to show that (a, c) ∈

�⋂

G
�

◦
�⋂

F
�

, that is, there exists a b ∈ B
such that for all R ∈ F , a R b, and for all S ∈ G, b S c. Note the order of quantification: our
assumption produces an intermediate bR,S for any choices of S and R (and the bR,Ss may
be different depending on the choice), while the goal asks for a single b ∈ B that acts
as an intermediate for every relation in F and G. Since we won’t be able to find such a
single b in general, this direction cannot hold. Abstractly, we only have the implication
∃x . ∀y. P(x , y) =⇒ ∀y. ∃x . P(x , y) but not the other direction; this was not an issue
with union since existentials can be swapped.

3. Suppose R is a relation on a set A. Prove that

a) R is reflexive iff idA ⊆ R



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 6 – S O LU T I O N S W I T H CO M M E N TA RY

R is reflexive iff for all a ∈ A, a R a. Equivalently, for all a, a′ ∈ A, if a = a′ then a R a′.
Since the identity relation is equality, this is equivalent to idA being a subset of R.

b) R is symmetric iff R= Rop

R is symmetric iff for all a, b ∈ A, if a R b then b R a. Equivalently, we can express this
as a R b implying a Rop b, or b Rop a implying b R a. These conditions in turn say that
R ⊆ Rop and Rop ⊆ R, so R= Rop is equivalent to R being symmetric.

c) R is transitive iff R ◦ R ⊆ R

R is transitive iff for all a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R. We first
assume R is transitive and prove that R ◦ R ⊆ R by taking a pair (a, c) ∈ R ◦ R. By the
definition of relation composition, there exists a b ∈ A such that a R b and b R c, but
R is transitive, so a R c. Conversely, assume R ◦ R ⊆ R and suppose a R b and b R c
for three elements a, b, c ∈ A. Then, (a, c) ∈ R ◦ R via b, and by assumption, a R c,
proving that R is transitive.

� The calculational proof of this property would depend on the equivalence

∀a, c ∈ A. (∃b ∈ A. a R b ∧ b R c) =⇒ a R c

⇐⇒ ∀a, c ∈ A. ∀b ∈ A. (a R b ∧ b R c) =⇒ a R c

which is precisely an instance of the equivalence of the formulae (∃x . P(x))⇒ Q
and ∀x . (P(x)⇒Q) way back from §1.3.2.

d) R is antisymmetric iff R∩ Rop ⊆ idA

R is antisymmetric iff for all a, b ∈ A, a R b and b R a implies a = b. This is equivalent
to the statement that a R b and a Rop b implies a = b, that is, (a, b) ∈ R∩Rop implies
(a, b) ∈ idA. This, in turn, is equivalent to R∩ Rop ⊆ idA.

� These are sufficient and necessary conditions for establishing properties of relations in
terms of set-theoretic operators rather than element-wise proofs. As before, having the
ability to reason without “going down to the level of elements” often results in more direct
and elegant proofs that capture the algebraic nature of set-level calculations; in addition,
not having to introduce a lot of new variable names for elements make such proofs less
finicky and error-prone as well.

4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We
are interested in constructing the smallest transitive relation (graph) containing R, called the
transitive closure of R.

a) We define the family of relations which are transitive supersets of R:

TR ≜ {Q : A→ A | R ⊆Q and Q is transitive }

R is not necessarily going to be an element of this family, as it might not be transitive.
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However, R is a lower bound for TR, as it is a subset of every element of the family.

Prove that the set
⋂

TR is the transitive closure for R.

We need to prove that
⋂

TR is the 3⃝ smallest 2⃝ transitive relation 1⃝ containing R.

1⃝ By the UP of intersections, R ⊆
⋂

TR holds iff R ⊆Q for all Q ∈ TR; but by definition
of TR we have that R must be a subset of all its elements.

2⃝ To show that
⋂

TR is transitive, it is sufficient to show that
⋂

TR ◦
⋂

TR ⊆
⋂

TR by
§6.2.3. By the UP of intersections (similar to §6.2.2),

⋂

TR◦
⋂

TR ⊆
⋂

{Q ◦Q |Q ∈ TR },
but since all Q ∈ TR are transitive, Q ◦ Q ⊆ Q and thus

⋂

{Q ◦Q |Q ∈ TR } ⊆
⋂

{Q |Q ∈ TR }=
⋂

TR.

3⃝ To show that
⋂

TR is the smallest transitive superset of R, we let S be a transitive
relation with R ⊆ S and prove that

⋂

TR ⊆ S. Since S is transitive and R ⊆ S, it must
also be an element of TR, and by the UP of intersections,

⋂

TR is a subset of every
element of TR, in particular S.

b)
⋂

TR is the intersection of an infinite number of relations so it’s difficult to compute the
transitive closure this way. A better approach is to start with R, and keep adding the missing
connections until we get a transitive graph. This can be done by repeatedly composing R
with itself: after n compositions, all paths of length n in the graph represented by R will
have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition R◦+ ≜ R ◦ R◦∗ is the transitive closure
for R, i.e. it coincides with the greatest lower bound of TR: R◦+ =

⋂

TR. Hint: show that
R◦+ is both an element and a lower bound of TR.

By the definition of R◦∗ and §6.2.2 (with F =
�

R◦k
�

� k ∈ N
	

and G = {R }), we have
that

R◦+ = R ◦ R◦∗ = R ◦
⋃
�

R◦k
�

� k ∈ N
	

=
⋃
�

R ◦ R◦k
�

� k ∈ N
	

=
⋃

n∈N+
R◦n

where N+ is the set of positive natural numbers. Again, we show that
⋃

n∈N+ R◦n is
the 3⃝ smallest 2⃝ transitive relation 1⃝ containing R, where 1⃝ and 2⃝ amounts to
proving that R◦+ ∈ TR and 3⃝ that it is a lower bound of TR.

1⃝ We have that R ⊆
⋃

n∈N+ R◦n since R = R◦1 is an element of the indexed family and
big unions are upper bounds.

2⃝ To show that R◦+ it is transitive, it is sufficient to show that R◦+ ◦ R◦+ ⊆ R◦+. By
§6.2.2, we have the following:

R◦+ ◦ R◦+ =

�

⋃

n∈N+
R◦n
�

◦
�

⋃

m∈N+
R◦m
�

=
⋃

n∈N+

⋃

m∈N+
R◦n ◦ R◦m

To proceed, we prove the following lemma: for all k, l ∈ N, R◦k ◦ R◦l = R◦(k+l).
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Base case: k = 0. Then, R◦0 ◦ R◦l = idA ◦ R◦l = R◦(0+l) since the identity relation is a
left unit for composition.

Inductive step: k+ 1. Assume the IH⃝: R◦k ◦R◦l = R◦(k+l). By definition of iterated com-
position, R◦(k+1) ◦R◦l =

�

R ◦ R◦k
�

◦R◦l , but since relational composition is associative,
this equals R ◦
�

R◦k ◦ R◦l
�

which, by the IH⃝, is R ◦ R◦(k+l) = R◦((k+1)+l), as required.

By this lemma,
⋃

n∈N+
⋃

m∈N+ R◦n ◦ R◦m =
⋃

n∈N+
⋃

m∈N+ R◦(n+m). Now, to show that
⋃

n∈N+
⋃

m∈N+ R◦(n+m) ⊆ R◦+, we can use the UP of big unions twice and equivalently
establish

∀n ∈ N+. ∀m ∈ N+. R◦(n+m) ⊆ R◦+

but this is the case because R◦(n+m) ∈
�

R◦k
�

� k ∈ N+
	

and big unions are upper
bounds. Thus, we have shown that R◦+ ◦ R◦+ ⊆ R◦+, and by §6.2.3, it is transitive.

3⃝ We need to show that R◦+ is the smallest such relation, i.e. it is a lower bound of
TR. By the UP of unions, we equivalently have

⋃

n∈N+
R◦n ⊆
⋂

TR ⇐⇒ ∀n ∈ N+. ∀Q ∈ TR. R◦n ⊆Q

The latter statement can be proved by induction on n.

Base case: n = 1. We need to show that for all Q ∈ TR, R◦1 = R ⊆ Q; but this is the
case since R ⊆Q by the definition of TR.

Inductive step: n= k+ 1. Assume the IH⃝: ∀Q ∈ TR. R◦k ⊆Q. We need to prove that
∀Q ∈ TR. R◦(k+1) ⊆Q. Let Q ∈ TR be such a relation, and show that R◦(k+1) = R◦R◦k ⊆
Q. By the induction hypothesis, R◦k ⊆ Q and R ⊆ Q by assumption on Q, so §6.2.1
implies that

R ◦ R◦k ⊆Q ◦Q ⊆Q

where the last step follows from the fact that Q is transitive. Thus, R◦(k+1) ⊆Q. By the
principle of mathematical induction, we have that ∀n ∈ N+. R◦n ⊆ Q for all Q ∈ TR,
so R◦+ is indeed a lower bound of TR.

Putting everything together, we have that R◦+ is the transitive closure of R, as required.

� A rather involved proof with many distinct steps, references to established prop-
erties and several proof techniques. Notice, however, that at no point did we have
to reason about elements of the relations: we got to the end without ever having to
say “take (a, a′) ∈ R◦+”, for example. It would have been possible to get a low-level
proof like this, but expanding all definitions and resorting to purely logical reasoning
is often lengthier and more error-prone. Gaining the fluency to work with universal
properties and recognising common patterns (sufficient conditions for transitivity,
operand-wise application of subsets in composition, etc.) is a worthwhile, time-saving
skill to learn for discrete mathematics and other mathematical subjects.



D I S C R E T E M AT H E M AT I C S E X E R C I S E S 6 – S O LU T I O N S W I T H CO M M E N TA RY

7. On partial functions
7.1. Basic exercises

1. Let A2 = {1, 2 } and A3 = { a, b, c }. List the elements of the sets PFun(Ai, A j) for i, j ∈ {2, 3 }.
Hint: there may be quite a few, so you can think of ways of characterising all of them without
giving an explicit listing.

PFun(A2, A2). We have 4 possible total functions: { (1,1), (2,1) }, { (1,1), (2,2) },
{ (1, 2), (2, 1) },{ (1, 2), (2, 2) }. All singleton subsets of these are also partial functions, of
which there are 4 more: { (1,1) }, { (1,2) },{ (2,1) },{ (2,2) }. Finally we have the totally
undefined function {}, giving the expected number of (2+ 1)2 = 9 of partial functions.

PFun(A2, A3). We have 9 possible total functions: { { (1, x), (2, y) } | x , y ∈ A3 }. The
singletons map 1 or 2 to any of a, b, c, so there are 6 of those: { { (1, x) } | x ∈ A3 } ∪
{{ (2, y) } | y ∈ A3 }. With {}, we have 16= (3+ 1)2 partial functions, as expected.

PFun(A3, A2). We have 8 possible total functions: { { (a, x), (b, y), (c, z) } | x , y, z ∈ A2 }.
There are 3 · 2 · 2= 12 partial functions undefined at one argument (where the notation
{Ai }i∈I for an indexed family of sets stands for {Ai | i ∈ I }):

{ { (a, x), (b, y) } }x ,y∈A2
∪ {{ (a, x), (c, z) } }x ,z∈A2

∪ {{ (b, y), (c, z) } }y,z∈A2

There are 3 · 2= 6 partial functions undefined at two arguments:

{ { (a, x) } }x∈A2
∪ {{ (b, y) } }y∈A2

∪ {{ (c, z) } }z∈A2

With {}, we have 27= (2+ 1)3 partial functions, as expected.

PFun(A3, A3). We have 27 possible total functions: { { (a, x), (b, y), (c, z) } | x , y, z ∈ A3 }.
There are 3 · 3 · 3= 27 partial functions undefined at one argument:

{ { (a, x), (b, y) } }x ,y∈A3
∪ {{ (a, x), (c, z) } }x ,z∈A3

∪ {{ (b, y), (c, z) } }y,z∈A3

There are 3 · 3= 9 partial functions undefined at two arguments:

{ { (a, x) } }x∈A3
∪ {{ (b, y) } }y∈A3

∪ {{ (c, z) } }z∈A3

With {}, we have 64= (3+ 1)3 partial functions, as expected.

2. Prove that a relation R: A→ B is a partial function iff R ◦ Rop ⊆ idB .

(⇒) Assume R: A→ B is a partial function: that is, for all a ∈ A and b1, b2 ∈ B, if a R b1 and
a R b2 then b1 = b2. We need to show that if (b1, b2) ∈ R ◦ Rop, b1 = b2. By the definition
of relational composition and the opposite relation, there exists a a ∈ A such that a R b1

and a R b2; but since R is functional, b1 = b2.

(⇐) Assume R ◦ Rop ⊆ idB and take a ∈ A, b1, b2 ∈ B with a R b1 and a R b2. Then, b1 Rop a
and therefore (b1, b2) ∈ R ◦ Rop through a. By assumption, this implies that b1 = b2, as
required.
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3. Prove that the identity relation is a partial function, and that the composition of partial functions
is a partial function.

We show that for all a, a1, a2 ∈ A, if a idA a1 and a idA a2, a1 = a2. Since idA is the equality
relation, we haven that a = a1 and a = a2, so a1 = a2.

Let f : A * B and g : B * C be two partial functions. To show that g ◦ f is a partial
function, it is sufficient to show that (g ◦ f ) ◦ (g ◦ f )op ⊆ idC (§7.1.2). By §6.1.3(d), we have
that (g ◦ f ) ◦ (g ◦ f )op = g ◦ f ◦ f op ◦ gop. Since f is a partial function, f ◦ f op ⊆ idB and
g ◦ gop ⊆ idC ; thus, by §6.2.1, we have:

g ◦ ( f ◦ f op) ◦ gop ⊆ g ◦ idA ◦ gop = g ◦ gop ⊆ idC .

� We could of course prove the latter by unwrapping the definition of partial functions and
composition, or doing case analysis on when the functions are defined. But approaching it
via a sufficient condition is quite neat too!

7.2. Core exercises
1. Show that (PFun(A, B),⊆) is a partial order. What is its least element, if it exists?

Any subset of a partial function is itself a partial function, since it may be defined on
fewer elements of the domain, but functionality is not violated. The set of partial functions
between two sets therefore has the standard subset ordering f ⊆ g which is reflexive,
transitive and antisymmetric as shown in §5.1.1. The least element is the empty set seen as
the totally undefined partial function from A to B.

2. Let F ⊆ PFun(A, B) be a non-empty collection of partial functions from A to B.

a) Show that
⋂

F is a partial function.

By §7.1.2, it is sufficient to show that
�⋂

F
�

◦
�⋂

F
�

op ⊆ idB . We calculate as follows:
�
⋂

F
�

◦
�
⋂

F
�

op =
�
⋂

F
�

◦
�
⋂

{ Fop | F ∈ F }
�

(by §6.1.3(b))

⊆
⋂

{ F ◦ Fop | F ∈ F } (by UP of intersections)

⊆
⋂

{ idB | F ∈ F }= idB (by §7.1.2 and assumption)

b) Show that
⋃

F need not be a partial function by defining two partial functions f , g : A* B
such that f ∪ g : A→ B is a non-functional relation.

We can simply have f = { (1, a) } and g = { (1, b) } for A= {1 } and B = { a, b }. Both
are partial (in fact total) functions, but the union { (1, a), (1, b) } maps 1 to both a
and b, violating functionality.

c) Let h: A* B be a partial function. Show that if every element of F is below h then
⋃

F
is a partial function.
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If for all f ∈ F , f ⊆ h, then h is an upper bound of F and therefore we have
⋃

F ⊆ h.
But subsets of partial functions are themselves partial functions, since they cannot
have more mappings from any particular element of A than h.

� You may wonder why the high-level proof we used for intersections doesn’t work
for unions. The issue is that the UP of unions only allows the inclusion
⋃

{F ◦Fop | F ∈ F } ⊆
�
⋃

F
�

◦
�
⋃

{ Fop | F ∈ F }
�

and while a seemingly more general property
⋃
�

F ◦ F ′
�

� F, F ′ ∈ F
	

=
�
⋃

F
�

◦
�
⋃

F
�

holds in both directions (see §6.2.2), the F and F ′ are independent (since they come
from two existential assumptions) and F ′ cannot be specialised to Fop.

8. On functions
8.1. Basic exercises

1. Let A2 = {1,2 } and A3 = { a, b, c }. List the elements of the sets Fun(Ai, A j) for i, j ∈ {2, 3 }.

The total functions have already been listed amongst the partial functions in §7.1.1:

Fun(A2, A2) = { { (1, x), (2, y) } | x , y ∈ A2 }

Fun(A2, A2) = { { (1, x), (2, y) } | x , y ∈ A3 }

Fun(A3, A2) = { { (a, x), (b, y), (c, z) } | x , y, z ∈ A2 }

Fun(A3, A3) = { { (a, x), (b, y), (c, z) } | x , y, z ∈ A3 }

2. Prove that the identity partial function is a function, and the composition of functions yields a
function.

We need to show that for all a ∈ A there exists a unique a′ ∈ A such that idA(a) = a′. Of
course, a is the witness of the existence, and it is unique since sets have no duplicate
elements.

Let f : A→ B and g : B → C be functions. We show that the composite g ◦ f is also a
function, that is, for all a ∈ A, there exists a unique c ∈ C such that (g ◦ f )(a) = c. By the
definition of function composition, (g ◦ f )(a) = g( f (a)), where f (a) = b for a unique
b ∈ B and g(b) = c for a unique c ∈ C . Thus, a unique c does exist, and g ◦ f is a function.

3. Prove or disprove that (Fun(A, B),⊆) is a partial order.

Unlike partial functions, functions are not closed under taking subsets or supersets: the
number of mappings (i.e. the graph) of a function must be equal to the size of the domain
(or, more precisely, isomorphic), so we can’t add or remove mappings without breaking
functionality or totality. We may be tempted to conclude that (Fun(A, B),⊆) is not a partial
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order, but we should remember that there is still an ordering on the set even if different
functions can’t be compared: f ⊆ g if and only if f = g . Thus, the subset ordering on
functions simply restricts to equality, which is trivially a partial order: we have reflexivity
since f ⊆ f , and antisymmetry and transitivity hold because the hypotheses like f ⊆ g
and g ⊆ h simply become f = g = h.

4. Find endofunctions f , g : A→ A such that f ◦ g ̸= g ◦ f .

Let f : N→ N be the successor function n 7→ n+1, and g : N→ N be the squaring function
m 7→ m2. Then, for all n, (g ◦ f )(n) = (n+ 1)2 = n2 + 2n+ 1, but ( f ◦ g)(n) = n2 + 1.

� Many other examples exist of course. This is merely a reminder that function composition
(and relational composition in general) is not commutative, and it doesn’t have many other
properties that we tend to expect from binary operators: for example, f ◦ g = f ◦ h does
not imply g = h in general.

8.2. Core exercises
1. A relation R: A→ B is said to be total if ∀a ∈ A. ∃b ∈ B. a R b. Prove that this is equivalent to

idA ⊆ Rop ◦R. Conclude that a relation R: A→ B is a function iff R ◦Rop ⊆ idB and idA ⊆ Rop ◦R.

(⇒) Assume that R: A→ B is a total relation, that is, for all a ∈ A there exists a b ∈ B such
that a R b. We need to show that for all (a, a′) ∈ idA, (a, a′) ∈ Rop ◦ R – that is, that Rop ◦ R
is reflexive. A pair (a, a) for a ∈ A is in Rop ◦ R if there exists a b ∈ B such that a R b and
b Rop a, i.e. a R b, which is satisfied if there exists a b ∈ B such that a R b. But this follows
from the assumption that R is total.

(⇐) Assume that Rop ◦ R is reflexive and show that R is total. Take a ∈ A; as Rop ◦ R is
reflexive, (a, a) ∈ Rop ◦ R, so there exists a b ∈ B such that a R b. Taking this b as the
witness of existence, we conclude that R is a total relation.

A total function is both a total relation and a partial function, so a relation R is total if and
only if it satisfies both idA ⊆ Rop ◦ R (from above) and R ◦ Rop ⊆ idB (from §7.1.2).

� This question establishes that partial functions are in some sense dual to total rela-
tions: instead of asking for uniqueness (functionality), they require an existence (totality).
Consequently, we can dualise several results from the previous section. For example, we
have that the union of total relations is total, but the intersection is not, with the proofs
being the duals of the arguments in §7.2.2 (and the proof attempt for intersections failing
because their universal property is the “wrong way around”).

2. Let χ : P(U) → (U ⇒ [2]) be the function mapping subsets S ⊆ U to their characteristic
functions χS : U → [2].

a) Prove that for all x ∈ U ,

• χA∪B(x) = (χA(x) ∨ χB(x)) =max(χA(x),χB(x))
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Let x ∈ U . Then,

χA∪B(x) ⇐⇒ x ∈ (A∪ B) ⇐⇒ (x ∈ A) ∨ (x ∈ B) ⇐⇒ (χA(x) ∨ χB(x))

and the latter holds iff χA(x) = 1 or χB(x) = 1, so max(χA(x),χB(x)) = 1.

• χA∩B(x) = (χA(x) ∧ χB(x)) =min(χA(x),χB(x))

Let x ∈ U . Then,

χA∩B(x) ⇐⇒ x ∈ (A∩ B) ⇐⇒ (x ∈ A) ∧ (x ∈ B) ⇐⇒ (χA(x) ∧ χB(x))

and the latter holds iff χA(x) = 1 and χB(x) = 1, so min(χA(x),χB(x)) = 1.

• χAc(x) = ¬(χA(x)) = (1−χA(x))

Let x ∈ U . Then,

χAc(x) ⇐⇒ x ̸∈ A ⇐⇒ ¬(x ∈ A) ⇐⇒ ¬(χA(x))

and the latter holds iff χA(x) = 0, so 1−χA(x) = 1.

b) For what construction A?B on sets A and B does it hold that

χA?B(x) = (χA(x)⊕χB(x)) = (χA(x) +2 χB(x))

for all x ∈ U , where ⊕ is the exclusive or operator? Prove your claim.

The element x must be exactly in one of A or B, not their intersection. This leads to
the definition

A?B = (A\ B)∪ (B \ A) = (A∪ B) \ (A∩ B)

which is known as the symmetric difference and written A△ B. Then, for x ∈ U ,

χA△B(x) ⇐⇒ x ∈ (A△ B)

⇐⇒ (x ∈ A ∧ x ̸∈ B) ∨ (x ∈ B ∧ x ̸∈ A)

⇐⇒ (χA(x) ∧ ¬χB(x)) ∨ (χB(x) ∧ ¬χA(x))

⇐⇒ χA(x)⊕χB(x)

and the latter doesn’t hold iff χA(x) = χB(x) = 0 or χA(x) = χB(x) = 1. Adding
χA(x) and χB(x) can give the values of 0, 1 or 2, but we only want the case where
the sum is 1 and use the addition modulo 2 to route the other possibilities to 0.

8.3. Optional advanced exercise
Consider a set A together with an element a ∈ A and an endofunction f : A→ A.

Say that a relation R: N→ A is (a, f )-closed whenever

R(0, a) and ∀n ∈ N, x ∈ A. R(n, x) =⇒ R(n+ 1, f (x))
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Define the relation F : N→ A as

F ≜
⋂

{R: N→ A | R is (a, f )-closed }

a) Prove that F is (a, f )-closed.

b) Prove that F is total, that is: ∀n ∈ N. ∃y ∈ A. F(n, y).

c) Prove that F is a function N→ A, that is: ∀n ∈ N. ∃!y ∈ A. F(n, y).

Hint: Proceed by induction. Observe that, in view of the previous item, to show that ∃!y ∈
A. F(k, y) it suffices to exhibit an (a, f )-closed relation Rk such that ∃!y ∈ A. Rk(k, y). (Why?)
For instance, as the relation R0 = { (m, y) ∈ N× A | m = 0 =⇒ y = a } is (a, f )-closed one
has that F(0, y) =⇒ R0(0, y) =⇒ y = a.

d) Show that if h is a function N→ A with h(0) = a and ∀n ∈ N. h(n+ 1) = f (h(n)) then h= F .

Thus, for every set A together with an element a ∈ A and an endofunction f : A→ A there exists a
unique function F : N→ A, typically said to be inductively defined, satisfying the recurrence relation

F(n) =

(

a for n= 0

f (F(n− 1)) for n≥ 1
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